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� We introduce one of the first mathematical models of tumour invasion with growth thresholds.

� Only biologically relevant travelling wave fronts exist, opposing earlier models.
� Experimental observations in tumour spread are uncovered in our model.
� We show the relevance of incorporating the Allee effect in tumour spread.
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A recent study by Korolev et al. [Nat. Rev. Cancer, 14:371–379, 2014] evidences that the Allee effect—in its
strong form, the requirement of a minimum density for cell growth—is important in the spreading of
cancerous tumours. We present one of the first mathematical models of tumour invasion that incor-
porates the Allee effect. Based on analysis of the existence of travelling wave solutions to this model, we
argue that it is an improvement on previous models of its kind. We show that, with the strong Allee
effect, the model admits biologically relevant travelling wave solutions, with well-defined edges. Fur-
thermore, we uncover an experimentally observed biphasic relationship between the invasion speed of
the tumour and the background extracellular matrix density.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Allee effects and tumour growth

A recent article in Nature Reviews Cancer, (Korolev et al., 2014),
has highlighted how a well-established concept in ecology—the
Allee effect (Allee, 1938)—is also relevant to tumours but has yet to
be incorporated into their modelling. In its strong form, the Allee
effect refers to the observation that there is a population threshold
below which a species has negative population growth, driving it to
extinction. The weak form of the Allee effect describes a species that
has small (but not negative) population growth at low populations
(Courchamp et al., 2008). The ecological causes of Allee effects
(which are observed within small populations) are multitudinous:
the inability to find a mate; the negative impact on co-operative
behaviours such as anti-predator vigilance; the increased sensitivity
to demographic stochasticity; and, the lack of diversity in the extant
lt).
gene pool (Courchamp et al., 1999; Keitt et al., 2001; Stephens and
Sutherland, 1999). Evidence for the strong (Berger, 1990; Courch-
amp and MacDonald, 2001; Groom, 1998; Johnson et al., 2006;
Lamont et al., 1993) and weak (Allee, 1938; Angulo et al., 2007;
Davis et al., 2004; Tang et al., 2014; Taylor et al., 2004) Allee effects
are plentiful across many taxa; additional reviews are available in
Gregory et al. (2010); Kramer et al. (2009). Consequently, there is a
proliferation of mathematical models of the Allee effect in ecology
(e.g. Balasuriya, 2010; Balasuriya and Gottwald, 2010; Cushing,
2014; Hart and Aviles, 2014; Kribs-Zaleta and Mitchell, 2014; Lewis
and Kareiva, 1993; Potapov and Rajakaruna, 2013; Yamamichi et al.,
2014). While studies in ecology often worry about factors that
might push a threatened species below the (strong) Allee threshold
and thereby towards extinction (e.g. Sanderson et al., 2014), an
intriguing possibility in cancer research is whether the Allee effect
could be harnessed for controlling or negating the growth of can-
cerous cells (Korolev et al., 2014), consonant with recent experi-
ments in bacteria (Smith et al., 2014).

While seldom stated, hints of the Allee effect are numerous in the
cancer research literature. Firstly, at the most anecdotal level, a tumour
is only deemed threatening if it is above a certain size, which is an
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implicit presumption of a strong Allee threshold. More concrete
illustrations are available in clinical trials for papillary and follicular
thyroid cancers (Machens et al., 2005), in which risk-of-spread versus
initial tumour size figures indicate that the risk is effectively zero until
a minimum primary tumour size is reached. Secondly, studies of
tumour dormancy suggest the presence of mechanisms such as a
restrictive apoptosis/proliferation equilibrium (a cell density at which
natural cell death balances new cell production) or a minimum
angiogenic potential requirement for blood vessel formation in the
tumour (Ruppender et al., 2013). Such biological considerations
translate to the inability of the tumour to grow unless a strong Allee
threshold is reached. Thirdly, it has been shown experimentally that in
the growth of blebs (spherical protrusions forming along the front
boundary of tumours), there is a minimum surface tension below
which the blebs cannot expand (Tinevez et al., 2009). Since this sur-
face tension is governed by a variety of poorly understood factors such
as available myosin (Tinevez et al., 2009), the existing microenviron-
ment can be thought of as essentially imposing an Allee effect.
Fourthly, Axelrod et al. (2006) and Pienta et al. (2008) provide evi-
dence of the co-operation between nearby subclones in the early
evolution of tumours through the production and exchange of growth
factors. Since co-operation is adversely impacted at low populations,
tumour cells must—as in ecological systems—encounter the Allee
effect. Fifthly, deleterious mutations accumulate more in smaller
tumours (Korolev et al., 2014), thereby driving the population to
extinctionwith much higher probability than larger tumours. Sixthly—
and at a much broader level—the very fact that cancers depend on
genetic heterogeneity, mutations and subsequent evolution (Burrell
et al., 2013; Greaves andMaley, 2012; Merlo et al., 2006), pinpoints the
necessity of having a large enough gene pool for successful growth,
that is, the requirement of an Allee effect.1 For example, numerical
results from a recent integral equation model that models the number
of cells in clones with different mutation rates, indicate that there is a
threshold genetic mutation rate below which the cancer cells suffer
extinction (Amor and Solé, 2014). It is important to note that most
evolutionary models of cancer (see the reviews by Merlo et al., 2006
and Michor et al., 2004) neglect the spatial structure, which is pro-
blematic given that tumours are clinically classified depending on
their shape (Connolly et al., 2000). One way of incorporating genetic
mutation information within a spatial spreading model is to treat the
stochastic mutations as creating an effective strong Allee threshold.

There are a variety of tumour growth models which examine
the roles of additional effects such as acidity (Gatenby and Gaw-
linski, 1996; McGillen et al., 2014; Bertuzzi et al., 2010), adhesion
(Chaplain et al., 2011; Gerisch and Chaplain, 2008; Sherratt et al.,
2009), non-local interactions (Szymanska et al., 2009; Gerisch and
Chaplain, 2008), cell plasticity in proliferation versus migration
(Gao et al., 2005; Hatzikirou et al., 2012; Tektonidis et al., 2011;
Martínez-González et al., 2012), in a range of tumour types. Most
models fall into two classes: those which simulate a network of
cells (Tektonidis et al., 2011; Hatzikirou et al., 2012), and those
which rely of continuum modelling (e.g. Chaplain et al., 2011;
McGillen et al., 2014; Szymanska et al., 2009; Gatenby and Gaw-
linski, 1996; Sherratt et al., 2009; Martínez-González et al., 2012),
although some models that make a connection between the two
exist, (e.g. Painter and Hillen, 2013; Bellomo et al., 2010; Engwer
et al., 2015). Very recently, a spatio-temporal tumour cell growth
model incorporating micro-environmental influences has been
studied. That analysis reveals an Allee effect depending on the cell
motility versus local cell density, (Böttger et al., 2015).
1 This is stating that genetic diversity produces an implicit Allee effect, dif-
ferent from studies on the impact of a separately imposed Allee effect on genetic
diversity (Wittman et al., 2014a,b).
1.2. A new model for malignant tumour invasion

In light of this emergent viewpoint on the relevance of the Allee
effect in cancers, we offer in this paper, one of the first cancer
spreading model that explicitly includes the Allee effect. Specifi-
cally, we examine how the inclusion of the Allee effect changes
conclusions in comparison to the commonly used logistic growth
model. For our comparison – the first of its kind – we choose to
examine a model of a malignant, solid tumour invading through the
extracellular matrix (ECM) via hapto- or chemotaxis, as opposed to
the more complex, metastatic dissemination regime (Wells et al.,
2013). In particular, our analysis applies to the spread of tumours in
which hapto- or chemotaxis is the dominant mechanism of cell
migration, such as melanoma (Marchant et al., 2000; Perumpanani
and Byrne, 1999). We focus on the behaviour of the tumours on a
long time scale; we do not analyse the transient dynamics.

We assume that an invasive tumour front can be modelled,
mathematically, by a travelling wave solution (TWS) with constant
speed c. TWSs correspond to stationary solutions in an appropriately
moving frame and are defined on a one-dimensional, unbounded
spatial domain. While this choice of domain is a simplification of the
geometry of tumour invasion, it is a reasonable approximation, while
still yielding a model that is amenable to mathematical analysis.

We build on a model of malignant tumour invasion derived in
Perumpanani et al. (1999) and subsequently studied in Harley
et al. (2014a); Marchant et al. (2000). In these articles, a logistic
growth term is used to model the growth of the cancer cells (see
Section 1.4); Allee effects are neglected. Here, we replace this
logistic growth term with an Allee growth term and study the
existence of TWSs of the following dimensionless model for
malignant tumour invasion (see Section 2 for the derivation):

∂u
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¼ �u2w
zfflfflffl}|fflfflffl{proteolysis
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with

f u;wð Þ ¼ f Allee w; αð Þ ≔ w 1�wð Þ w�αð Þ; jαjo1: ð2Þ
The dependent variables uZ0 and wZ0 represent the dimen-

sionless ECM and cancer cell densities, respectively. The independent
variables t40 and xAR represent time and one-dimensional space,
respectively. Both species are assumed to diffuse slowly, which is
modelled by the small parameter ε: 0rε⪡1. We further assume that
the ECM diffuses more slowly than the cancer cells: 0rβr1 and β
independent of ε. Observe that our analysis is also able to capture the
situation of the ECM not diffusing, i.e. β¼ 0. The observed migration
of the cancer cells up the gradient of ECM is modelled by the hapto-
or chemotaxis term. As the cancer cells migrate they break down the
ECM; this is modelled by the proteolysis term. The cubic function
describing the growth of the cancer cells, (2), models the Allee effect,
with different values of α corresponding to different strengths.
Consistent with the definition in Section 1.1, the Allee effect mod-
elled by (2) describes the following.

