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Accurate control of hyperbolic trajectories in any dimension
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The unsteady (nonautonomous) analog of a hyperbolic fixed point is a hyperbolic trajectory, whose importance
is underscored by its attached stable and unstable manifolds, which have relevance in fluid flow barriers, chaotic
basin boundaries, and the long-term behavior of the system. We develop a method for obtaining the unsteady
control velocity which forces a hyperbolic trajectory to follow a user-prescribed variation with time. Our method
is applicable in any dimension, and accuracy to any order is achievable. We demonstrate and validate our method
by (1) controlling the fixed point at the origin of the Lorenz system, for example, obtaining a user-defined
nonautonomous attractor, and (2) the saddle points in a droplet flow, using localized control which generates
global transport.
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I. INTRODUCTION

The concept of hyperbolic trajectories in ordinary differ-
ential equations encapsulates a range of entities which have
a strong influence in governing global motion. Hyperbolic
trajectories include (1) saddle fixed points of steady flows,
which have attached to them both a stable and an unstable
manifold; (2) fixed points of steady flows which are attracting;
(3) fixed points of steady flows which are repelling; (4)
specialized trajectories of unsteady flows which have attached
to them both a stable and an unstable manifold; and (4)
specialized trajectories of unsteady flows which have a
full-dimensional stable or an unstable manifold. For fixed
points of steady flows, hyperbolicity is expressed by the
linearized Jacobian matrix evaluated at the fixed point having
no eigenvalues on the imaginary axis. For more general
situations, hyperbolicity needs to be defined in terms of
the computationally difficult exponential dichotomy condi-
tions [1–4] (see the Appendix). It must be emphasized that
hyperbolic trajectories in unsteady flows cannot be determined
by considering instantaneous fixed points [5]; neither are
instantaneous eigenvalues useful. The importance of the large
class of hyperbolic trajectories outlined above is underscored
by their effect on the global behavior. For example, it is well
known that stable and unstable manifolds form important flow
separators in fluid flows, thereby providing a skeleton which
distinguishes between regions of anomalous motion [4,6–10].
Hyperbolic trajectories are entities to which these stable and
unstable manifolds are attached, and hence their motion with
time governs the time variation of these flow separators. A
different example comes from hyperbolic trajectories which
are purely attracting; i.e., they have a full-dimensional stable
manifold, but no unstable manifold attached to them. While
these may also move around in phase space in unsteady
flows, they nevertheless are the entities to which all nearby
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initial conditions get attracted as time progresses. Thus, such
hyperbolic trajectories govern the eventual behavior of the
system.

The ability to control the time-varying behavior of hyper-
bolic trajectories can therefore have tremendous applications
across a range of areas. A classical example from fluid mechan-
ics is the concept of a fluidic device which achieves droplet
manipulation through positioning at the hyperbolic trajectory
location [11–24]. In the paradigmatic two-dimensional device
with a hyperbolic point with attached one-dimensional stable
and unstable manifolds, droplet elongation in the unstable
direction is achieved by this process. For droplets traveling
within an unsteady flow (such as nano- or microdroplets
currently under intensive investigation for their promise
in processing single cells [25]), such elongation can be
achieved by positioning the droplet at a hyperbolic trajectory
location, whose control is therefore desirable. While the
hyperbolic trajectory described above is exterior to the droplet,
many droplet models in the literature themselves possess
on the droplet’s surface a saddle-like hyperbolic trajectory
[26–36] whose motion influences intradroplet chaotic trans-
port because its attached stable and unstable manifolds un-
dergo nontrivial motion. There is currently only one method in
the scientific literature which can control manifold paths [37],
but it is limited to two-dimensional nearly steady flows with
one-dimensional stable and unstable manifolds. In the quest
for controlling manifolds in n dimensions, a first step would
be to force the hyperbolic trajectory (to which these manifolds
are attached) to follow a prescribed motion. By causing a
time-varying movement of the hyperbolic trajectory using
a localized control, it will be possible to impact global
behavior, since the global manifolds are slaved to these
hyperbolic trajectories. Thus, if hyperbolic trajectories with
a heteroclinic manifold connecting them are made to move in
a judiciously chosen manner, it will be possible to break apart
the heteroclinic manifold into intersecting stable and unstable
manifolds, thereby causing complicated (i.e., chaotic) mixing.
Thus, controlling hyperbolic trajectories is a yet-unexplored
avenue in the topic of controlling and optimizing mixing which
is eliciting much recent interest [23,24,38–50].
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In fluid mechanics, the phase space of the ordinary
differential equations governing particle motion is the physical
space itself. Hyperbolic trajectories also have a profound
influence in more general phase spaces, since once again
stable and unstable manifolds form separators, for example, in
demarcating basin boundaries of chaotic or nonchaotic attrac-
tors. Purely attracting hyperbolic trajectories are particularly
important, since they govern the long-term evolution of the
system. If such a hyperbolic trajectory could be moved around
in a user-specified fashion, then the global system’s eventual
behavior could be specified. In particular, this will allow the
long-term behavior to be made time varying in a desired
fashion; essentially, trajectories will approach a user-specified
nonautonomous attractor. Such a method would extend more
classical control strategies which, for example, attempt to
have a chaotic system approach a fixed point [51–55], a
periodic orbit [56–61], or even a chaotic regime [62] by taking
advantage of the relevant entity’s stable manifold.

