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CONTROLLING THE UNSTEADY ANALOGUE OF SADDLE
STAGNATION POINTS∗

SANJEEVA BALASURIYA† AND KATHRIN PADBERG-GEHLE‡

Abstract. It is well known that saddle stagnation points are crucial flow organizers in steady
(autonomous) flows due to their accompanying stable and unstable manifolds. These have been
extensively investigated experimentally, numerically, and theoretically in situations related to macro-
and micromixers in order to either restrict or enhance mixing. Saddle points are also important
players in the dynamics of mechanical oscillators, in which such points and their associated invariant
manifolds form boundaries of basins of attraction corresponding to qualitatively different types of
behavior. The entity analogous to a saddle point in an unsteady (nonautonomous) flow is a time-
varying hyperbolic trajectory with accompanying stable and unstable manifolds which move in time.
Within the context of nearly steady flows, the unsteady velocity perturbation required to ensure that
such a hyperbolic (saddle) trajectory follows a specified trajectory in space is derived and shown to
be equivalent to that which can be obtained via a heuristic approach. An expression for the error in
the hyperbolic trajectory’s motion is also derived. This provides a new tool for the control of both
fluid transport and mechanical oscillators. The method is applied to two examples—a four-roll mill
and a Duffing oscillator—and the performance of the control strategy is shown to be excellent in
both instances.
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1. Introduction. In steady two-dimensional fluid flows, saddle stagnation points
have long been recognized as being crucial flow organizers. Their stable and unstable
manifolds separate the flow regime into regions of fluid which do not mix. Analysis of
saddle stagnation points is well established in fluid applications ranging from ground-
water modeling [29, 46], macro- and micromixing devices [17, 2, 6, 50, 42, 21], and
oceanographic flows [48, 3, 36, 11, 9, 40]. The analogous entity in unsteady flows is
that of a hyperbolic trajectory, a specific type of time-varying fluid parcel trajectory
which possesses time-varying stable and unstable manifolds, whose locations govern
fluid transport; cf. [38]. These cannot be identified by examining points in the flow
at which fluid particles are instantaneously at rest (cf. [20]), as is easily rationalized
by the thought experiment of observing a steady saddle stagnation point in a moving
frame. The flow-regulating trajectory is a time-varying entity in this moving frame
and does not correspond to a location at which the fluid velocity is zero. A theoretical
definition for hyperbolic trajectories can be given in terms of exponential dichotomies
[10, 51, 41, 32, 35, 7, 5], but such a definition is generally difficult to use to locate hy-
perbolic trajectories even for a specified unsteady Eulerian velocity field. While this
hinders the analysis and numerical determination of hyperbolic trajectories, there is
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strong interest in controlling their location (see, e.g., [2, 21, 42]), in order to control
(either enhance or decrease) fluid mixing.

While the time-variation of hyperbolic trajectories has implications for fluid trans-
port when considering Lagrangian particle motion in fluid mechanics as described
above, it is equally important in other applications in which the phase space is not
necessarily physical space. Classical examples here include the pendulum and Duffing
equations with time-dependent forcing [18, 28, 27, 25, 45, 34], in which a study of
potential chaotic motion is related to intersections of stable and unstable manifolds of
hyperbolic trajectories in the position-velocity phase space. The eventual behavior of
such an oscillator system is highly sensitive to the choice of initial condition near such
hyperbolic trajectories, since the associated stable and unstable manifolds demarcate
regions which have different fates. Indeed, these manifolds form time-varying bound-
aries of basins of attraction and are of paramount importance in ideas on “controlling
chaos” [33, 15, 28, 8] and in defining stability boundaries of biological and mechanical
systems [1, 14, 39]. Time-varying (saddle-like) hyperbolic trajectories are therefore
the locations of the intersections of these basin boundaries, and controlling this lo-
cation in position-velocity space is one part of controlling the long-term behavior of
mechanical oscillator systems.

There have been few studies which give insight into how to control such hyperbolic
trajectories. One approach [7] provides a bound on a time-dependent perturbation
on a steady flow with an attracting stagnation point, which ensures that its unsteady
version remains within a specified safety region. Being for nodes rather than sad-
dles, this has lesser applicability for flow separators and transport. Another study
addresses a control strategy to push fluid particles which are near unsteady saddles
towards them [51]. The approach taken in [51] applies the classical concept of chaos
control—following the pioneering work by Ott, Grebogi, and Yorke (OGY) [33]—
to stabilize a hyperbolic trajectory. The original OGY method aims at controlling
chaotic trajectories onto a neighboring unstable periodic orbit by means of the lin-
earized Poincaré map, thereby stabilizing the periodic dynamics. A related approach
based on a continuous feedback control has been proposed by Pyragas [37].