A positive α models the strong Allee effect. Since the carrying
capacity of the cancer cell density has been scaled to one in (2), we
require αo1. The strong Allee effect imposes a growth threshold
on the tumour, whereby the cancer cell population only increases
(at a given location) if αowo1, since otherwise f Alleer0. See also
Fig. 1. In the context of tumour invasion, α⪆0 is the most appro-
priate representation of the strong Allee effect as it is unlikely that
a large threshold value (relative to the carrying capacity) is needed
for the proliferation of cancer cells.



Fig. 1. Left-hand panel: Sketch of f Allee ¼wð1�wÞðw�αÞ for 0oαo1. Observe that f Allee40 for αowo1. Right-hand panel: Sketch of the solutions to w0 ¼wð1�wÞðw�αÞ
with 0oαo1. Initial conditions larger than α approach the carrying capacity (which is scaled to one), while initial conditions smaller than α die out and approach w¼0.

Fig. 2. Left-hand panel: A Type III wave with a biologically justified, well-defined edge and speed c� 0:43, obtained by numerically simulating (1)–(2) with ε¼ 0:001,
α¼ 0:05 and β¼ 0:5. The dashed lines correspond to u-profiles and the solid lines to w-profiles, with solutions plotted at t¼0 (black), 16 (lightest), 32,…, 160 (darkest). Right-
hand panel: The leading order (ε¼ 0) component of the speed of travelling wave solutions of (1)–(2) (c) versus the background ECM density (u1), with α¼ 0:05, illustrating a
biphasic relationship.
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A negative α models the weak Allee effect. Unlike the strong
Allee effect, the weak Allee effect does not impose a growth
threshold. Instead, it models a population with a growth rate that
is initially positive and increases with population increase for
small populations, until crowding effects take over and cause the
growth rate to decrease with further population increase. Hence,
we require α4�1, with α⪆�1 corresponding to the most
appropriate representation of the weak Allee effect.

For further discussion and more precise definitions of the
strong and weak Allee effects, see Courchamp et al. (2008) and
Appendix A.
1.3. Main results

The focus of this paper is to compare the Allee model (1)–(2) with
the logistic model, developed in Perumpanani et al. (1999), with
respect to its ability to capture the behaviour of malignant tumour
invasion. Furthermore, we compare our results to a different mod-
ification of the logistic model, studied in Marchant et al. (2006), where
competition between the species is included in f ðu;wÞ in (1). For
convenience, we refer to (1)– (2) with α⪆0 and α⪆�1 as the strong
and weak Allee models, respectively. We present evidence that the
strong Allee model provides a better model of tumour invasion than
these previously proposed models, while the weak Allee model pro-
vides no significant improvement. The following sections provide a
summary of the main results that lead to these conclusions.

1.3.1. Strong Allee model
For the strong Allee model, we find that:

� Only invasive tumour fronts with well-defined edges (Marchant
et al., 2006) (so-called Type III waves, see Section 1.4) exist, rather
than the whole family that exists for the previously studied
models of malignancies such as melanoma (Harley et al., 2014a;
Perumpanani et al., 1999; Marchant et al., 2000, 2006); and,

� A non-monotonic (biphasic) relationship between the back-
ground ECM density and the invasion speed of the tumour is
evident, consistent with the experiments on a HT1080 fibro-
sarcoma cell line invading collagen gels as reported in Per-
umpanani and Byrne (1999); Marchant et al. (2006). In contrast,
models without the Allee effect predict a monotonic relation-
ship (Harley et al., 2014a; Perumpanani et al., 1999; Marchant
et al., 2000). See in particular Fig. 11 in Harley et al. (2014a).

These results are illustrated in Fig. 2. The numerical method used
to simulate (1)–(2) uses a vertex-centred finite volume discretisa-
tion in space, with upwinding to approximate u and w at the faces
of the control volumes, on a linear mesh with Δx¼ 1=80. The
resultant ODEs are integrated in time using MATLAB's inbuilt ODE
solver ode45 (which uses a variable-order Runge–Kutta algorithm
with adaptive timestepping).

1.3.2. Weak Allee model
In contrast, the main result relating to the weak Allee model is

that it offers no notable benefits over the previously studied
models for tumour invasion such as melanoma and, so, due to its
added complexity, is a less preferable model of malignant invasion.
Consequently, we omit the derivation of the results from the main
body of the paper; we present them briefly in Appendix B. The key
findings that lead to our conclusion are as follows:

� There exists a family of invasive tumour fronts (so-called Type I–
IV waves), which includes some that have non-sharp fronts but
that appear (numerically) to be stable and, hence, observable
within the system.

� The relationship between the background ECM density and the
invasion speed of the tumour fronts with sharp edges is
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monotonically increasing, contrary to an experimentally
observed biphasic relationship (Perumpanani and Byrne, 1999).

1.4. Comparison with results for previous models

In the models for malignant tumour invasion studied in Harley
et al. (2014a); Marchant et al. (2000); Perumpanani and Byrne
(1999); Perumpanani et al. (1999), the cancer cells are assumed to
grow logistically, governed by the dimensionless kinetic function

f u;wð Þ ¼ f logistic wð Þ ≔ w 1�wð Þ: ð3Þ
In the model studied in Marchant et al. (2006), an interaction term
between the ECM (u) and cancer cells (w) is added to (3) to signify
the competition for space between the two species. Subsequently,
the growth of the cancer cells is governed by the dimensionless
kinetic function

f u;wð Þ ¼ f competition wð Þ ≔ w 1�wð Þ�γuw: ð4Þ
Thus, the models studied previously are (1), with (3) or (4) in place
of (2).2 Henceforth, for convenience, we refer to the former as the
logistic model and the latter as the competition model.

In Harley et al. (2014a), it is shown that the logistic model admits
a continuous family of travelling wave solutions (TWSs). This family
is classified into four distinct types, according to qualitative differ-
ences in the cancer cell density profiles, in the singular limit ε-0;
see Fig. 3. A Type I wave has a smooth, exponentially decaying
cancer cell density profile. A Type II wave has a cancer cell density
profile with a shock but that remains positive and decays expo-
nentially to zero as x-1. A Type III wave has a cancer cell density
profile with a shock and semi-compact support. A Type IV wave has
a cancer cell density profile with a shock and that decays expo-
nentially to zero as x-1 but with densities that are negative after
the shock. Preliminary numerical results suggest that the Type I–III
waves are stable, in the sense that they are observable in the sys-
tem, while the Type IV waves are not (Harley et al., 2014a).

Remark 1. The labelling of the four wave types depicted in Fig. 3
refers to those waves identified in Harley et al. (2014a) for the
logistic model. However, the classifications that underpin this
terminology apply more generally, for example, to TWSs of (1)
with 0rε⪡1 and 0rβr1. Thus, we adopt the labels Type I–IV
and henceforth use them to refer to any waves with equivalent
features to those described in Harley et al. (2014a), outlined above.

A similar family of Type I–IV waves exists for the competition
model, studied in Marchant et al. (2006).3 Moreover, numerical
simulations suggest that in certain, broad parameter regimes, the
Type I–III waves are stable and, hence, observable in the system.

From a biological perspective, Type III waves are considered to be
most realistic for tumours which are expected to possess a well-defined
edge; such as melanomas, see for example Marchant et al. (2006). In
contrast to the logistic, competition and weak Allee models, the strong
Allee model automatically selects tumours with sharply defined edges.

In Perumpanani and Byrne (1999), a biphasic relationship between
the background collagen (the predominant ingredient in ECM) density
and the invasion speed of malignant tumours is observed experi-
mentally. These experimental results indicate that the invasion speeds
of malignant tumours do not increase monotonically with the back-
ground collagen (and, hence, ECM) density. Instead, there is some
critical density up to which the invasion speed increases but over
which the invasion speed decreases. The competition model was
2 In Marchant et al. (2000), Perumpanani et al. (1999), Marchant et al. (2006), it
is assumed, for simplicity, that ε¼ 0. In Harley et al. (2014a), β¼ 1.

3 Only Type III waves are considered in Marchant et al. (2006) but, using
methods developed in Wechselberger and Pettet (2010) and used in Harley et al.
(2014a) and here, it can be shown that Type I, II and IV waves also exist.
proposed in Marchant et al. (2006) to mathematically replicate this
biphasic relationship, which is not a feature of the logistic model
(Harley et al., 2014a; Marchant et al., 2000, 2006). The logistic model
exhibits a monotonically increasing relationship between the speed of
the Type III waves cIII and the background ECM density u1, similar to
the weak Allee model. By studying only the Type III waves, the desired
biphasic relationship is revealed in Marchant et al. (2006). Mathe-
matically, this result is facilitated by the existence to two Type III
waves, with different u1, for certain, fixed speeds.

1.5. Outline

The remainder of the paper is set out as follows. In Section 2, we
derive the dimensionless model (1) from a dimensional model for
malignant tumour invasion proposed in Perumpanani et al. (1999).
In Section 3, we set up the mathematical framework that is required
to prove the main results of the strong Allee model, described in
Section 1.3.1. We prove (in a mathematically rigorous way) that the
strong Allee model only admits Type III travelling wave solutions.
The framework we follow exploits the separation of scales between
the hapto- or chemotaxis and diffusion terms. It is based on that
described in Wechselberger and Pettet (2010) and uses geometric
singular perturbation theory (GSPT) (Hek, 2010; Jones, 1995; Kaper,
1999) and canard theory (Benoit et al., 1981; Krupa and Szmolyan,
2001; Szmolyan and Wechselberger, 2001; Wechselberger, 2012).
The results for the strong Allee model are further analysed in Sec-
tion 4, including the biological implications of our findings in
relation to previously studied models. In Section 5, we discuss the
extension of our results to a more general class of models, the
limitations of our work and topics for future research.