Despite the potential applications, a theory for achieving
precisely this control, ensuring that hyperbolic trajectories
follow user-specified time variation, has not yet been devel-
oped, except for in a fairly limited situation by us [63]. In this
recent work, we achieved hyperbolic trajectory control using a
perturbative method in two dimensions [63], but in this article
we provide a method of achieving any order of accuracy, in any
dimension. This novel technique comes from a very different
approach to classical chaos control theory [51,57,64]; we are
controlling the motion of an important entity in phase space,
and not attempting to stabilize an unstable trajectory.

We describe our method in Sec. II. We take advantage of
the specialized behavior of hyperbolic trajectories, namely,
attracting and/or repelling nearby trajectories, to construct a
bootstrapping process for determining increasingly accurate
control velocities for achieving desired hyperbolic trajectory
motion. In Sec. III we apply the method to find the control
velocity which moves the origin, a hyperbolic fixed point, of
the Lorenz system [65] to a hyperbolic trajectory which follows
prescribed motion. For example, we can ensure the system has
a globally attracting trajectory which follows user-specified
time variation when ρ < 1. An important extension to known
methods is that with our method this attracting hyperbolic
trajectory can be made to move around in a time-varying
fashion as specified by us, as opposed to the more standard
situation of attempting to control a chaotic system to reach
a fixed point [51,53,54]. We numerically verify the excellent
accuracy of our method. For a highly chaotic parameter regime
in which the hyperbolic trajectory has both a stable and
an unstable manifold, we demonstrate that we can achieve
both a time-periodic and a time-aperiodic behavior of a
hyperbolic trajectory, again with the time variation following
our specifications. Thus, we are able to control a significant
feature in a highly chaotic system. In Sec. IV we apply the
control method to the fluid dynamical example of a “two-cell”
droplet [31,32,35,36,66], which is the Hadamard-Rybczynski
solution to a three-dimensional Stokes flow problem. This
model has importance in the quest for improving mixing
within microdroplets [31,32,35,36,66], which can be achieved
by breaking the invariant manifolds and causing them to
intersect in complicated ways. We show how we can make
the hyperbolic trajectories at the north and south poles to

move independently, according to our specifications which are
designed to make their stable and unstable manifolds mingle
to achieve good intradroplet transport. We show in Sec. IV that
we can achieve such control to high accuracy, and demonstrate
the resulting fluid transport.

The control method we have developed works for ordinary
differential equations in any dimension, and moreover we
can achieve arbitrarily good accuracy by utilizing Taylor
expansions to as high an order as we like, as explained in
Sec. II. As such, this forms a powerful method for controlling
significant flow-governing structures in chaotic and nonchaotic
systems, which we anticipate to be tremendously useful across
many disciplines.

II. CONTROL VELOCITY DETERMINATION

We consider the uncontrolled system

ẋ = u(x,t) (1)

for x ∈ � ⊆ Rn, n � 2, in which u is sufficiently smooth [67].
We assume that u(x,t) is fully known, and that a hyperbolic
trajectory x(0)(t) of (1) is also known. Thus, our method applies
to situations in which the details of the uncontrolled system
are known in full detail, and our intention is to determine a
control velocity such that the hyperbolic trajectory could be
moved with time according to our wishes.