The concept of controlling chaos has received considerable scientific interest in
the past 20 years; see, e.g., [16] for a review of the vast literature. Our article offers
a different perspective: the explicit determination of the perturbing unsteady vector
field needed to ensure that a hyperbolic trajectory follows a specified trajectory in
space. Notably the target trajectory is not stabilized but remains of saddle type,
having crucial implications for transport and mixing. The control strategy is derived
in section 2. In section 3 we show that an equivalent representation is possible via
a quick heuristic argument, and we also give an error bound on how closely the
actual hyperbolic trajectory shadows the desired motion as a result of our control. In
section 4, we show how our control strategy can be adapted for situations which are
slightly different from that discussed in sections 2 and 3. A fluid dynamics example
based on the paradigmatic four-roll mill [6, 31, 52, 49, 26, 23, 47, 22, 43] is studied
in section 5, in which the idea is to control the position of a hyperbolic trajectory
in the apparatus to be exactly at the location of a droplet for which an extensional
deformation is to be obtained. As an oscillator example, the double-well Duffing
oscillator [18, 28, 27, 25, 45, 30] is examined in section 6. Its hyperbolic trajectory
can be controlled to be at specified time-varying locations via suitably modifying
an applied forcing, thereby positioning the location of the intersection of basins of
attraction at any desired location.
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2. Control strategy. We wish to control the location of hyperbolic trajectories
in the system

(2.1) ẋ = v(x, t, ε) = v0(x) + εv1(x, t),

in which x is two-dimensional, ε is a small parameter, and the vector field v is smooth.
The unsteady velocity v1 is to be considered the control, which is to be determined
in order to move a saddle stagnation point of the ε = 0 system to a hyperbolic
trajectory which exhibits a desired time-varying motion. As we discuss in section 4,
the method we develop is easily adaptable to slightly different situations, such as when
the unperturbed (ε = 0) flow is itself unsteady, or when a control velocity is to be
added to an uncontrolled flow which has the form (2.1).

In the fluid dynamics situation, the vector field v is precisely the Eulerian velocity,
whereas it would be a more general function for an oscillator system. More details on
these technical smoothness assumptions are available [4]; in brief, v0 needs to be C2,
and v1 to be C2 in space and C1 in time, with v1 and its spatial derivative bounded
in time. The steady ε = 0 flow,

(2.2) ẋ = v0(x),

is assumed to possess a saddle (hyperbolic) stagnation (fixed) point at a in that (i)
v0(a) = 0, and (ii) the Jacobian matrix Dv0 when evaluated at a has real eigenvalues
λu > 0 and λs < 0, with corresponding eigenvectors u and s. In what follows, these
eigenvectors are chosen to be of unit length and in the direction of flow along the
corresponding one-dimensional stable and unstable manifolds of a; see Figure 1.

unstable manifold

stable manifold

a
aΕ�t�

uu�

s
s�

Fig. 1. Locating the hyperbolic trajectory in a time-slice t. The components of the vector
aε(t) − a in the directions u⊥ and s⊥ are indicated by the dot-dashed lines.

When ε �= 0, the flow (2.1) is unsteady (nonautonomous). In this situation, it
makes sense to view (2.1) in the form ẋ = v(x, t, ε), ṫ = 1, in order to make the system
autonomous. When considering this augmented system at ε = 0, the saddle stagnation
point becomes a straight line hyperbolic trajectory with two-dimensional stable and
unstable manifolds, as illustrated in Figure 2. Trajectories on these manifolds (labeled
ts and tu) decay towards the hyperbolic trajectory (a, t) in forwards/backwards time,
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Fig. 2. Hyperbolic trajectory (a, t) (i.e., saddle) in (x, t) space.

and these manifolds separate fluid regions which do not mix. When ε �= 0, the
solution (a, t) of (2.2) perturbs to a nearby solution (aε(t), t) of (2.1), which turns
out to continue to be hyperbolic in the following sense. In nonautonomous systems
such as (2.1), hyperbolicity needs to be defined in terms of exponential dichotomies
[10, 41, 32, 35] of the associated variational equation

(2.3) ẏ = [Dv0 (aε(t)) + εDv1 (aε(t), t)]y .

When ε = 0, (2.3) is the variational equation associated with (2.2) at the solution
x = a. As long as the perturbation v1 is sufficiently smooth in x and bounded in
t, and |ε| is sufficiently small, there exists a trajectory aε(t) of (2.1) such that (2.3)
continues to satisfy exponential dichotomy conditions when ε �= 0 [10, p. 34], [53, p.
279], [51]. The new hyperbolic trajectory (aε(t), t) is a “wobbled” version of (a, t). The
retention of stable and unstable manifolds also follows directly from the persistence
of exponential dichotomies, since these manifolds are locally represented using the
projection matrices guaranteed by exponential dichotomies [10, 53]. These manifolds
are no longer uniform in t and now form time-varying flow separators. When taking
a time-slice t of the perturbed version of Figure 2, the point a is now at a nearby
location aε(t), as indicated in Figure 1.