Remark 2. The mathematical derivation contained within Section 3
is not prerequisite to following the arguments and discussions
contained within the subsequent sections. Thus, we invite the less
mathematically inclined reader to skip over it.
2. Model derivation

Our decision to study (1) is inspired by Perumpanani et al.
(1999), where, after a quasi-steady state approximation, the fol-
lowing dimensional model of malignant tumour invasion is stu-
died (using the notation in Harley et al., 2014a):

∂û
∂t̂

¼ �k4û
2ŵ;

∂ŵ
∂t̂

¼ k̂1ŵðk2�ŵÞ�k3
∂
∂x̂

∂û
∂x̂

ŵ
� �

; ð5Þ

Here, x̂ represents one-dimensional space (in metres, m) and t̂
represents time (in seconds, s). The dependent variable û (kg m�3)
represents the ECM density and ŵ (cells m�3) represents the cancer
cell density. Diffusion of the species is assumed to be small and
therefore neglected. The parameter k340 (m5 kg�1 s�1) measures
the strength of the hapto- or chemotaxis term, which models the
observed migration of cancer cells up the gradient of ECM. The non-
linear function �k4û

2ŵ models the degradation of the ECM via
proteolysis at rate k440 (m6 kg�1 cells�1 s�1).4 The proliferation of
the cancer cells is modelled by the nonlinear function k̂1ŵðk2�ŵÞ:
without spatial influences and independent of the other species, the
cancer cells grow logistically to their carrying capacity k240
4 An enzyme—protease—that is produced in the presence of cancer cells,
breaks down the ECM in a process called proteolysis. However, the protease
reaction evolves on a much faster time scale than the other processes within the
tumour and so a quasi-steady state reduction is applied; see Perumpanani et al.
(1999) for more details.



Fig. 3. Schematics of the four types of travelling wave solutions discussed in this paper. This figure is an adaptation of Fig. 6 in Harley et al. (2014a). Copyright © 2014 Society
for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

Fig. 4. The critical manifold S, defined in (14). S is folded around the fold curve F, defined in (15) and represented by the green dotted line. It is symmetric in w around F, with one
repelling side (Sr) and one attracting side (Sa). Left-hand panel: Projection of the S into ðu; v;wÞ-space, highlighting the folded structure. Right-hand panel: A schematic of S and an
example of a flow connecting a point on Sr to the corresponding point on Sa. This is an adaptation of Fig. 4 in Harley et al. (2014b). © IOP Publishing & London Mathematical Society.
Reproduced with permission. All rights reserved. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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(cells m�3), with (constant) proliferation rate k̂1k240 (s�1). We refer
to Perumpanani et al. (1999) for a more detailed derivation of (5).

We wish to study the influence of incorporating an Allee effect
into the description of the growth of the cancer cells. We assume
that the same nonlinearity for proteolysis but replace the cancer
cell growth function with an Allee term. Following Wechselberger
and Pettet (2010), we reintroduce the small amount of diffusion of
both the ECM and cancer cells that was neglected in (5). With
these adaptations, the model under investigation becomes

∂û
∂t̂

¼ �k4û
2ŵþD1

∂2û

∂x̂2
;

∂ŵ
∂t̂

¼ k1ŵðk2�ŵÞðŵ�k6Þ�k3
∂
∂x̂

∂û
∂x̂

ŵ
� �

þD2
∂2ŵ

∂x̂2
; ð6Þ

with ki40 for iAf1;…;5g, jk6 jok2 and 0rD1rD2 (m2 s�1). We
will allow for the ECM to have both no diffusion (D1 ¼ 0), and
small diffusion, in comparison to the cancer cells.

Here, k2 (cells m�3) is still the carrying capacity of the cancer cell
density, while k1k2k6ðŵ=k6�1Þ (s�1) is the (density dependent)
proliferation rate. This density dependent proliferation rate, in contrast
to the constant proliferation rate assumed by logistic growth, is the
main difference between the two models, (5) and (6). For k640, k6
(cells m�3) represents a growth threshold, below which the cancer
cell density decreases, consistent with the strong Allee effect. For
k6o0, the interpretation of k6 is less clear. However, the effect of the
term ð1þŵ=ð�k6ÞÞ is to increase the proliferation rate, relative to the
(constant) rate k1k2ð�k6Þ, with this increase more pronounced as the
cancer cell density increases, consistent with the weak Allee effect; see
Courchamp et al. (2008) for further discussion of the weak (and
strong) Allee effects and their mathematical representation.

We introduce
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W
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; ð7Þ
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This nondimensionalisation transforms (6) to (1)–(2), restated
here for convenience:
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with x; tð Þ ∈ R;Rþ� �
, jαjo1, 0rβr1 and 0oε⪡1. The new

variables u, w, x and t, and parameters α, β and ε are dimen-
sionless; see Appendix C. Moreover, α and β are assumed to be
Oð1Þ with respect to ε: (loosely speaking) for α;β40 they are
independent of ε and do not approach zero in the limit ε-0. Due
to the choice of nondimensionalisation, the carrying capacity of
the cancer cells has been scaled to one and the strength of the
Allee effect is solely measured by the parameter α.

The significant reduction in the number of parameters from
eight in (6) to three in (8) makes the latter (dimensionless) model
considerably more amenable to mathematical analysis.
3. Type III travelling wave solutions

In this section, we provide the mathematical foundation to
derive the results for the strong Allee model ((8) with α⪆0, 0rβ
r1 and ε sufficiently small), stated in Section 1.3.1. We prove that
this model only admits Type III travelling wave solutions (TWSs).

In the strong Allee model the homogeneous equilibria ðu;wÞ ¼
ð0;1Þ and ðu1;0Þ, with u1∈Rþ , represent an all-cancer state and a
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cancer-free state, respectively. When studying invasive tumour
fronts, we are interested in connections between these two states.
From a mathematical standpoint, we study the existence of right-
moving TWSs of (1)–(2) that travel with constant speed: c40.
Such solutions correspond to stationary solutions in the moving
frame z¼ x�ct and so satisfy

�cuz ¼ �u2wþεβuzz;

�cwz ¼wð1�wÞðw�αÞ�ðuzwÞzþεwzz; ð9Þ
TWSs also satisfy the asymptotic boundary conditions

lim
z-�1

ðu;wÞ ¼ ð0;1Þ; lim
z-1

ðu;wÞ ¼ ðu1;0Þ; u1ARþ ; ð10Þ

where u1 represents the (variable) background ECM density, as in
Harley et al. (2014a). Thus, TWSs of (1)–(2) or (8) correspond to
heteroclinic connections (HCs) of (9) that satisfy (10).

Theorem 3.1. For 0oε⪡1 sufficiently small and 0oαo1, 0rβr1
and Oð1Þ with respect to ε, the only possible solution of (9)–(10)
corresponds to a Type III travelling wave solution of (1)–(2).

We prove Theorem 3.1 using a method outlined in Wechsel-
berger and Pettet (2010), which is subsequently used in Harley
et al. (2014a) to study the logistic model. The foundation of this
method lies in geometric singular perturbation theory (GSPT)
(Hek, 2010; Jones, 1995; Kaper, 1999), which provides a geometric
approach to singular perturbation problems. The benefit of using
GSPT lies in the rigorous theory that underpins it, which exploits
the geometric structure embedded in models such as (1) and
allows us to prove that the leading order solutions we construct
are good approximations of the full solutions with 0oε⪡1. Canard
theory (Benoit et al., 1981; Krupa and Szmolyan, 2001; Szmolyan
and Wechselberger, 2001; Wechselberger, 2012) is also used when
the standard GSPT, known as Fenichel theory (Fenichel, 1979;
Jones, 1995), becomes invalid due to a loss of normal hyperbolicity
of the critical manifold. Conditions on the vector field of (9) that
guarantee the existence of Type III TWSs are also derived.

3.1. Set-up

System (9) is singularly perturbed, due to the different
asymptotic scalings of the diffusion and hapto- or chemotaxis
terms, with perturbation parameter 0rε⪡1. Singularly perturbed
systems exhibit an inherent separation of scales. In Figs. 2 and 3,
for example, we observe two spatiotemporal scales: the fast scale
captures the dynamics where rapid changes occur, which, in the
singular limit, correspond to shocks in the solutions; and, the slow
scale relates to the dynamics away from the shocks (in the singular
limit), or where less rapid changes occur.

The separation of slow and fast behaviour becomes more evi-
dent when we write the w-equation of (9) as a balance law

ðεwz�uzwþcwÞz ¼ �wð1�wÞðw�αÞ:
So, we define two new variables,

p ≔ uz and v ≔ εwz�pwþcw;

(see Harley et al., 2014a and Wechselberger and Pettet, 2010 for a
further rationale behind the rescaling above). This way, we can
write (9) as a four-dimensional system of first-order ordinary
differential equations (ODEs):

uz ¼ p;
vz ¼ �wð1�wÞðw�αÞ;

εpz ¼
1
β
ðu2w�cpÞ;

εwz ¼ vþðp�cÞw: ð11Þ
For β¼ 0, the equation for p in (11) becomes singular. This has to do
with the fact that the u-equation of (9) is only first order for β¼ 0,
as opposed to second order for β40. We assume from now on that
β40, and discuss the proof of Theorem 3.1 for β¼ 0 (which goes
along the same lines as for β40) in some more detail in Remark 4.
Following standard terminology from geometric singular pertur-
bation theory (see for example Jones, 1995; Kaper, 1999) we label
(11) the slow system, with z the slow travelling wave coordinate.
Provided εa0, we can equivalently write (11) in terms of the fast
scale by introducing the fast travelling wave coordinate, y¼ z=ε:

uy ¼ εp;

vy ¼ �εwð1�wÞðw�αÞ;

py ¼
1
β
ðu2w�cpÞ;

wy ¼ vþðp�cÞw: ð12Þ

So, (u,v) are the slow variables and their equations determine the
dynamics away from the shock, while the equations for the fast
variables (p,w) determine the dynamics around the shock. While
(11) and (12) are equivalent for εa0, in the singular limit ε-0,
they reduce differently depending on the spatiotemporal scale. In
Sections 3.2–3.3, we study the singular limits of (12) and (11),
respectively. The results of these sections determine the leading
order behaviour of the heteroclinic connections in the appropriate
regimes. In Section 3.4, the results from Sections 3.2–3.3 are com-
bined to prove Theorem 3.1.