The hyperbolic trajectory x(0)(t) could be any of the
entities outlined in the first paragraph of the introduction; the
intuition is that it is a (potentially time-varying) trajectory
of (1), which possesses an m-dimensional stable manifold
and an (n − m)-dimensional unstable manifold with m ∈
{0,1,2,3,, . . . ,n}. This informal statement of a hyperbolic
trajectory in a nonautononous system may be formally clarified
in terms of exponential dichotomies; see the Appendix.

The implication of the definition of hyperbolicity is that
there is a tubular neighborhood Vt := Ut×R in which Ut ⊂ �

is an open neighborhood of x(0)(t) at each time t , such that the
only trajectory of ẋ = u(x,t),ṫ = 1 which remains withinVt in
both backwards and forwards time is (x(0)(t),t). This is because
if there is a stable manifold (if m > 0), then in backwards time
nearly all nearby trajectories will get pulled away from x(0)(t)
due to its influence. The only exceptions to this are trajectories
which lie precisely on the unstable manifold, which will get
attracted towards the hyperbolic trajectory. Thus, if there is
a stable manifold, then all trajectories which are not on the
unstable manifold exit Vt as t → −∞. Conversely, if there is
an unstable manifold (if m < n), then all trajectories which
are not on the stable manifold exit Vt as t → ∞. It is therefore
only trajectories which are on both the stable and the unstable
manifold which remain within Vt for all t ∈ R. This is trivially
the set (x(0)(t),t) itself. We note that this statement is still true
even if one or the other of the stable or unstable manifold did
not exist, that is, if m = 0 or m = n.

We now plan to impose a control velocity v leading to the
system

ẋ = u(x,t) + v(x,t,ε), (2)

in which the parameter ε ∈ I = (−ε0,ε0) for ε0 is sufficiently
small, and that control velocity satisfies v(x,t,0) = 0 and is
sufficiently smooth [68]. We address the following: How does
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one choose the control velocity v in order to ensure that a
specified x(t,ε) is a hyperbolic trajectory of (2)? (We note that
by the roughness of exponential dichotomies [1,69,70], the
hyperbolic trajectory persists for small ε0.)

Before we proceed with our control velocity determination,
we remark that the instance in which m = n [i.e., the stable
manifold of x(0)(t) is full-dimensional, and hence forms an
attractor] is particularly interesting. In this case, a nearby
attractor persists under perturbation [71]. This attractor is of
course the perturbed hyperbolic trajectory. By our process, we
can prescribe this attractor’s time variation.

We now turn to determining the control in the general
instance where 0 � m � n, that is, the stable manifold may
be zero-dimensional, an intermediate dimension, or full-
dimensional. These correspond to the unperturbed hyperbolic
trajectory being a repeller, having saddle-like structure, or
being an attractor, respectively. Now, by continuity in ε,
the desired hyperbolic trajectory path x(t,ε) must satisfy
the condition x(t,0) = x(0)(t). Since x(t,ε) is required to be
a hyperbolic trajectory of (2) and is ε-close to x(0)(t), it
too inherits a tubular neighborhood Vt (ε) to which the only
trajectory confined for t ∈ R is (x(t,ε),t). Within Vt (ε) we
define

x
(j )
i (t) := 1

j !

∂jxi

∂εj
(t,0) (3)

in which the subscript i ∈ {1,2, . . . ,n} identifies the compo-
nent of x, and the superscript j ∈ {0,1, . . . } is the order of the
ε derivative. That is, each component of x possesses a Taylor
expansion

xi(t,ε) = x
(0)
i (t) + εx

(1)
i (t) + ε2x

(2)
i (t) + ε3x

(3)
i (t) + · · · , (4)

in which the coefficients are known to as high an order as
needed. Since x(t,ε) is the only trajectory which remains
within Vt (ε) in both backwards and forwards time, if this
Taylor expansion is considered valid for all times, it must
represent exactly a hyperbolic trajectory. Thus, (4) unambigu-
ously represents the perturbed hyperbolic trajectory, and not
just any other trajectory in the flow. To find the control velocity
v, we express it in terms of its Taylor expansion

vi(x,t,ε) = εv
(1)
i (x,t)+ε2v

(2)
i (x,t)+ε3v

(3)
i (x,t) + · · · . (5)

We will show how to determine the coefficients of (5) in a
step-by-step fashion in terms of the known quantities, namely,
u(x,t) and the coefficients x

(0)
i (t), x

(1)
i (t), x

(2)
i (t), etc.