Given v1(x, t), recent work [4] enables locating aε(t) in terms of the unit vec-
tor directions s⊥ and u⊥, which are obtained by rotating s and u by π/2 counter-
clockwise. The analysis uses Melnikov theory from a geometric perspective to locate
the perturbed stable and unstable manifolds at a general time-instance and a general
location on the manifold, after which a limiting procedure of going along the mani-
folds towards the former saddle point is used [4]. The O(ε) projections of aε(t) − a
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in the directions u⊥ and s⊥, which are indicated with the dot-dashed lines in Figure
1, turn out to be [4]

(2.4)
αu(t) := Lτ

{
v1 (a, t− τ) · u⊥} (−λs) ,

αs(t) := −Lτ

{
v1 (a, t+ τ) · s⊥} (λu) ,

⎫⎬
⎭

where Lτ represents the Laplace transform with respect to the variable τ . A simple
geometric argument enables aε(t) to be expressed in the (u⊥,u) orthogonal basis by
[4]

(2.5) aε(t)=a+ ε

[
αu(t)u

⊥+
αu(t) (u · s)−αs(t)

u⊥ · s u

]
+O(ε2) .

The basis (s⊥, s) could be used alternatively in (2.5), by performing the interchange
u ↔ s throughout in (2.5). While this result permits locating aε(t) for a given v1, the
reverse question is now posed: Can one figure out the velocity perturbation v1 that
is needed for the hyperbolic trajectory to follow a specified aε(t), which is O(ε)-close
to a?

To solve this control problem, let ε be small and fixed. For a given differentiable
hyperbolic trajectory aε(t), define

(2.6)
α̃u(t) :=

(aε(t)− a) · u⊥

ε
,

α̃s(t) :=
(aε(t)− a) · s⊥

ε
,

⎫⎪⎪⎬
⎪⎪⎭

O(1) quantities which are proxies for αu,s(t). From the first equation in (2.4),

αu(t) =

∫ ∞

0

v1(a, t− τ) · u⊥e−(−λs)τ dτ

= −
∫ −∞

t

(
v1(a, μ) · u⊥) eλs(t−μ)dμ

= eλst

∫ t

−∞

(
v1(a, μ) · u⊥) e−λsμdμ ,

and thus

(2.7) αu(t)e
−λst =

∫ t

−∞

(
v1(a, μ) · u⊥) e−λsμdμ .

By differentiating, we obtain (αu(t)e
−λst)′ = (v1(a, t) · u⊥)e−λst, which upon rear-

ranging yields

α′
u(t)− λsαu(t) = v1(a, t) · u⊥,

and thus the projection of v1 in the direction of u⊥ is given by the left-hand side
above. Since αu is within O(ε) of α̃u, and also α′

u is within O(ε) of α̃′
u, the required

projection of v1 can be determined to O(ε) by

(2.8) v1(a, t) · u⊥ = α̃′
u(t)− λsα̃u(t) +O(ε).
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A similar argument from the second equation in (2.4) leads to

(2.9) v1 (a, t) · s⊥ = α̃′
s(t)− λuα̃s(t) +O(ε).

Now, since the components of v1 are known in two independent directions by (2.8)
and (2.9), it is possible to write v1 in terms of the orthogonal system (u⊥,u) by the
same process as (2.5). The required unsteady perturbation in the Eulerian velocity
field, correct to O(ε), is

(2.10) v1(a, t) =

[
βu(t)u

⊥ +
βu(t) (u · s)− βs(t)

u⊥ · s u

]
,

where the β’s are the components in the u⊥ and s⊥ directions as derived in (2.8) and
(2.9), i.e.,

(2.11)
βu(t) := α̃′

u(t)− λsα̃u(t),
βs(t) := α̃′

s(t)− λuα̃s(t),

}

in which α̃u,s(t) is defined in terms of the required trajectory aε(t) in (2.6).

3. Control strategy via formal expansion. The control strategy derived in
the previous section requires computation of the unit vectors u, s, u⊥, and s⊥, followed
by evaluation of the quantities α̃u,s and βu,s, before the control equation (2.10) can
be used to evaluate the required velocity v1(a, t). It turns out that a much easier
representation of (2.10) is possible, which can be derived using a heuristic approach.
Using this approach, it is also possible to quantify the expected error while using our
control strategy in attempting to keep a hyperbolic trajectory at a desired location
aε(t).

We wish to control a hyperbolic trajectory aε(t) of (2.1) which is O(ε)-close to
the hyperbolic fixed point a of (2.2) for all time. Suppose we formally Taylor expand

(3.1) aε(t) = a+ εx1(t) + ε2 [x2(t) +O(ε)] =: a+ εx1(t) +E(t, ε),

which defines the error E(t, ε) in approximating aε(t) with a + εx1(t). Given any
aε(t) which is sufficiently smooth in ε and which satisfies a0(t) = a, we can think of
obtaining x1(t) from this by

x1(t) =
∂aε(t)

∂ε

∣∣∣∣
ε=0

for subsequent use in our control strategy. The problem now is to determine the
perturbing velocity v1 associated with x1(t). Substituting (3.1) into (2.1) for x gives
the expression

εẋ1(t) + ε2ẋ2(t) + · · · =v0

(
a+ εx1(t) + ε2x2(t) + · · · )(3.2)

+ εv1

(
a+ εx1(t) + ε2x2(t) + · · · , t) .