3.2. Layer problem

On the fast scale, taking the singular limit (ε-0) of the so-
called fast system, (12), yields a two-dimensional ODE system,
termed the layer problem:

py ¼
1
β
ðu2w�cpÞ;

wy ¼ vþðp�cÞw; ð13Þ

with two parameters u; vAR. Since u and v are parameters in (13),
they remain constant along any shocks in the TWSs of (1)–(2) with
ε¼ 0.

The equilibria of (13) form a two-dimensional surface in
ðu; v; p;wÞ-space, referred to as the critical manifold, which can be
represented as a graph over the original variables (u,w):

S ≔ u; v; p;wð Þ v¼ c�u2w
c

� �
w; p¼ u2w

c

����
	
:



ð14Þ

The left-hand panel of Fig. 4 shows a projection of S into
ðu; v;wÞ-space.

Lemma 3.2. The critical manifold S is folded around the so-called
fold curve,

F ≔ u;wð Þ j 2u2w�c2 ¼ 0
� �

: ð15Þ

In other words, at F, two branches of equilibria ðp7 ðu; v; cÞ;w7 ðu; v; cÞÞ
of (13) originate in a saddle-node bifurcation, see for example Kuz-
netsov (2004) for the conditions of a saddle-node bifurcation. The
equilibria ðp� ðu; vÞ, w� ðu; vÞÞ are unstable, or repelling, with respect to
(13) and, hence, we label this branch of S as Sr. The other branch of S,
given by ðpþ ðu; v; cÞ;wþ ðu; v; cÞÞ, is stable, or attracting, and is labelled
Sa. S is symmetric in w around F with w� Zwþ .

Proof. The proof follows from Wechselberger and Pettet (2010),
and is similar to the proof of Lemma 2.2 in Harley et al. (2014a);
we refer to these works for the details. Briefly: the folded structure
of S follows from checking that the standard conditions for a
saddle-node (SN) bifurcation are met (e.g. Kuznetsov, 2004); the
stability of S is evident from the eigenvalue structure of the
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linearisation of (13); and, the symmetry is a consequence of the
definition of S.□

The folded structure of S allows heteroclinic connections
between Sr and Sa. Such a connection transports a point ðu� ; v� ;
p� ;w� Þ on Sr to the point ðuþ ; vþ ; pþ ;wþ Þ on Sa, with uþ ¼ u�
and vþ ¼ v� (since u and v are constant in (13)), and

pþ ¼ u2
�wþ
c

¼ c�p� ;

wþ ¼ c2

u2�
�w� ¼ 2Fðu� Þ�w� : ð16Þ

These conditions follow from the definition of S and are equivalent
to the Rankine–Hugoniot and Lax entropy conditions for shocks for the
strictly hyperbolic system (1)–(2) with ε¼ 0; see Harley et al. (2014a);
Marchant et al. (2000); Wechselberger and Pettet (2010). The second
equation in (16) highlights the symmetry of S around F. The right-hand
panel of Fig. 4 provides a schematic of S and an example heteroclinic
connection between Sr and Sa via the dynamics of (13).

3.3. Reduced problem

On the slow scale, taking the singular limit of (11) yields a
differential–algebraic system with two ODEs coupled to two
algebraic constraints, termed the reduced problem:

uz ¼ p;
vz ¼ �wð1�wÞðw�αÞ;

0¼ 1
β
ðu2w�cpÞ;

0¼ vþðp�cÞw: ð17Þ
As expected from geometric singular perturbation theory, the
algebraic constraints define S. Herein lies the geometric structure
of the model. When viewed on the slow scale, the flow along S is
evident and governed by (17).

Since S is given as a graph over the original model variables (u,
w), we restrict our investigation of (17) to these coordinates,
where the slow behaviour is governed by

uz ¼
u2w
c

c�2u2w
c

� �
;

wz ¼ �wð1�wÞðw�αÞþ2u3w3

c2
: ð18Þ

Consequently, the analysis of the reduced dynamics reduces to a
two-dimensional, (u,w)-phase plane analysis. In this projection,
the phase space consists of two distinct regions corresponding to
Sa and Sr, separated by F; see, for example, Fig. 8.
Fig. 5. Schematics of some types of canard points. The green dotted line represents F, th
panels show standard equilibrium points (saddle, focus, node), which lend their names t
focus, folded node). The difference between the upper and lower panels is the direction
two trajectories through it, along the stable and unstable manifolds of the corresponding
(dotted region) of trajectories between the stronger stable (or unstable) manifold of the
This is an adaptation of Fig. 10 in Harley et al. (2014b). © IOP Publishing & London Mathem
of the references to color in this figure caption, the reader is referred to the web versio
The equilibria of (18) in the first quadrant are

ðu1;0Þ; ð0;αÞ; ð0;1Þ; u1ARþ :

The stability of these equilibria is determined via the associated
Jacobian matrix, appended with a perturbation analysis in the case
of a zero eigenvalue:

� ðu1;0Þ has an unstable eigenvalue and a zero eigenvalue (rela-
ted to the translation in the u direction);

� ð0;αÞ has a stable eigenvalue with eigenvector pointing in the
direction of the invariant w-axis and centre-unstable outgoing
trajectories, directed into the first quadrant; and,

� ð0;1Þ has an unstable eigenvalue with eigenvector pointing in
the direction of the invariant w-axis and centre-unstable out-
going trajectories, directed into the first quadrant.

System (18) is singular along F, because the left-hand side of
the w-equation vanishes here. In general, solution trajectories
approaching F have w-derivatives that blow-up in finite time. The
isolated points on F at which the right-hand side of (18) also
vanishes, referred to as canard points (Benoit et al., 1981; Wech-
selberger, 2012), form the exception to this rule.

To understand solution trajectories of (18) interacting with
these canard points, we introduce a new variable z , defined via

dz
dz

¼ c�2u2w
c

:

With this change of coordinate system, (18) transforms to the so-
called desingularised system

du
dz

¼ u2w
c

c�2u2w
c

� �
;

dw
dz

¼ �wð1�wÞðw�αÞþ2u3w3

c2
: ð19Þ

This system is more amenable to analysis than (18) as it is no
longer singular. Canard points of (18) correspond to equilibria of
(19) on F. They are classified according to the nature of the cor-
responding equilibrium in (19). For example, if (19) has a saddle
equilibrium on F, then the corresponding canard point of (18) is
called a folded saddle canard point (FS). Similarly, we have folded
focus canard points (FF), folded node canard points (FN), etc. Two
trajectories of a system with a FS can pass through F at such a
canard point, thereby flowing from Sa to Sr and vice versa
(Wechselberger, 2012). The former trajectory is labelled the canard
solution and the latter the faux canard solution. Trajectories are not
able to pass through F at a FF, while a funnel of trajectories pass
through F at a FN (Wechselberger, 2005, 2012). Fig. 5 provides a
e upper-right, shaded region Sr and the lower-left, unshaded region Sa. The upper
o the corresponding canard points shown in the lower panels (folded saddle, folded
of the trajectories on Sr due to the parameterisation, z or z. A folded saddle admits
saddle. A folded focus does not admit any trajectories. A folded node admits a funnel
corresponding node and F, which follow the weaker stable (or unstable) manifold.
atical Society. Reproduced with permission. All rights reserved. (For interpretation

n of this paper.)



Fig. 6. The type of canard points of (18), in the ðα; cÞ-plane. The canard points are
created in a saddle-node bifurcation as c decreases through c¼ cþ ðαÞ, defined in
(20). The folded node becomes a folded focus at c¼ cB1ðαÞ and a folded node once
again at c¼ cB2ðαÞocB1ðαÞ. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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schematic of a FS, FF and FN and illustrates their connection with
regular equilibria.

Remark 3. The flows of (18) and (19) differ only in their para-
metrisation. The flows are topologically equivalent in forward z if dz
=dz40 and topologically equivalent in backward z if dz=dzo0. It is
straightforward to see that dz=dz ¼ c2�2u2wo0 on Sr, or above F in
the (u,w)-plane, while dz=dz ¼ c2�2u2w40 on Sa, or below F in the
(u,w)-plane. Thus, the (u,w)-phase plane of (18) is obtained from the
(u,w)-phase plane of (19) by reversing the direction of the trajectories
on Sr, or above F in the (u,w)-plane; see Fig. 8 for an illustration.

Lemma 3.3. For 0oαo1, (18) has two canard points if 0oco
cþ ðαÞ, and no canard points otherwise, where

cþ ¼ cþ wþ αð Þ; α� �
≔ 2

ffiffiffiffiffiffiffiffiffiffiffi
2wþ

p
1�2wþ þα
� � ð20Þ

and

wþ ¼ wþ αð Þ ≔ 1
6

1þαþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þαÞ2þ12α

q� �
:

The w-components of both canard points are larger than α and
smaller than 1.

Proof. Canard points of (18) correspond to equilibria of (19) on F.
The w-component of these equilibria is real positive roots of

q wð Þ ≔
ffiffiffi
2

p
1�wð Þ w�αð Þ ¼ c

ffiffiffiffi
w

p
≕ s wð Þ; ð21Þ

and the corresponding u-components are given by u¼ c=
ffiffiffiffiffiffiffi
2w

p
. The

number of solutions to (21) changes in a saddle-node (SN) bifur-
cation as q(w) and s(w) become tangent, which occurs at c¼ cþ ðαÞ.
From the shapes of the graphs of q(w) and s(w) (parabolic and
monotonically increasing, respectively) for different values of c, it
follows that the smaller root of (21) lies between α and wþ ðαÞ ,
while the larger root lies between wþ ðαÞ and 1. As c-0, the roots
approach α and 1, and as c-cþ ðαÞ, they approach wþ ðαÞ.□

We determine the type of the canard points by numerically com-
puting the eigenvalues of the corresponding equilibria of (19). Since
the canard points are created in a SN bifurcation, we observe a folded
saddle (FS) and a folded node (FN) near the bifurcation point,
c¼ cþ ðαÞ. Just after the SN bifurcation, at c¼ cB1ðαÞocþ ðαÞ, the FN
becomes a FF (while the FS remains a FS). The FF transitions back to a
FN at c¼ cB2ðαÞocB1ðαÞ; see Fig. 6. While cþ ðαÞ is determined ana-
lytically, and defined in (20), cB1;B2ðαÞ are determined numerically.5
5 In principle, it may be possible to determine cB1;B2 analytically: the canard
points correspond to roots of (21) and these roots are a subset of the roots of a
quartic polynomial. However, these expressions are so complicated they offer little
insight.
Lemma 3.4. For 0oαo1 and 0ococþ ðαÞ, with cþ ðαÞ defined in
(20), (18) admits a solution trajectory connecting ð0;1Þ to the FS.