Consider the ith component of (2). Substituting the Taylor
expansions (4) and (5) into (2) leads to

ẋ
(0)
i + εẋ

(1)
i + ε2ẋ

(2)
i + O(ε3)

= ui +
(

εx
(1)
j

∂ui

∂xj

+ ε2x
(2)
j

∂ui

∂xj

+ ε2

2
x

(1)
j x

(1)
k

∂2ui

∂xj ∂xk

)

+
(

εv
(1)
i + ε2x

(1)
j

∂v
(1)
i

∂xj

)
+ ε2v

(2)
i + O(ε3) (6)

for each component i. Here each of the quantities on the right
is evaluated on the hyperbolic trajectory (x(0)(t),t) of (1), and
the Einstein summation convention has been used; when a sub-
or superscript is repeated, it is assumed that these are summed

over for each term. Separating out the order ε0 term yields the
self-consistent fact from the uncontrolled system that

ẋ
(0)
i (t) = ui(x(0)(t),t). (7)

Now, the order ε and ε2 terms of (6) are, respectively,

v
(1)
i (x(0)(t),t) = ẋ

(1)
i (t) − x

(1)
j (t)

∂ui

∂xj

(x(0)(t),t), (8)

v
(2)
i (x(0)(t),t) = ẋ

(2)
i (t) − x

(2)
j (t)

∂ui

∂xj

(x(0)(t),t)

− 1

2
x

(1)
j (t)x(1)

k (t)
∂2ui

∂xj ∂xk

(x(0)(t),t)

− x
(1)
j (t)

∂v
(1)
i

∂xj

(x(0)(t),t). (9)

These give requirements for v
(1,2)
i only on the unperturbed

hyperbolic trajectory (x(0)(t),t); any smooth extension to � is
permissible. We note, however, that (9) does not express v

(2)
i in

terms of known quantities, because of the derivative ∂v
(1)
i /∂xj .

The resolution is to choose v
(1)
i to be globally given by

v
(1)
i (x,t) = ẋ

(1)
i (t) − x

(1)
j (t)

∂ui

∂xj

(x,t), (10)

thereby satisfying (8). Differentiating (10) with respect to a
component xk gives

∂v
(1)
i

∂xk

(x,t) = −x
(1)
j

∂2ui

∂xj ∂xk

(x,t), (11)

which can be substituted into (9). The last two terms in (9)
are then seen to be of the same type and can be combined.
The condition on v

(2)
i in (9) would be needed only on the

unperturbed hyperbolic trajectory (x(0)(t),t); we once again
replace this with (x,t) to be consistent to (9). This gives us the
choice for the second-order component of the velocity field to
be

v
(2)
i (x,t) = ẋ

(2)
i (t) − x

(2)
j (t)

∂ui

∂xj

(x,t)

+ 1

2
x

(1)
j (t)x(1)

k (t)
∂2ui

∂xj ∂xk

(x,t). (12)

Following this procedure for the third-order in ε term in (5)
(calculations not shown) eventually leads to

v
(3)
i (x,t) = ẋ

(3)
i (t) − x

(3)
j (t)

∂ui

∂xj

(x,t)

+ x
(1)
j (t)x(2)

k (t)
∂2ui

∂xj ∂xk

(x,t)

− 1

6
x

(1)
j (t)x(1)

k (t)x(1)
l (t)

∂3ui

∂xj ∂xk∂xl

(x,t). (13)

Thus, by choosing the velocity field in the form (5) subject
to (10), (12), and (13), one can ensure that a hyperbolic
trajectory of (2) follows the path x(t,ε), correct to O(ε3). By
continuing this process, the control velocity can be determined
to as high an order of ε as required; we stop here for brevity.

032903-3



SANJEEVA BALASURIYA AND KATHRIN PADBERG-GEHLE PHYSICAL REVIEW E 90, 032903 (2014)

We will make several remarks about this technique.
First, if incompressibility were a necessity in the flow (as
might be necessary in a fluidic application), the control
velocities in (10), (12), and (13) will automatically inherit
the incompressibility of the base velocity u. Second, if our
intention was to simultaneously control several hyperbolic
trajectories in a system, we can do so by using the computed
velocity components locally near each of the trajectories, while
switching them off when further away to avoid disrupting the
control of the other hyperbolic trajectories. Third, when the
method is stopped at some order (say, εm), then the error
would be bounded by C(t)εm+1 for some function C(t) which
may grow as t → ±∞, and so it should be borne in mind that
the error may grow with time [72].