Formally Taylor expanding (3.2) in ε and noting that v0(a) = 0, we see that the
O(ε0) term vanishes. Rearranging the O(ε) term gives us the expression

(3.3) v1 (a, t) = ẋ1 −Dv0 (a)x1(t) ,

and hence, knowing x1 and the linearization matrix for the steady flow around the
saddle stagnation point a, we can directly compute the v1 needed. It must be em-
phasized that this approach is purely formal. On the other hand, it is possible via
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tedious but straightforward calculations to verify that the expression (3.3) is iden-
tical to the control strategy (2.10) derived previously. In other words, our work in
section 2, building on previous analysis [4], nicely shores up this formal expansion
process. Thus, from an operational viewpoint, the heuristically derived (3.3) can be
used directly to solve the relevant control problem. We verify this equivalence in the
examples to follow.

Next, we estimate the error E(t, ε) in the hyperbolic trajectory associated with
using a control velocity (3.3). This is accomplished by examining the O(ε2) terms in
(3.2), which leads to the differential equation

ẋ2(t) = Dv0 (a)x2(t) +
1

2
xT
1 (t)D

2v0 (a)x1(t) +Dv1 (a)x1(t),

whose solution is

x2(t) = eDv0(a)t

∫ t

0

e−Dv0(a)τ

[
1

2
xT
1 (τ)D

2v0 (a)x1(τ) +Dv1 (a)x1(τ)

]
dτ.

In order to evaluate x2, we note that we need the derivative of v1 at a, which has not
been specified in the control strategy (3.3). Unsurprisingly, the behavior of v1 in the
vicinity of a has an influence on the error. Thus from (3.1) the required error is
(3.4)

E(t, ε) = ε2
[
eDv0(a)t

∫ t

0

e−Dv0(a)τ

[
1

2
xT
1 (τ)D

2v0 (a)x1(τ)+Dv1 (a)x1(τ)

]
dτ+O(ε)

]
.

If the integral above is zero, we see that E(t, ε) = O(ε3), and if so, the above compu-
tation would need to be extended to higher order to quantify the error. On the other
hand, if the integral is nonzero, a bound for the error can be given. Then for small
enough ε we have
(3.5)

|E(t, ε)| ≤ ε2
∣∣∣∣eDv0(a)t

∫ t

0

e−Dv0(a)τ

[
1

2
xT
1 (τ)D

2v0 (a)x1(τ) +Dv1 (a)x1(τ)

]
dτ

∣∣∣∣ .
We assume that x1(t) is bounded for t ∈ R and define

(3.6) c =
∥∥∥[Dv0 (a)]

−1
∥∥∥ sup

t∈R

∣∣∣∣12xT
1 (τ)D

2v0 (a)x1(τ) +Dv1 (a)x1(τ)

∣∣∣∣ ,
where ‖·‖ is the spectral norm of a 2×2 matrix. Now, since the eigenvalues of Dv0(a)
satisfy λs < 0 < λu, its determinant λsλu < 0, and it is invertible. Thus, the matrix
norm in (3.6) is well-defined. Moreover, under our assumed condition that the integral
in (3.5) is nonzero, the supremum in (3.6) will yield a nonzero term, and thus c > 0.

Pulling out the bound c/
∥∥ [Dv0 (a)]

−1 ∥∥ from the integral in (3.5) and integrating, we
get

|E(t, ε)| ≤ ε2
c∥∥ [Dv0 (a)]

−1 ∥∥
∥∥∥eDv0(a)t [−Dv0 (a)]

−1
(
e−Dv0(a)t − I

)∥∥∥
≤ ε2c

∥∥eDv0(a)t − I
∥∥,(3.7)

where I is the identity matrix and standard commutative and submultiplicative prop-
erties have been used in the matrix manipulations. Thus, the growth rate of the error
term with respect to t is quantified by the term

∥∥eDv0(at)t − I
∥∥ in (3.7), as long as

the integral in (3.4) is nonzero.
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4. Extension of control strategy to different situations. The preceding
two sections have outlined the condition on the control velocity v1 such that the
system ẋ = v0 (x)+εv1 (x, t) possesses a hyperbolic trajectory that follows a specified
trajectory aε(t) that is O(ε)-close to a known saddle point a of the ε = 0 system.
The method outlined can in fact be extended to two slightly different situations with
hardly any effort.

Situation 1. Suppose that the unperturbed flow were itself nonautonomous:

(4.1) ẋ = v0 (x, t) + εv1 (x, t) .

Suppose we know a hyperbolic trajectory a0(t) of (4.1) when ε = 0. In this case,
unlike in the main problem discussed so far, the unperturbed hyperbolic trajectory
is itself time-varying. Now suppose that we need to determine v1 in order to move
this hyperbolic trajectory to a location aε(t) which is O(ε)-close to a0(t). Now, the
theory discussed previously applies to this situation with hardly any difference. The
hyperbolicity of the unperturbed trajectory would need to be expressed in terms of
exponential dichotomies [10, 35, 32], and once again, the persistence of exponential
dichotomies under perturbations [10, 53, 51] ensures that the system (4.1) possesses a
nearby hyperbolic trajectory aε(t) as long as sufficient smoothness and boundedness
of v1 is present. Thus, the results upon which section 2 are premised [4] extend
to this situation as well. This is also easily seen by the modifications needed to
the formal calculations in section 3: in order to achieve the hyperbolic trajectory
aε(t) = a0(t) + εx1(t) the required condition would simply be

(4.2) v1 (a0(t), t) = ẋ1(t)−Dv0 (a0(t)) x1(t) .