Proof. For 0oαo1 and 0ococþ ðαÞ, Lemma 3.3 implies that (18)
has two canard points, ðuFS;wFSÞ and ðuF;wFÞ, with αowF; wFSo1. It
is straightforward to show that the FS, ðuFS;wFSÞ, is the canard point
with the larger w-component. Since F corresponds to a mono-
tonically decreasing function of w as u increases, uFSouF. Conse-
quently, ðuFS;wFSÞ lies above and to the left of ðuF;wFÞ in the (u,w)-
phase plane. From (18) it follows that u040 for w; c40 and that
w0o0 along w¼wF for 0ououF. Consequently, the trajectory
leaving ð0;αÞ does not connect to ðuFS;wFSÞ. Since the u-axis is
repelling, it intersects F below and to the right of ðuF;wFÞ. The w-
nullcline connecting ð0;1Þ with the FS is strictly decreasing and the
stable eigenvector of the FS lies below that nullcline for u ⪅ uFS. As a
result, there is a trajectory leaving ð0;1Þ that connects to ðuFS;wFSÞ.□

This solution trajectory (that leaves ð0;1Þ, connects to ðuFS;wFSÞ
and, hence, continues onto Sr) is the canard solution, which we
label To. It is the only solution trajectory of (18) that (partly) lives
on Sr and connects to ð0;1Þ.

In the remainder of this paper, we do not consider regimes
where FNs are present: 0ococB2 and cB1ococþ . Although we
suspect that our results are valid for 0ococþ , the analysis of FNs
is beyond the scope of this paper.

Remark 4. In the case β¼ 0, the u-equation of (9) is of first order.
In this case, uz is simply u2w

c and the singularly perturbed system
becomes three-dimensional.

uz ¼
u2w
c

;

vz ¼ �wð1�wÞðw�αÞ;

εwz ¼ v�cwþu2w2

c
: ð22Þ

Consequently, the layer problem becomes one-dimensional, but
the definition of S and the symmetry it has around the fold curve F
remain unchanged. Hence, the reduced system and the slow
behaviour are independent of β, and for β¼ 0 are described by
(18). This is also supported by the simulations of the full PDE
system with β¼ 0, see Fig. 7 which has identical parameter values
as Fig. 2, besides β¼ 0. The case β¼ 0 applies to tumours of which
the dominant mechanism of cell migration is haptotaxis rather
than chemotaxis, like some solid tumours.

3.4. Proof of Theorem 3.1

Travelling wave solutions (TWSs) are identified in the four-
dimensional phase space of (11) or (12) as heteroclinic connections
between the equilibria

ðu; v; p;wÞ ¼ ð0; c;0;1Þ and ðu; v; p;wÞ ¼ ðu1;0;0;0Þ:
To leading order, flow in the four-dimensional phase-space can be
represented by concatenations of the fast flow of (13) with u; v
constant, describing the TWSs around the shock, and the slow
flow of (17), describing the TWSs away from the shock. This
glueing together of solution segments from (13) and (17) is how we
construct leading order approximations of TWSs of (1)–(2). The
validation of this approach follows from GSPT and canard theory.

Since both equilibria lie on Sa, they both have two-dimensional
stable manifolds in (13) and a two-dimensional centre manifold
corresponding to the slow variables. Consequently, a heteroclinic
connection cannot be made between the two equilibria purely
within (13). Similarly, since ðu1;0Þ in (18) has a one-dimensional
unstable manifold (since α40) and a one-dimensional centre
manifold corresponding to translation in the u-direction, a het-
eroclinic connection cannot be made between the two equilibria



Fig. 7. Left-hand panel: A Type III wave with a biologically justified, well-defined edge and speed c� 0:43, obtained by numerically simulating (1)–(2) with ε¼ 0:001,
α¼ 0:05 and β¼ 0. The dashed lines correspond to u-profiles and the solid lines to w-profiles, with solutions plotted at t¼0 (black), 16 (lightest), 32,…, 160 (darkest). Note
that this is very similar to the left panel of Fig. 2, because only the fast dynamics is influenced by β, see (13). Right-hand panel: The leading order (ε¼ 0) component of the
speed of travelling wave solutions of (1)–(2) (c) versus the background ECM density (u1), with α¼ 0:05, illustrating a biphasic relationship. This is exactly the same as the
right-hand panel of Fig. 2 as the leading order component is independent of β, see (18).

Fig. 8. Phase planes of (19) (left) and (18) (right), for α¼ 0:05 and c¼0.33. The green line is the fold curve (F), which is dotted on the right to illustrate its singularity. Black
dots represent equilibria. The black open square is a folded saddle and the solid black square is a folded focus. F divides S into a repelling side (Sr, shaded) and an attracting
side (Sa, not shaded). The canard solution is labelled To (take-off). The curve J given by w¼ JðuÞ ¼ c2=u2 and is a reflection of the u-axis in F. An intersection between J and To

determines the u1 for which a Type III travelling wave solution (with speed c) exists. Here, only one intersection exists. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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purely within (18). Instead, a connection must contain solution
segments from both systems. Consequently, no TWSs exist when
no canard points are present (c4cþ ðαÞ) and TWSs of (1)–(2) can
only be Type III waves since the final part of the heteroclinic
connection for ε¼ 0 has to be a trajectory of (13).

According to Lemma 3.2 and (16), the fast flow is directed from Sr
to Sa and thew-component is symmetric in F, while the u-component
is constant. Hence, a heteroclinic connection to ðu1;0;0;0Þ on Sa via
(13) must take-off from ðu1;0;0; c2=u2

1Þ on Sr. The canard solution is
the only solution of the slow flow that (partly) lives on Sr and that
connects to Sa in backward z. So, to construct a heteroclinic connection
between ð0; c;0;1Þ and ðu1;0;0;0Þ, we need the canard solution (in
four-dimensional space) to intersect ðu1;0;0; c2=u2

1Þ. In the original,
ðu;wÞ-coordinates, this means that the canard solution of (18) (To)
must intersect the jump curve: J≔c2=u2

1. In Fig. 8, the phase plane of
(18) and J are shown for particular values of α and c; To and J intersect,
yielding a heteroclinic connection of (9) and (10) with ε¼ 0 and,
hence, a Type III TWS of (1)–(2) with ε¼ 0.

With ε40, the end states ð0;1Þ and ðu1;0Þ do not perturb.
Geometric singular perturbation theory implies that the (invar-
iant) manifolds Sa and Sr perturb to the OðεÞ-close, locally invar-
iant manifolds Sa;ε and Sr;ε, respectively, provided Sa and Sr are
normally hyperbolic and ε is sufficiently small. Along F, S loses
normal hyperbolicity. However, canard theory guarantees that To

persists (Wechselberger and Pettet, 2010).
If the unstable manifold of ð0;1Þ and the stable manifold of ðu1;0Þ

have a transverse intersection for ε¼ 0, the heteroclinic connection for
ε¼ 0 persists as a solution of (9)–(10) with 0oε⪡1. This condition is
equivalent to J and To intersecting transversally. In Appendix D, we
show that this transversality condition holds, provided cau1

ffiffiffiffi
α

p
.

Hence, a TWS that is constructed for ε¼ 0, persists as a TWS of (1)–
(2), with 0oε⪡1 sufficiently small, provided cau1

ffiffiffiffi
α

p
, with the

former providing a leading order approximation of the latter.
4. Implications of the strong Allee effect

In the previous section, we introduced the mathematical fra-
mework to study invasive tumour fronts, or travelling wave solu-
tions (TWSs), of the strong Allee model (1)–(2) (with 0 ⪅ αo1,
0rβr1 and 0rε⪡1 sufficiently small) connecting the all-cancer
state ð0;1Þ and the cancer-free state ðu1;0Þ with u1ARþ . It was
shown, in a mathematically rigorous way, that the strong Allee
model cannot admit Type I, II or VI TWSs (see Theorem 3.1); only
TWSs where the w-component has a well-defined edge—Type III
waves—can exist. This result is due to the stability of the states
ðu1;0Þ. While Type III waves are the only possible TWSs of the
strong Allee model, their existence is not guaranteed. In Section 3,
we derived a condition for the existence of Type III waves.

In this section, we establish the main results presented in
Section 1.3.1. We demonstrate the existence of Type III TWSs in the
strong Allee model and investigate the relationship between their
speed and the background ECM density (u1), for different values
of ε. We also make a qualitative comparison between the results
for the strong Allee model and results for the logistic model, (1)
with (3), (Harley et al., 2014a) and the competition model, (1) with
(4), (Marchant et al., 2006), and review the impact of the inclusion
of the strong Allee effect.