III. LORENZ SYSTEM

For our uncontrolled system (1), we take

ẋ = σ (y − x), ẏ = x(ρ − z) − y, ż = xy − βz, (14)

the classical Lorenz system [65]. We first examine the param-
eter regime ρ = 0.5, σ = 10, and β = 8/3, at which (14) has
an attracting fixed point at the origin. Rather than the system
approaching a fixed point, suppose we would like it to approach
some nonautonomous entity of interest to us. As an example,
we choose a periodic trajectory

x(p)(t)=

⎛
⎜⎝

0

0

0

⎞
⎟⎠ +

⎛
⎜⎝

sinh[ε sin t cos t]

sin[ε cos t]

eε cos 2t − 1

⎞
⎟⎠, (15)

with ε = 0.6. A plot of this trajectory is shown in Fig. 1. Thus,
we are specifying an attractor for the Lorenz system and want
to determine the control velocity which results in all nearby
trajectories going to this attractor. (In this instance, all global
trajectories will go to this attractor since the original attractor
was globally attracting; in general, however, our method can
only fully guarantee persistence of attraction locally.) By
Taylor expanding x(p)(t) in ε we obtain

x(p)(t) =

⎛
⎜⎝

0

0

0

⎞
⎟⎠ + ε

⎛
⎜⎝

sin t cos t

cos t

cos 2t

⎞
⎟⎠ + ε2

2

⎛
⎜⎝

0

0

cos2 2t

⎞
⎟⎠

+ ε3

6

⎛
⎜⎝

cos3 t sin3 t

− cos3 t

cos3 2t

⎞
⎟⎠ + O(ε4), (16)

which, consistent with (4), becomes the uncontrolled
fixed point (0,0,0) when ε = 0. Upon substitution into
equations (10), (12), and (13), we get

v
(1)
(p)(x,t) =

⎛
⎜⎝

cos 2t + σ cos t(sin t − 1)

−(1 + (ρ − z) cos t) sin t + cos t + x cos 2t

−2 sin 2t − y sin t cos t − x cos t + β cos 2t

⎞
⎟⎠,

v
(2)
(p)(x,t) =

⎛
⎜⎝

0
x
2 cos2 2t − sin t cos t cos 2t

−2 sin 2t cos 2t + β

2 cos2 2t + sin t cos2 t

⎞
⎟⎠,
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0.5

t

x,
y,

z

FIG. 1. Periodic hyperbolic trajectory x(p) for ε = 0.6 as defined
by (15) over time interval [0,2π ], with (x,y,z) represented by solid,
dashed, and dotted curves, respectively (top panel). Solution curves
(dotted and solid) of two initial conditions approaching the trajectory
x(p)(t) (thick curve) in phase space (bottom panel).

v
(3)
(p)(x,t) = 1

2

⎛
⎜⎝

sin2 t cos2 t cos 2t

sin t cos t(cos t − cos2 2t)

−2 cos2 2t sin 2t

⎞
⎟⎠

+ 1

6

⎛
⎜⎝

σ cos3 t(sin3 t + 1)

−[(ρ − z) sin3 t + 1] cos3 t + x cos2 2t

cos3 t(x − y sin3 t) + β cos3 2t

⎞
⎟⎠.

The above defines the required control velocity (5) to O(ε3).
In the bottom plot of Fig. 1, we show the evolution of two
arbitrary initial conditions to the controlled system (dotted
and solid curves); they both approach the desired periodic
trajectory (15), as shown by the thick figure-eight-like curve,
as desired. This occurs for any chosen initial condition for
the controlled system. Thus, we have managed to specify the
nonautonomous attractor to our system. By putting in any
behavior we require for our x(t), we are thus able to obtain
any specified bounded long-term behavior of the system.

We next consider σ = 10, β = 8/3, and ρ = 28, the
classical parameter values [65] at which the Lorenz system is
known to possess a chaotic attractor [73]. The origin is now a
saddle point and possesses a two-dimensional stable manifold
and a one-dimensional unstable manifold, which have a
profound influence on how trajectories evolve. For example,
trajectories cannot cross the stable manifold, which is therefore
a separating surface. Since in the chaotic regime the stable
manifold exhibits great complexity, but can be characterized in
a neighborhood near (0,0,0) using standard dynamical systems
techniques: locally, it is tangential to the plane defined by
the tangent vectors (0,0,1) and (9 + √