Applying this more general result immediately suffers difficulties, since we would need
to know the hyperbolic trajectory a0(t) of a nonautonomous situation. Such explicit
examples are not readily available in the literature, except in the following situations.
The easiest way to come up with such an example is to think of v0 (x, t) as arising from
examining a steady saddle point situation from a frame moving at a constant speed, in
which case the hyperbolic trajectory would simply be the saddle point which moves at
a constant velocity. Additional examples related to nonlinear transformations applied
to steady flows are known [5], but all these are somewhat artificial, and hence the
usefulness of the control strategy in the more general Situation 1 is not compelling.

Situation 2. Suppose instead that the unperturbed flow is steady, but that the
perturbation term includes both a known velocity and the required control. That is,
consider

(4.3) ẋ = v0 (x) + ε [v1 (x, t) + c (x, t)] ,

in which v0 and v1 are known, and that a is a saddle fixed point of the ε = 0
flow above. The idea is to determine the control c, which moves the saddle fixed
point to a nearby hyperbolic trajectory aε(t) = a + εx1(t) + O(ε2). Now, had there
not been an additional known perturbation velocity v1 present, the required control
would be exactly that which has been derived in sections 2 and 3: it needs to satisfy
c (a, t) = ẋ1(t) − Dv0 (a)x1(t) as given in (3.3). The presence of the extra term in
(4.3) is easily dealt with by imposing the condition

(4.4) c (a, t) = ẋ1(t)−Dv0 (a) x1(t)− v1 (a, t) ,

which ensures that the entire O(ε) term satisfies the required condition. The control
condition (4.4) will ensure that the hyperbolic trajectory of (4.3) follows the required
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Fig. 3. The purely straining four-roll mill configuration.

path toO(ε). Thus, this ostensibly more complicated situation is in reality no different
from the one we have focussed on.

The situation we address in this article—a steady flow with a saddle point which
we require to move to a given nearby time-varying location—therefore incorporates
Situations 1 and 2 above.

5. Four-roll mill. As our first example to demonstrate the application of our
control strategy, we choose a classical fluidic device conceptualized by Taylor [44]
for manipulating deformations of drops in a four-roll mill configuration, as shown in
Figure 3. The drop is at the central part of the apparatus (shown by the dashed box),
and if the rollers are turned at constant angular velocity μ symmetrically as shown in
Figure 3, the central point is a saddle stagnation point. A drop positioned there will
be deformed according to the stable and unstable manifolds, and will thus lengthen in
the y-direction while shortening in the x-direction. By varying the roller speeds, it is
possible to obtain a combination of such purely straining flow with rotational motion
at the origin, providing a mechanism for different forms of drop deformation [6, 31, 52,
49, 26, 23, 47, 22, 43]. A major difficulty in such four-roll mills is maintaining a particle
precisely at the point of interest, particularly under unsteady rotation protocols.

Here, a specific situation in which one has a time-dependent perturbation of the
purely straining flow in Figure 3 is considered. Such would arise if the rollers were
rotated at angular velocities (−1)iμ + εμi(t), in which |ε| � 1 and i = 1, 2, 3, 4
represent each of the rollers. This results in an unsteady velocity perturbation at the
origin, and the theory of this article can be used to determine what this should be to
maintain the hyperbolic trajectory at a specified time-varying location near the origin.
For a given drop which is seen to move around near the origin, this information can
be fed into a control strategy which causes a time-varying velocity perturbation at
the origin which then ensures that the drop is exactly at a hyperbolic trajectory. This
procedure will ensure that the drop undergoes the straining motion at a saddle-like
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hyperbolic trajectory, as opposed to being swept away into one of the quadrants.
Suppose that the unperturbed situation (as in Figure 3) were given by

(5.1)
ẋ = −γx,
ẏ = γy,

}

where γ > 0 is proportional to the steady angular velocity of the rollers, with propor-
tionality constant depending on device properties (its dimensions, roughness of rollers,
fluid viscosity) [44]. Suppose, moreover, that it was desired to maintain the perturbed
hyperbolic trajectory at a specified location aε(t) = ε (x1(t), y1(t)), by introducing a
perturbation to (5.1) in the form

(5.2)

(
ẋ
ẏ

)
=

( −γx
γy

)
+ εv1 (x, y, t) .