Fig. 9. Left-hand panel: An example phase plane of (23), with α¼ 0:05 and c¼0.33. The green dotted line represents the fold curve, labelled F, and the open black square
represents the folded saddle, at which the canard solution, labelled To, crosses the fold curve. The solid blue lines correspond to trajectories of (23) and the dashed blue lines
correspond to shocks. The jump curve, labelled J≔c2=u2, is shown in orange. A Type III travelling wave solution of the strong Allee model exists since the jump curve and the canard
solution intersect transversally. The solid black square is a folded focus canard point, which does not play a role in the construction of travelling wave solutions. Right-hand panel:
An illustration of the Type III travelling wave solution (as a function of x) that is obtained from the dark blue trajectory in the phase plane. The w-component has semi-compact
support and u141 is chosen arbitrarily. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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4.1. Existence of invasive tumour fronts with well-defined edges

Type III TWSs of the strong Allee model exist if a transverse
intersection between two specific curves in the phase plane of the
ODE system

uz ¼
u2w
c

;

c�2u2w
c

� �
wz ¼ �wð1�wÞðw�αÞþ2u3w3

c2
ð23Þ

exists; see Section 3 for the derivation of this condition. The two
curves are the so-called canard solution, denoted To in Fig. 9, and
the so-called jump curve, denoted J≔c2=u2 in Fig. 9. Here, u and w
still represent the ECM and cancer cell densities, c is the invasion
speed of the tumour and z¼ x�ct is a new variable—the so-called
travelling wave coordinate—that corresponds to a coordinate frame
moving along with the TWS. Note that (23) can also be obtained
from the strong Allee model by setting ε¼ 0 and looking for sta-
tionary solutions in the z-coordinate frame.

A consequence of the requirement of an intersection between the
canard solution and the jump curve is that no TWSs exist for c greater
than a critical value, c¼ cþ ðαÞ, defined in (20), as the canard solution
does not exist in this regime; see Section 3. The behaviour of cþ as a
function of α is shown as the transition curve between the light and
dark green regions in Fig. 6, which shows that cþ ðαÞ is a decreasing
function of the Allee threshold α. Tumours requiring a larger threshold
to grow, therefore have a slower maximum speed potential. Hence-
forth, we only consider speeds cB2ðαÞococB1ðαÞocþ ðαÞ, where 0
ocrcB2ðαÞ and cB1ðαÞrcocþ ðαÞ are narrow regions where the
mathematical analysis becomes more involved and is beyond the
scope of this paper. The analytic expression cþ ðαÞ hence yields an
upper bound on the speed of the invading waves. Consequently, the
model does not support travelling waves that go faster than this upper
limit. So, the expression cþ ðαÞ can be used as a crude measure to give
an upper bound on how far an invading wave has travelled at any time
without any significant computation. Because cþ ðαÞ is decreasing, a
larger α gives a lower upper bound on the speed.

With cB2ðαÞococB1ðαÞ, the canard solution is the only solution
trajectory of (23) that leaves the all-cancer state ð0;1Þ and crosses
the so-called fold curve, denoted F≔c2=2u2 in Fig. 9. (This fold is a
projection in two dimensions of the fold F of the critical manifold
as shown in Fig. 4). Other trajectories leaving ð0;1Þ also hit the fold
curve, but do not cross it due to the singular nature of (23); at the
point where the canard solution crosses the fold curve both the
left- and right-hand sides of the second equation in (23) vanish.
This point is a folded saddle canard point (FS).

A TWS of the strong Allee model corresponds (to leading order
in ε) to the canard solution until it intersects the jump curve, at
say ðu;wÞ ¼ ðun; c2=u2
n
Þ, at which point it jumps to ðu1;0Þ. This

jump corresponds to a shock in the w-component of the (leading
order) TWS that connects to zero, while the u-component stays
constant (u¼ un), creating a Type III TWS with cancer-free state
ðu1;0Þ ¼ ðun;0Þ and speed c (to leading order); see Fig. 9. The
length of the shock is c2=u2

n
, which is double the distance between

the u-axis and the fold curve at u¼ un. In other words, the jump
curve is the reflection of the u-axis around the fold curve.

Fig. 9 provides an example phase plane of (23) for given α and c,
and a schematic of the Type III TWS that the strong Allee model
admits for this parameter set. The fold curve is indicated by the green
dotted line. The solid blue lines are solution trajectories of (23) and the
unique solution trajectory crossing the fold curve (the canard solution)
is labelled To. Potential shocks are indicated by the dashed blue lines.
Due to the symmetry of the shock, the length of the dashed blue lines
is twice the distance between the canard solution and the fold curve
and the given u-coordinate. Since ðu1;0Þ are repelling equilibrium
points of (23), trajectories of (23) cannot connect to the u-axis as
z-1. Consequently, only shocks landing exactly on the u-axis create
TWSs; such TWSs are Type III TWSs. The connection to the u-axis
occurs if and only if un ¼ u1; only if the canard solution intersects the
jump curve is a Type III TWS created. The jump curve is indicated by
the orange curve in Fig. 9. For the given parameters, there is a unique
intersection between the canard solutions and the jump curve.
Therefore, with α¼ 0:5, the strong Allee model admits a unique Type
III TWS that travels with speed c¼0.33 and asymptotes to the cancer-
free state ðu1;0Þ ¼ ðun;0Þ (to leading order).

4.2. Biphasic relationship between invasion speed and background
ECM density

In the previous section, we discussed how Type III travelling wave
solutions (TWSs) are created. However, several questions remain:

1. For a given α and c, does an intersection between the canard
solution and the jump curve always exist, such that a Type III
TWS is created?

2. If such an intersection exists, is it unique?
3. Can different speeds yield TWSs that asymptote to the same

cancer-free state ðu1;0Þ with α fixed?

The first question is answered in Section 3 and discussed in the
previous section. For c4cþ ðαÞ, there is no canard solution and,
thus, no TWSs exist. However, neither Section 3 nor the previous
section guarantee that the required intersection exists for
cB2ðαÞococB1ðαÞocþ ðαÞ, despite the canard solution existing in
this regime.



Fig. 10. Left-hand panel: The leading order speed of the invasive tumour fronts as a function of the background ECM density, for α¼ 0:01;0:05;0:2. For increasing α, the
biphasic relationship between c and u1 becomes more prominent and the wavespeed for a given u1 decreases. Right-hand panel: A close-up of the α¼ 0:05-curve in the left-
hand panel, highlighting that the biphasic relationship.

Fig. 11. A numerical simulation of (1)–(2), with α¼ 0:05, β¼ 0:5, ε¼ 0:001, u1 ¼ 1
and a measured speed c� 0:43, consistent with the ODE results. The dashed lines
correspond to u-profiles and the solid lines to w-profiles, with solutions plotted at
t¼0 (black), 16 (lightest), 32,…, 160 (darkest).
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An investigation of the phase portraits of (23) for different
values of α and c provides further insight into this, and the other
questions. The results are presented in Fig. 10, where the (leading
order) speed of the Type III TWS c (if such a TWS exists) is indi-
cated, for the chosen values of α and u1.

Fig. 10 suggests that there is an upper limit c¼ ctransðαÞ on the
values of c for which there exists an intersection between the canard
solution and the jump curve. This upper limit appears to be less than
cB1ocþ ðαÞ and satisfies the transversality condition derived in
Appendix D. Consequently, the corresponding value of u1 ¼ utrans

1 is
related to ctrans via ctrans ¼ ffiffiffiffi

α
p

utrans
1 . Moreover, for fixed α, different

values of c yield different u1-values and it appears that TWSs to all
cancer-free states ðu1;0Þ can be constructed. For a given α, the
relationship between the invasion speed of the tumour (c) and the
background ECM density (u1) has a single turning point—a max-
imum—at u1 ¼ utrans

1 ðαÞ with speed ctrans ¼ ffiffiffiffi
α

p
utrans
1 . This biphasic

relationship qualitatively resembles experimental results for malig-
nant tumour invasion reported in Perumpanani and Byrne (1999),
where the relationship between the collagen concentration and
invasion distance of HT1080 is measured to be non-monotonic.
Moreover, the non-monotonicity becomes more pronounced as α
increases. Consequently, there is no intersection between the canard
solution and the jump curve for c4ctrans, and, therefore, no TWS. For
coctrans there is a narrow region where two intersections exist,
which implies the existence of two TWSs, with different end states,
that travel with identical speed. However, since the relationship
between u1 and c illustrated in Fig. 10 is a graph over u1, each
background state ðu1;0Þ corresponds to a single invasion speed.
Hence, for a given α and u1, we obtain a unique TWS. Fig. 10 indi-
cates that for increasing α and for fixed u1, this speed decreases.

4.3. ODE versus PDE

The phase plane and wave shape illustrated in Fig. 9 as well as
the wave-speed results presented in Fig. 10 are for the strong Allee
model with ε¼ 0. However, provided we are not near the turning
point of the biphasic relationship, where transversality between
the canard solution and the jump curve is lost, the shape and
speed of these travelling wave solutions (TWSs) are good
approximations of TWSs of strong Allee model with 0oε⪡1; see
Section 3.4. It is probable that even near the turning points, the
ε¼ 0-solutions are good approximations of the ε40-solutions.
The location of the turning point will simply shift. However, fur-
ther mathematical analysis is required to confirm this.

Fig. 11 provides an example simulation of (1), the strong Allee
model with ε40, away from the turning point. This simulation
shows the evolution of a Type III wave with a speed that agrees
with that predicted by the phase plane analysis, up to OðεÞ-cor-
rections. The figure also suggests that the invasive tumour front is
stable, in the sense that it is observable in the system. The initial
conditions for this particular simulation are ðu;wÞ ¼ ðu1; e� xÞ.
However, the same invasive tumour front, with the same speed,
appears to evolve from any exponentially decaying w-initial con-
dition, or a w-initial condition with semi-compact support.

Fig. 12 depicts the results of further numerical simulations for a
range of ε and u1 values, α¼ 0:05 and β¼ 0:5; the right-hand panel
is a close-up of the left-hand panel. The solid curve is the biphasic
relationship for ε¼ 0 and α¼ 0:05, given in Fig. 10. The markers
indicate the measured speed of the Type III TWS that evolves from
the numerical simulation of strong Allee model, with ε40 as indi-
cated. These results demonstrate that for a given u1 and α, the
invasion speed is an OðεÞ perturbation of the ε¼ 0-speed, as
expected; see Section 3.4. Moreover, they suggest that near the
maximum of the solid curve, Type III TWSs continue to exist for ε40
with speeds close to the ε¼ 0-speed. This observation supports our
previous claim that while the mathematical analysis breaks down
near the maximum, the results are not significantly altered.