1201,−56,0). Classical
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chaos control methods attempt to stabilize the saddle point by
pushing trajectories onto its stable manifold, away from the
influence of the destabilizing unstable manifold [51]. Here we
do not attempt to control the chaos inherent in the system,
but rather to control the location of the hyperbolic entity
[which was at (0,0,0) in the absence of a control] at which the
stable and unstable manifolds originate. Through an imposed
control velocity, we will move this hyperbolic fixed point to,
first, the periodic hyperbolic trajectory (15), and second, to a
quasiperiodic hyperbolic trajectory

x(q)(t) =

⎛
⎜⎝

0

0

0

⎞
⎟⎠ + ε

⎛
⎜⎝

sin t

cos ωt + cos t

cos 2t

⎞
⎟⎠, (17)

where ω = √
2. An example of the trajectory (17) is shown in

Fig. 2. While we use periodic and quasiperiodic examples of
x(t) for illustrative purposes, boundedness of x(t) is the only
requirement for our theory to hold. We have already computed
the necessary control velocity for the periodic trajectory. By

−1
−0.5

0
0.5

1

−2

−1

0

1

2
−1

−0.5

0

0.5

1

xy

z

FIG. 2. Quasiperiodic hyperbolic trajectory x(q) for ε = 1 as
defined by (17) on time interval [0,4π ].

applying (10), (12), and (13) we find the control velocity for
the quasiperiodic trajectory to be

v
(1)
(q)(x,t) =

⎛
⎜⎝

(1 − σ ) cos t + σ (sin t − cos ωt)

−ω sin ωt − (ρ − z + 1) sin t + x cos 2t + cos ωt + cos t

−2 sin 2t − y sin t − x(cos ωt + cos t) + β cos 2t

⎞
⎟⎠,

v
(2)
(q)(x,t) =

⎛
⎜⎝

0

− sin t cos 2t

sin t(cos ωt + cos t)

⎞
⎟⎠, v

(3)
(q)(x,t) =

⎛
⎜⎝

0

0

0

⎞
⎟⎠.

For a numerical analysis of the proposed control strategy,
we use the third-order approximation for the periodic case.
We test different values of ε ∈ (0,1]. Verifying the control
strategy by numerical integration is unfeasible due to trajectory
instabilities, and so we use a set-oriented approach [74] to
numerically determine hyperbolic trajectories resulting from
adding our control velocities v(p,q) to (14). In particular, we
consider a small neighborhood of the desired trajectory in the
extended phase space and cover it by little four-dimensional
grid elements. For these computations we use the software
package GAIO [74] and MATLAB. Based on short-time
numerical integration (over time intervals of length 0.05)
with respect to many initial conditions in these compact sets
we obtain a directed graph that encodes transitions between
grid elements. Obviously, paths in this graph correspond to
approximate solutions of the respective controlled differential
equation. For the periodic case one is interested in closed paths,
which is analogous to considering chain recurrent sets as in
Ref. [74], while for the quasiperiodic case, we search for a
directed path on the time span [0,4π ].

An illustration of the computational approach is shown in
Fig. 3, which zooms into the x component of the periodic
solution of Fig. 1; figures produced through this process are
indistinguishable from Fig. 1 at the same scale. In Fig. 4 we
show that the desired hyperbolic trajectory is indeed achieved
with an accuracy of O(ε4) as predicted by the theory.

We note that since third-order and higher terms vanish in the
quasiperiodic example, inserting v(q) = εv

(1)
(q) + ε2v

(2)
(q) into (2)

gives exactly the velocity field that possesses the hyperbolic
trajectory x(q). Indeed, we find that even with a choice of ε = 1
the desired trajectory is rendered up to an accuracy of 10−4.
The control strategy is therefore highly effective. While we
have shown examples with periodicity and quasiperiodicity
here, we emphasize that the numerical scheme, like the
theory, does not require either condition. More details on
the numerical approach will be outlined in a forthcoming
paper.

0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86
0.294

0.296

0.298

0.3

0.302

0.304

0.306

t

x

FIG. 3. A zoom in on Fig. 1 to show the numerical grid element
method for determining the hyperbolic trajectories.
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FIG. 4. Error estimates in dependence on ε for the periodic case.
Box side lengths of the numerical approach outlined in the main text
(solid line) compare well to theoretical order of approximation of ε4

(dashed line).