Here, a = (0, 0), λu = −λs = γ, s = −î, u = ĵ, s⊥ = −ĵ, and u⊥ = −î. From (2.6),
α̃u(t) = −x1(t) and α̃s(t) = y1(t), and thus from (2.11), βu(t) = −x′

1(t)− γx1(t) and
βs(t) = −y′1(t) + γy1(t). Equation (2.10) gives the time-varying velocity required at
the origin as

(5.3) v1 (0, t) = [x′
1(t) + γx1(t)] î+ [y′1(t)− γy1(t)] ĵ .

This is the identical expression that one would get if using (3.3) directly, or by sub-
stituting aε(t) of this form into (5.2) and formally Taylor expanding. If we would
like (x1(t), y1(t)) to equal (cosωt, sinωt)—i.e., the hyperbolic trajectory rotating at
angular frequency ω—then we need

(5.4) v1 (0, t) = (−ω sinωt+ γ cosωt) î+ (ω cosωt− γ sinωt) ĵ .

While v1 only needs to be known at the origin, it shall be extended uniformly in
the vicinity of the origin to test the theory. The result is shown in Figure 4, which
compares the required time-variation of the hyperbolic trajectory with the actual
hyperbolic trajectory of the system (5.1) perturbed according to the control strategy
(5.4). Numerically computing hyperbolic trajectories requires a little care, and details
are given in Appendix A. Figure 4 indicates that the agreement between the specified
hyperbolic trajectory and the actual one is excellent even with the relatively large
value of ε. This is not surprising since in this specific instance the governing differen-
tial equation is exactly solvable (it is linear and homogeneous). We next examine a
nonuniform extension of (5.4) which is shown in Figure 5, while retaining the relatively
large value ε = 0.1. In this case, our strategy does not fully succeed in ensuring that
the hyperbolic trajectory exhibits the time-periodic behavior ε (cosωt, sinωt). How-
ever, the hyperbolic trajectory periodically traverses a nearby orbit, and the error
remains bounded.

As a second example, suppose it were required that we keep the hyperbolic tra-
jectory on the line y = kx (where k is a given constant), while remaining O(ε)-close
to the origin. Set aε(t) = ε (g(t), kg(t)) for some O(ε0) function g. From either (2.10)
or (3.3), the required control is

(5.5) v1 (0, t) = (g′(t) + γg(t)) î+ k (g′(t)− γg(t)) ĵ .

Note that the hyperbolic trajectory can be moved to a steady location on the line
y = kx by choosing g(t) = constant, for which v1 at the origin is seen to be in the
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Fig. 4. Numerically computed hyperbolic trajectory in the four-roll mill with uniform pertur-
bation (5.4), with ε = 0.1, ω = 2π, and γ = 1. As desired, we obtain (x(t), y(t)) = ε(cosωt, sinωt).
The temporal evolution of x(t) (solid) and y(t) (dashed) is shown. The inset displays the trajectory
in phase space (x(t) vs y(t)).
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Fig. 5. Numerically computed hyperbolic trajectory in the four-roll mill with nonuniform per-
turbation v1(x, y, t) = (−ω sinωt + γ cosωt)(1 − x)(1 − y)̂i + (ω cos ωt − γ sinωt) cos xĵ, which is
consistent with (5.4). Here, ε = 0.1, ω = 2π, and γ = 1. The hyperbolic trajectory follows closely
ε(cosωt, sinωt) and exhibits time-periodic behavior. The inset shows the computed trajectory in
phase space (solid) and desired motion (dotted).

direction î−kĵ, which is not along the line y = kx, as might have been naively guessed.
This illustrates the nonintuitive nature of the connection between the location of the
hyperbolic trajectory and the Eulerian velocity. We choose a nonuniform extension
of (5.5) to be

(5.6) v1(x, y, t) = (g′(t) + γg(t)) (1 − x)(1 − y)̂i+ k (g′(t)− γg(t)) coshxĵ ,

and in Figure 6 we display the numerically obtained hyperbolic trajectory for a specific
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Fig. 6. Numerically computed hyperbolic trajectory of the four-roll mill with the control Eulerian
velocity (5.6) with the choice g(t) = t2/(1 + t2), k = 0.5, γ = 1, and ε = 0.1. In the inset one sees
a growing deviation from the desired motion (dotted) to the actual trajectory (solid).

choice of g. As before, the control strategy performs well, but in this case there is a
growing deviation from the desired location.

We now analyze the error in the hyperbolic trajectory in comparison to our derived
error bound (3.7). In this case, since Dv1 (a) is not the zero matrix, the leading-order
error term in (3.4) is nonzero. To verify the error bound as given in (3.7), we explicitly
compute

(5.7) |E(t, ε)| ≤ ε2c
∥∥eDv0(a)t − I

∥∥ = ε2c [2 cosh (γt)− 1] ,

which is valid for suitably small ε. In Figure 7, we investigate the time-variation of
the error associated with the nonuniform control (5.6), in comparison to (5.7). The
theoretical error bound works but is not necessarily very sharp.