The light blue dashed and dotted curves in Fig. 12 are values of
c at which the phase plane of (23) changes qualitatively, for
α¼ 0:05; see Fig. 6. For c-values between these lines, the folded
focus canard point (FF) denoted by the filled black square in Fig. 9,
remains a FF. The values of c between the light blue dashed and
dotted curves (cB2ðαÞococB1ðαÞ) represent the regime analysed
mathematically in Section 3.

Thus, we require that for a given α, u1 is chosen in such a way
that the resulting TWS has a speed in this regime. Based on Fig. 12,
for α¼ 0:05, the minimum value of u1 appears to be less than 0.05
(the smallest value we tested). Since ctransocB1, there does not



Fig. 12. The relationship between u1 and the measured speed c for Type III travelling wave solutions obtained by numerically simulating (1)–(2) with α¼ 0:05, β¼ 0:5 and
ε as indicated, together with bifurcation values of c for α¼ 0:05; see Section 3.3. The solid curve indicates the relationship between u1 and c for Type III travelling wave
solutions with α¼ 0:05 and ε¼ 0, given in Fig. 10. The right-hand panel is a close-up of the left-hand panel. The biphasic relationship is clearly visible for small ε.
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appear to be an upper bound on u1. The cB1;B2 lines will perturb
for ε40, which may affect the range of appropriate choices of u1.
However, the appearance of qualitatively similar TWSs of the
strong Allee model for a range of ε values suggests that our ana-
lysis remains valid for reasonably large ε-values (say, ε¼ 0:1).

4.4. Comparison with models with logistic growth

In this section, we make a qualitative comparison between the
strong Allee model and the logistic ((1) with (3)) and competition
((1) with (4)) models. The logistic model, where cancer cell growth
is modelled by a logistic growth term, is studied extensively in
Harley et al. (2014a). The competition model, where a term repre-
senting the competition for space between the ECM and cancer cells
is appended to a logistic growth term, is studied in Marchant et al.
(2006). The results of the previous sections, for the strong Allee
model, differ from those derived previously, in two main aspects.

For the logistic and competition models, there exists a range of
travelling wave solutions (TWSs) with different speeds for a given
background ECM density, varying from Type I–IV. This is in contrast
to the unique TWS for the strong Allee model. Moreover, this unique
TWS is of Type III, the most biologically relevant type, and appears to
be stable in the sense that this kind of TWS is observed in numerical
simulations of the PDE system, for a wide range of initial conditions.
In contrast, for both the logistic and competition models all the Type
I–III TWSs appear to be stable. See, for example, Fig. 1 in Harley et al.
(2014a) where stable Type I–III TWSs are shown.

The biphasic relationship observed experimentally in malignant
tumour invasion (Perumpanani et al., 1999), occurs in the competi-
tion model (Marchant et al., 2006, Fig. 10) but not in the logistic
model. For the logistic model, the relationship between the invasion
speed of the Type III waves and the background ECM density is
monotonically increasing (Harley et al., 2014a, Fig. 11). Thus, we
conclude that the relationship between u1 and c has changed qua-
litatively due to the Allee effect, in comparison with logistic growth.
5. Discussion and future work

In this paper, we proposed, what is to our knowledge, one of the
first model of malignant tumour invasion that explicitly includes Allee
effects. The analysis and results lead us to the conclusion that this
model, with the strong Allee effect, is a better model of types of
malignant tumour invasion in which hapto- or chemotaxis is the
dominant mechanism of cell migration than similar, previously stu-
died models: the logistic model (Perumpanani et al., 1999; Marchant
et al., 2000; Harley et al., 2014a) and the competition model
(Marchant et al., 2006). This conclusion is based on the strong Allee
model's ability to replicate experimentally observed features of
malignant tumour invasion more effectively than the previous mod-
els. In particular, the two main results that lead to this conclusion are:
1. The strong Allee model only admits Type III waves, the most
biologically relevant invasive tumour fronts, rather than the
whole family of Type I–IV waves that is admitted by the logistic
and competition models.

2. The relationship between the invasion speed of these Type III
waves and the background ECM density is biphasic, which is
consistent with experimental observations, contrary to the
corresponding relationship for the logistic model.

The results for the weak Allee model are less interesting; see
Appendix B. They lead to the conclusion that the weak Allee model is
similar to the logistic or competition models as a model of malignant
tumour invasion. It admits the same family of travelling wave solu-
tions, including those that are not biologically relevant, and does not
exhibit the experimentally justified biphasic relationship between the
speed of the Type III waves and the background ECM density.

5.1. Additional biological processes

The kinetic function for the cancer cells that we study is a
general representation of a cubic function with zero constant term,
negative cubic term and positive quadratic term:

f Allee ŵ
� �¼ �k1ŵ

3þk1 k2þk6ð Þŵ2�k1k2k6ŵ ≕ K1ŵ
3þK2ŵ

2þK3ŵ;

ð24Þ
with K1o0 and K240. Thus, appropriate modifications to the
second equation in (6) (in the form of linear, quadratic or cubic
terms in ŵ) can be expressed and studied using (1)–(2); the
interpretation of the parameters simply changes. Consequently,
the results of the Allee model apply more generally and we may
use them to infer the effects of including (appropriate) additional
biological processes to (6).

For example, the death of the cancer cells as a result of treatment
or therapy can be modelled by the linear death term �k7ŵ , with
k740 (s�1). Appending this term to the ŵ-equation of (6) yields

∂û
∂t̂

¼ �k4û
2ŵþD1

∂2û

∂x̂2
;

∂ŵ
∂t̂

¼ k1ŵðk2�ŵÞðŵ�k6Þ�k7ŵ�k3
∂
∂x̂

∂û
∂x̂

ŵ
� �

þD2
∂2ŵ

∂x̂2
: ð25Þ

Upon applying the nondimensionalisation

ud ¼
û
Ud

; wd ¼
ŵ
Wd

; td ¼
t̂
Td

; xd ¼
x̂
Xd

; ð26Þ

with

Ud ¼
k1
k4
Wd; Wd ¼

1
2

k2þk6þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2�k6Þ2�4

k7
k1

s !
;

Td ¼
1

k1W
2
d

; Xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3

k4Wd

s
;
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and

αd ≔
k2þk6
Wd

�1; βd ≔
D1

D2
¼ β; εd ≔

k4
k1k3Wd

D2;

and dropping the subscript d, (25) transforms to the Allee model, (1)–
(2). We assume k7okn7 ¼ k1ðk2�k6Þ2=4 so that Wd is real-valued.

To interpret the effect of the additional death term, we analyse
how the dimensionless variables and parameters change between
(7) and (26), keeping the remaining dimensional parameters ki,
iAf1;2;…;6g fixed. The death rate k7 appears directly in Wd and
indirectly via Wd in the other terms (excluding βd ¼ β). It is
straightforward to see that a death rate k7 decreases Wd compared
to W: WdoW . Consequently,

UdoU; Td4T ; Xd4X; αd4α; βd ¼ β; εd4ε:

As expected, the expression for Wd corresponds to the back-
ground state of (25) that represents the carrying capacity of the
cancer cell density; the cancer cell density in (2) has been scaled to
one so the representative cancer cell density W ½�� used in the
nondimensionalisation must correspond to this background state.
In terms of their relationship to Wd, the other quantities in the
nondimensionalisation remain unchanged.

The parameter αd represents the ratio of the two nontrivial w-
background states of (25), consistent with α in (2). Consequently, for
αd40, this parameter still imposes a growth threshold. However, in
terms of the dimensional variables, the growth threshold is no longer
represented by k640 but by k6þk7=ðk1k2Þ40. Increasing k7 causes
the two nontrivial ŵ-background states of (25) to approach each
other on the ŵ-axis, until they collide and become complex-valued
at k7 ¼ kn7. In (2), since the greater background state is scaled to one,
increasing k7 increases the value of the lesser nontrivial ŵ-back-
ground state, which has been scaled to α. Consequently, to obtain
results for (25) we take αoαdo1 (with αd-1 as k7-kn7). As evi-
denced by Fig. 10, for α40, increasing α causes an overall decrease
in the speed of the waves. Thus, adding a linear death term to the
strong Allee model slows the invasive tumour fronts.

5.2. Shortcomings and future work

In this paper, we proposed a model of malignant tumour invasion
that we argue is an improvement on previously studied models of its
kind. However, our proposed model is still far from a complete
description of malignant tumour invasion; any mathematical model
describing a biological process is highly simplified. It is rarely possible
to identify the exact mechanisms that are involved in a given process
and parameter values such as reaction rates are often only known to
several orders of magnitude. Even if the biology is completely
understood, it remains a challenge to represent it mathematically in a
way that is both accurate and manageable. For example, irregularities
in the border of malignant tumours can be important (e.g. Amar et al.,
2011), contributing to the speed and severity of the tumour. However,
to capture these irregularities, two- or three-dimensional models must
be used. Such models are highly complex and not conducive to
Fig. A1. Sketches of the solutions to the ODEs in (A.1). Left-hand panel: The ODEs with
capacity (scaled to one) for all positive initial conditions. Right-hand panel: The ODE
conditions larger than the threshold value α40. Initial conditions smaller than α40 re
rigorous mathematical analysis. In the quickly developing field of
cancer research, the correct formulation of a model is an ongoing
debate. We chose to model the Allee effect with the cubic function (2).
However, other functional forms may also be used; see, for example,
Courchamp et al. (2008) and references therein. Nevertheless, simple
models, such as the Allee model, still provide useful information. In
this case, we demonstrate that using the strong Allee effect instead of
logistic growth has strong implications on the modelling of malignant
tumour invasion. They also provide a stepping stone towards under-
standing more realistic, complex models.