IV. DROPLET FLOW

As microdroplets become increasingly relevant for manipu-
lating single cells, controlling their transport characteristics
is attracting much interest. A common spherical config-
uration is the Hadamard-Rybczynski solution for Stokes
flows [31,32,35,36,66], whose kinematic structure is similar
to the classical Hill’s spherical vortex [75–85] for Euler flows
with an additive solid rotation. Particle trajectories of this flow
satisfy

ẋ = zx − ωzy, ẏ = zy + ωzx, ż = 1 − 2r2 + z2, (18)

where r2 = x2 + y2 + z2 and ωz is a constant [36]. Motion is
confined to level sets of the Stokes stream function

ψ(r,θ ) = 1
2 r2(1 − r2) sin2 θ, (19)

in spherical (r,θ,φ) coordinates, in each level set of which
trajectories undergo an azimuthal (in φ) swirl of angular
speed ωz, which we shall set to 1. We note that the z

axis for 1 < z < −1 is the one-dimensional stable manifold
of the north pole saddle fixed point x̄(n) = (0,0,1)�, and
simultaneously the one-dimensional unstable manifold of the
south pole saddle fixed point x̄(s) = (0,0,−1)�. There is no
complicated transport within the system at present, and we
wish to enhance transport within the sphere by having the north
pole and south pole hyperbolic trajectories move according
to our specification, chosen such that the new time-varying
stable manifold of the north pole and the time-varying unstable
manifold of the south pole intermingle in a complicated way.
We therefore specify the periodic hyperbolic trajectories

x(n)(t) =

⎛
⎜⎝

0

0

1

⎞
⎟⎠ + ε

⎛
⎜⎝

sin t

cos t

sin t cos t

⎞
⎟⎠ (20)

and

x(s)(t) =

⎛
⎜⎝

0

0

−1

⎞
⎟⎠ + ε

⎛
⎜⎝

sin t

sin t cos t

cos t

⎞
⎟⎠. (21)

The first-order terms of the control velocities for the north
and the south poles are then given by

v
(1)
(n)(x,t) =

⎛
⎜⎝

2 cos t − z sin t − x cos t sin t

−2 sin t − z cos t − y cos t sin t

cos 2t + 4x sin t + 4y cos t + 2z cos t sin t

⎞
⎟⎠

and

v
(1)
(s) (x,t) =

⎛
⎜⎝

cos t − z sin t + cos t sin t − x cos t

cos 2t − sin t − z cos t sin t − y cos t

− sin t + 4x sin t + 4y cos t sin t + 2z cos t

⎞
⎟⎠,

respectively. As we want to achieve the two different orbits
simultaneously, we have to make sure that the two different
controls act only locally, i.e., in the vicinity of the north and
south pole hyperbolic stagnation points only. We therefore
choose Gaussians

gn(x) = e−10(x2+y2+(z−1)2)

and

gs(x) = e−10(x2+y2+(z+1)2)

and obtain the controlled system

ẋ = u(x) + ε
(
gn(x)v(1)

(n)(x,t) + gs(x)v(1)
(s) (x,t)

)
, (22)

where u(x) denotes the right-hand side of (18).
In the following we choose ε = 0.2 and approximate the

two hyperbolic periodic orbits of the controlled system (22)
using the set-oriented approach described in the previous
example. These are shown in Fig. 5 together with the
prescribed trajectories. As we have restricted to first-order
accuracy and have two controls acting simultaneously, the
desired and the obtained trajectories visibly differ but within
the prescribed tolerance.

By perturbing system (18) to (22) the one-dimensional
heteroclinic orbit on the z axis connecting the north and

−0.4
−0.2

0
0.2

0.4
0.6

−0.5

0

0.5

−1

−0.5

0

0.5

1

xy

z

FIG. 5. Two periodic hyperbolic trajectories in (x,y,z) space
for ε = 0.2 as defined by (20) and (21) parametrized over time
interval [0,2π ]. The thin solid curves represent the desired motion.
The thick curves with smaller radius correspond to the numerically
approximated trajectories based on the controlled system (22).
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FIG. 6. (Color online) Time trace of the stable manifold of the
hyperbolic periodic orbit at the north pole (light gray; green online)
and of the unstable manifold of the hyperbolic periodic orbit at the
south pole (black; dark blue online) in (x,y,z) space (top panel) and
intersection of these entities in the (x,y) plane (bottom panel).

south pole stagnation points breaks up. Instead, each one-
dimensional manifold emanating from the north and south
hyperbolic trajectories periodically traces out tubelike entities
as time evolves; see Fig. 6 (top). The intersection of these
entities with the (x,y) plane is depicted in Fig. 6 (bottom).