6. Duffing oscillator. A frequently considered mechanical oscillator is the Duff-
ing oscillator [18], which in the damped unforced situation has the form

(6.1) ẍ+ δẋ− x+ x3 = 0,

with δ > 0 representing the damping coefficient. When expressed as a first-order
system in the (x, ẋ) phase-space, this possesses a saddle a ≡ (0, 0) and two attracting
fixed points at b1 ≡ (−1, 0) and b2 ≡ (1, 0). The stable and unstable manifolds
of a form boundaries of the basins of attraction of b1,2, and thus their location has
important consequences for the resulting motion; see Figure 8. Now we consider

(6.2) ẍ+ δẋ− x+ x3 = εf (x, ẋ, t) ,
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Fig. 7. The time-growth of the error associated with the nonuniform control velocity (5.6), with
g(t) = t2/(1 + t2), k = 0.5, and ε = 0.1. The actual error (solid curve) is compared with the dashed
error bound (5.7), sketched here with c = 0.2.

in which |ε| � 1 and the perturbative function f may depend on the position x, the
velocity ẋ, or on time in any bounded way, thereby potentially modeling nonlinearities
in the spring force and in damping in addition to arbitrary time-dependent forcing.
The saddle perturbs to a time-varying hyperbolic trajectory aε(t) whose manifolds
continue to demarcate basin boundaries, and thus controlling the location of aε(t) has
important consequences on the dynamics. The system can be written as

(6.3)
ẋ = y,
ẏ = x− x3 − δy − εf(x, y, t).

}

Suppose that we need to maintain the hyperbolic trajectory at a location aε(t) =
ε (x1(t), y1(t)), where, in contrast to the previous example, y1(t) = ẋ1(t) is automati-
cally determined by (6.3). Thus, the control strategy can be obtained purely in terms
of x1(t).

Now for (6.3) with ε = 0, a = 0, λs = (−δ−√
4 + δ2)/2, λu = (−δ+

√
4 + δ2)/2,

s =
1√

4 +
(
δ −√

4 + δ2
)2

(
δ −√

4 + δ2

2

)
,

u =
1√

4 +
(
δ +

√
4 + δ2

)2
(

δ +
√
4 + δ2

2

)
,

s⊥ =
1√

4 +
(
δ −√

4 + δ2
)2

( −2

δ −√
4 + δ2

)
,
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Fig. 8. The phase space for the damped unforced Duffing oscillator (6.1) with δ = 0.3. The
shading represents the basins of attractions of the two attracting points (±1, 0).

u⊥ =
1√

4 +
(
δ +

√
4 + δ2

)2
( −2

δ +
√
4 + δ2

)
.

Calculating (2.6) and (2.11) gives complicated expressions, but when finally evaluating
(2.10), many simplifications occur, and we get

(6.4) v1(0, 0, t) =

(
0

ẍ1(t) + δẋ1(t)− x1(t)

)
.

This needs to be consistent with the requirement from (6.3) that v1(0, 0, t) have
components (0,−f(0, 0, t)). Thus we arrive at the control condition

(6.5) f(0, 0, t) = −ẍ1(t)− δẋ1(t) + x1(t)

on the perturbing function. We note that the process leading to the heuristically
derived control formula (3.3) would lead to this expression very quickly by formal
Taylor expansions, thereby verifying the equivalence of (2.10) and (3.3) in this instance
as well. If one thinks of f as a purely forcing function, then (6.5) tells us how to force
the oscillator in order to have approximately the hyperbolic response εx1(t).

If, for example, x1(t) = cosωt were required, then

(6.6) f(0, 0, t) = − (
1 + ω2

)
cos (ωt)− δω sin (ωt) = A(ω) cos (ωt+ φ(ω)) ,
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Fig. 9. Numerically obtained hyperbolic trajectory of the damped Duffing oscillator (6.3), with
the control strategy (6.6) which is extended uniformly in (x, y), and with ε = 0.1, δ = 0.3, and
ω = 0.2π. The inset displays the trajectory in phase space.

where the amplitude and phase angle are, respectively, A(ω) =
√(

1 + ω2
)2

+ δ2ω2

and φ(ω) = sin−1 (δω/A(ω)). As is well known, such systems have chaotic oscillations
[18, 28, 27, 25, 45, 8], with the behavior (transferring between the two potential wells
of (6.2) chaotically, exhibiting chaotic oscillations within one of the wells, etc.) being
extremely sensitive to initial conditions chosen near the hyperbolic trajectory. Our
control mechanism has provided a method for maintaining this crucial trajectory at a
location of our choosing and, moreover, quantifies precisely the frequency-dependence
on the phase difference between the imposed forcing and the response. The amplitude
ratio between these quantities is also explicitly given by A(ω). Figure 9 displays
the numerically obtained hyperbolic trajectory using the uniformly extended control
forcing (6.6), exhibiting once again near-perfect performance even with ε = 0.1. For
details on finding the hyperbolic trajectory numerically, we once again refer the reader
to Appendix A.