The mathematical methods in this paper focus on proving the
existence of travelling wave solutions. Although the PDE simulations
provide an indication of which of these solutions are stable, a rigorous
stability analysis remains to be undertaken. One method of inferring
stability results for models such as (1) is based on an Evans function
computation. Such a method is currently under development; see
Harley et al. (2015). A related aspect that is not discussed in this paper
is the transient dynamics of the travelling wave solutions. We do not
discuss how an initially small, localised patch of cancer cells evolves
into an invading tumour front or how the cancer cells come to be
present in the first place. Instead, we investigate the possible long
term behaviours of pre-existing tumours. An alternative model is
necessary to describe the early stages of tumour development; the
prime feature of the strong Allee effect is the growth threshold it
imposes, which causes populations less than the threshold value to
become extinct. The stability and transient dynamics of the traveling
wave solutions studied here are topics for future research.

Finally, our analysis is only valid for sufficiently small values of ε.
The numerical simulations suggest that our results remain (at least
qualitatively) sound for quite large values of ε, say, ε¼ 0:1 (see, for
example, Fig. 12). However, we purposely avoid specifically defining
sufficiently small as this goes beyond the scope of this paper. An
investigation of the effect of larger ε is left for future research.
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Appendix A. Logistic growth and the Allee effect

To gain an understanding of the influence of the Allee effect, in
comparison to logistic growth, consider the two ordinary differential
logistic growth and the weak Allee effect yield growth (or decay) to the carrying
with the strong Allee effect only yields growth to the carrying capacity for initial
sult in the extinction of w.
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equations (ODEs)

dw
dt

¼ f logisticðwÞ ¼wð1�wÞ and
dw
dt

¼ f AlleeðwÞ ¼wð1�wÞðw�αÞ:
ðA:1Þ

Both ODEs are separable and can be solved analytically; sketches of
the solutions are given in Fig. A1. The ODEs with logistic growth and
the weak Allee effect yield growth (or decay) to the dimensionless
carrying capacity (w¼1) for any positive initial condition. In contrast,
the ODE with the strong Allee effect yields growth (or decay) to the
dimensionless carrying capacity only if an initial condition is greater
than the threshold value α40; initial conditions less than α40
result in the extinction of the species.

The differences between logistic growth and the strong and
weak Allee effects are further explained by looking at the per
capita growth rate (pcgr) of w, in the absence of spatial (or other)
effects. The pcgr of w is defined as

pcgr wð Þ ≔ 1
w
dw
dt

¼ d logwð Þ
dt

;

where logw represents the natural logarithm of w. We determine
the pcgr of w for the two cases, logistic and Allee, using dw=dt
defined in (A.1):

pcgrlogisticðwÞ ¼ 1�w; pcgrAlleeðwÞ ¼ ð1�wÞðw�αÞ:
Fig. A2 provides an illustration of these curves for wZ0.

For 0oαo1, the pcgr curve for the strong Allee effect is
negative in a neighbourhood of w¼0, before becoming positive at
w¼ α. This negativity, which corresponds to negative population
growth, characterises the strong Allee effect. For �1oαo0, the
Fig. A2. The pcgr curves for logistic growth (solid), the strong Allee effect (dashed)
and the weak Allee effect (dotted). The negativity of the dashed curve for woα

characterises the strong Allee effect. The turning point in the dotted curve at a small
value of w relative to the carrying capacity (in this case, at w¼ 1=40), combined
with the positive intercept (at w¼0), characterises the weak Allee effect.

Fig. B1. Left-hand panel: Phase plane of (18), parametrised by z, with α¼ �0:95, c¼0.43
dots represent equilibria. The black open square is a folded saddle. F divides S into a repe
heteroclinic connections corresponding to Type I–IV travelling wave solutions. Right-han
of a Type III wave (cIII), with α¼ �0:95. The solid curve is obtained from ODE simulation
(For interpretation of the references to color in this figure caption, the reader is referre
pcgr curve for the weak Allee effect decreases almost everywhere
except for a small increasing part for wA ½0; ð1þαÞ=2Þ. This
increase characterises the weak Allee effect.
Appendix B. Results for the weak Allee model

The mathematical techniques outlined in Section 3 can be directly
applied to the weak Allee model ((1)–(2) with α⪆�1). With αo0, the
equilibrium ðu;wÞ ¼ ð0;αÞ lies on the negative w-axis and the equili-
bria ðu1;0Þ are centre stable, in contrast to the case presented in
Section 3 with α40. This means that the phase planes of the reduced
problem in the weak and strong cases differ considerably, especially
near the u-axis. In the weak case, trajectories can approach ðu1;0Þ via
either the fast or slow dynamics, instead of only the fast. For jαj
sufficiently large (see Remark 5), one canard point exists on F: a folded
saddle. The left-hand panel of Fig. B1 illustrates these features and
depicts an example phase plane for the weak Allee model.

The configuration of canard points and end states ðu1;0Þ for the
weak Allee model is equivalent to that of the logistic model. Conse-
quently, the analysis of the former is very similar to the latter, which is
described in detail in Harley et al. (2014a). By glueing together tra-
jectories of the reduced and layer problems, as in Section 3.4, we
construct a family of Type I–IV travelling wave solutions, parametrised
by c, for a given u1 and ε¼ 0. The Type III waves correspond to
solutions that approach ðu1;0Þ via the fast dynamics, similar to the
Type III waves in the strong Allee model. The Type I, II and IV waves
correspond to solutions that approach ðu1;0Þ via the slow dynamics.

The persistence of these solutions follows from geometric sin-
gular perturbation theory and canard theory, using very similar
arguments to those presented in Harley et al. (2014a). One dif-
ference arises from a transversality condition, which is auto-
matically satisfied in the logistic model but is violated in the weak
Allee model if u� ¼ uþ ¼ c=

ffiffiffiffiffiffiffiffiffiffiffi
1þα

p
, where u7 is the u-coordinate

of the shock; see Section 3.2. The full implications of this loss of
transversality remain to be determined. One immediate implica-
tion is the breakdown of the proof of persistence for 0oε⪡1 for
any travelling wave solutions that violate the transversality con-
dition. Another implication appears to be the existence of non-
unique solutions, that is, two possible travelling wave solutions for
a given α, c, u1 and ε¼ 0: one with a shock and one without.
Numerical simulations of the weak Allee model with 0oε⪡1
suggest that the Type I–III waves are stable; see Fig. B2.

The right-hand panel of Fig. B1 provides a plot of the speed of
the Type III waves cIII as a function of the background ECM density
u1, for fixed α¼ �0:95. This monotonically increasing relationship
resembles the corresponding relationship for the logistic model,
rather than the experimentally justified biphasic relationship.
. The green line is the fold curve (F), which is dotted to illustrate its singularity. Black
lling side (Sr, shaded) and an attracting side (Sa, unshaded). There exists a family of
d panel: The relationship between the background ECM density (u1) and the speed
s of (19); the markers are obtained from PDE simulations of the weak Allee model.
d to the web version of this paper.)



½u�

Fig. B2. Type I–III waves with speeds c� 1:2;0:80 and 0.73, respectively, obtained by numerically simulating (1) with ε¼ 0:001, α¼ �0:95 and β¼ 0:5. The only imposed
difference between the three simulations is the initial condition, in particular, the steepness of the w-component; steeper w-components lead to slower waves. The dashed
lines correspond to u-profiles and the solid lines to w-profiles, with solutions plotted at t¼0 (black), 8 (lightest), 16,…, 80 (darkest).
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Remark 5. The above discussion of the weak Allee effect requires
jαj to be sufficiently large. This ensures that there exists exactly
one canard point on F. For �7þ4

ffiffiffi
3

p
� �0:072oαo0, there may

exist three canard points on F, depending on the value of c. As c
increases, the number of canard points on F changes from one to
three and back to one via two saddle-node bifurcations. Although
this regime may be mathematically interesting, it is not biologi-
cally relevant since the weak Allee effect requires α⪆�1; see
Appendix A. Consequently, we do not consider it here.
Appendix C. Dimensionless variables and parameters

¼ ½û� ½k4�
½k1�½k2�

¼ kg
m3 �

m6

kg� cells� s
� cells� s

m3 ¼ 1

½w� ¼ ½ŵ� 1½k2�
¼ cells

m3 � m3

cells
¼ 1

½x� ¼ ½x̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k2�½k4�
½k3�

s
¼m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cells
m3 � m6

kg� cells� s
� kg� s

m5

s
¼ 1

½t� ¼ ½t̂ �½k1�½k2�2 ¼ s� m3

cells� s
� cells

m3 ¼ 1

½α� ¼ ½k6�
½k2�

¼ cells
m3 � m3

cells
¼ 1

½β� ¼ ½D1�
½D2�

¼m2

s
� s

m2 ¼ 1

½ε� ¼ ½k4�
½k1�½k2�½k3�

½D2� ¼
m6

kg� cells� s
� cells� s

m3 � kg� s
m5 �m2

s
¼ 1
Appendix D. Transversality

The curves J and To intersect at ðu;wÞ ¼ ðu1; c2=u2
1Þ. Since To

follows the vector field, this intersection is transverse (not tan-
gent) if

dJ
du

����
u ¼ u1

�dw
du

����
ðu;wÞ ¼ ðu1 ;c2=u21Þ

a0;

where dw=du is the ratio of the ODEs in (19). A straightforward
computation shows that the above express is given by

2c2

u31
þc2ð1�c2=u2

1Þðc2=u2
1�αÞ�2u3

1c4=u4
1

u21ð2u21c2=u21�c2Þ ¼ ðu2
1�c2Þðc2�αu2

1Þ
u61

a0:

So, transversality is lost if c¼ u1 or c¼ ffiffiffiffi
α

p
u1. The former case

implies that the take-off point of the jump is ðu;wÞ ¼ ðc;1Þ, which
is only possible if c¼0. Thus, given u1; c40, transversality is
violated only if c¼ ffiffiffiffi

α
p

u1. This speed corresponds to a take-off
point of the jump at ðu;wÞ ¼ ðu1;αÞ.
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