We note that the multiplicative constant (3.6) in the error bound (3.4) is zero in
this case, since all components of D2v0 (a) and Dv1 (a) are zero. A different example
is needed to numerically investigate our error bound, and so we nonuniformly extend
the control strategy (6.5) to

(6.7) f(x, y, t) = [−ẍ1(t)− δẋ1(t) + x1(t)] coshx ,
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Fig. 10. Numerically obtained hyperbolic trajectory of the damped Duffing oscillator (6.3), with
the nonuniform control strategy (6.7) and the desired trajectory x1(t) = cos t tanh t/10, with ε = 0.1
and δ = 0.3. In the inset one sees a growing deviation from the desired motion (dashed) to the
actual trajectory (solid).

which ensures that Dv1 is no longer zero. We show in Figure 10 the result of applying
this control strategy in attempting to achieve x1(t) = cos t tanh t/10. Now, from (3.7),
we explicitly get the error bound

(6.8) ‖E(t, ε)| ≤
∥∥∥eDv0(a)t − I

∥∥∥ = ε2cet

for suitably small ε. We illustrate in Figure 11 the fact that the actual computed
error in the hyperbolic trajectory obeys this theoretical bound.

7. Concluding remarks. In this article, we have established the velocity per-
turbation necessary to maintain a hyperbolic trajectory at a user-specified location.
We verify that formula (3.3), which can be obtained quickly by formal Taylor expan-
sion, is equivalent to (2.10), which we derived by appealing to previous results [4] on
locating stable and unstable manifolds. The analysis does require that the flow be
nearly steady, but, as shown in our four-roll mill and Duffing oscillator examples, the
performance of the control strategy is excellent even when the unsteady velocity is
as large as 10% of the base flow. We also provided an estimate on the time variation
of the error in the hyperbolic trajectory as a result of a given control strategy and
verified its accuracy in our examples. Controlling time-varying hyperbolic trajecto-
ries in this form has strong influence on nearby fluid transport (if a fluid mechanical
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Fig. 11. The time-growth of the error associated with the nonuniform control (6.7), with x1(t) =
cos t tanh t/10, ε = 0.1, and δ = 0.3. The actual error (solid curve) is compared with the dashed
error bound (6.8), sketched here with c = 0.15.

system) or on basin boundaries demarcating different asymptotic fates (if a more gen-
eral system), and thus knowing how to control these entities is important. In both
these instances, it is the stable and unstable manifolds associated with the hyperbolic
trajectories which are the important flow separators, and the next step would be to
determine a control strategy which can keep these manifolds at specified time-varying
locations. We address this inevitably more complicated issue in a subsequent article.

Appendix A. Computing hyperbolic trajectories numerically. In our
special two-dimensional setting we are interested in solutions to driven ordinary dif-
ferential equations that are both hyperbolic and bounded. Haller [19] derives an an-
alytical criterion to find trajectories that are (uniformly) hyperbolic on a given time
span I ⊂ R: given a sufficiently smooth two-dimensional velocity field in the form
of (2.1), a necessary condition for a solution x(t) to be finite-time hyperbolic on I is
that detDxv (x(t), t) < 0 for all t ∈ I. If, as in our example systems, the associated
finite-time stable and unstable manifolds do not change very fast (measured in terms
of the rate of change of a matrix containing the corresponding tangent vectors), the
determinant condition also becomes sufficient. Note, in particular, that by a spatially
uniform time-dependent forcing the respective stable and unstable manifolds are only
translated in space, resulting in a constant matrix of tangent vectors.

Unlike the Duffing system considered in section 6, in the four-roll mill example of
section 5 the determinant criterion is useless. The reason is that a spatially uniform
time-dependent forcing makes all trajectories uniformly hyperbolic. Hyperbolicity of
the controlled trajectories in this linear instance can be easily verified analytically
(see, e.g., section 2.1 in Ju, Small, and Wiggins [24]). Thus we just need to check that



CONTROLLING UNSTEADY SADDLES 1055

these trajectories are the only bounded trajectories of the forced system, staying in
an ε-neighborhood of the saddle stagnation point.

We exploit these ideas in a numerical scheme by adapting set-oriented methods
for the approximation of invariant sets [12, 13]. For this we fix a certain time slice
t0 ∈ R, a small flow time T > 0, and a neighborhood of the saddle stagnation
point strictly containing the ε-neighborhood of interest. We form a partition of this
neighborhood into small connected subsets and then follow a twofold approach: (i)
we refine the partition by subdividing the partition elements into smaller subsets, and
(ii) we discard those sets for which we cannot find a valid initial condition in the set.
By a valid initial condition we mean one whose trajectory satisfies the determinant
and boundedness criteria in both forwards (i.e., on [t0, t0 + T ]) and backwards ([t0 −
T, t0]) time. For the selection step (ii) appropriate test point strategies are employed,
which could also be made rigorous following the ideas of Dellnitz and Junge [13]. We
alternate steps (i) and (ii) while increasing T until we have obtained a tight bound
on the initial conditions that give rise to hyperbolic trajectories. In our examples
here, this allows us to pinpoint the initial conditions of hyperbolic trajectories up to
an accuracy on the order of 10−8. We note that this approach is independent of the
nature of the perturbations and, unlike the study of Poincaré return maps, is not
restricted to time-periodic forcings.
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