We designed the choice of hyperbolic trajectories (20)
and (21) such that their relevant unstable and stable man-
ifolds trace out two-dimensional surfaces which intersect
nontrivially, as verified in Fig. 6. To assess and illustrate
the mixing generated, we initialize particles on the (x,z) and
(y,z) coordinate planes and evolve them over 10 periods of
the flow of (22). While these planes rotate rigidly for the
unperturbed flow (18), this is no longer the case for the
controlled system (22). Consequently, transport and mixing is
enhanced as demonstrated in Fig. 7. We remark that we have
achieved global transport by applying localized controls at the
two hyperbolic trajectories, highlighting the role hyperbolic

FIG. 7. (Color online) Complicated mixing structure is illus-
trated by advecting the coordinate planes with x = 0 (light gray;
green online) and y = 0 (black) over 10 periods of the forcing.

trajectories have on the phase space. By targeting energy
towards regions where it has the most impact in this fashion,
we offer a new approach towards energy-constrained transport
maximization [39,44,49,50]. A refinement of this idea by
additionally being able to control the directions in which the
stable and unstable manifolds emanate from the hyperbolic
trajectory is underway.

V. CONCLUDING REMARKS

In this article, we have outlined a method in which a
hyperbolic trajectory of a known, potentially unsteady, system
can be moved around with time as desired, by introducing
a control velocity. We are able to determine the required
control velocity to as high an accuracy as desired, assuming
that we have full information on the uncontrolled system.
For systems in which the uncontrolled velocity is specified,
the computation of the control velocity is easily achieved
via our equations (10), (12), and (13), as we demonstrated
with an application to the Lorenz system. For fluid me-
chanical systems, we would similarly need to know the
dominant (uncontrolled) flow to high accuracy, in order to
use Eqs. (10), (12), and (13). This we would need to have
available either through an appropriate model (such as Hill’s
spherical vortex [27,31,32,85] or the Hadamard-Rybczynski
solution [35,36,86] if examining hyperbolic trajectories at the
poles of droplets moving in an anomalous fluid), as is assumed
in many fluid mechanical studies [27,31,31,35,36,85]. An
alternative in a purely experimental flow would be to obtain
the uncontrolled velocities using PIV measurements, and then
use these to impute the higher derivatives required for using
our control velocity formulas by a numerical differentiation
process. The excellent accuracy we demonstrated in our
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analytical models in this paper will be lessened in such a
situation, since the accuracy of these derivatives would be
limited by the discretization of the data. A similar approach is
possible in numerically generated velocity fields.

The well-known Ott-Grebogi-Yorke (OGY) method
[51,54] is a control method which makes a system approach
a fixed point which has both stable and unstable manifolds,
by applying a control velocity which pushes trajectories
towards the stable manifold of the fixed point. By applying
our method to such a fixed point, we can first make it
travel in a nonautonomous way in any fashion that we
desire. A subsequent application of a “stabilizing” control
on this saddle-like hyperbolic trajectory can make system
trajectories approach it in the long term. Thus, our method
is an addition to the chaos control literature which can
generate user-specified long-term nonautonomous evolution
of the system. For example, the Lorenz system in the chaotic
regime can be made to approach x(p)(t) or x(q)(t) as t → ∞
by applying either a form of the OGY method [51] or other
methods [55,70] on top of the method that we have described.
For ρ < 1, of course, a specified time-varying trajectory can
be approached as t → ∞ without applying the OGY method,
since in this case the trajectory is attracting.

This method we have developed, which in our under-
standing is a first in the control of hyperbolic trajectories in
n dimensions, is a first step towards achieving a specified
nonautonomous movement of specialised structures. We have
shown the global impact on phase space transport as a result
of controlling hyperbolic trajectories with localized controls,
highlighting the significance of the method. We have moreover
demonstrated remarkable accuracy of the method in idealized
situations and anticipate strong potential for implementation
in realistic fluid flows or chaotic systems.
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APPENDIX: DEFINITION OF HYPERBOLIC
TRAJECTORY

If u in (1) were steady (autonomous), having no explicit
t dependence, an example of a hyperbolic trajectory would
be a fixed point with eigenvalues bounded away from the

imaginary axis. Thus, the dimensions of its stable and unstable
manifolds will add to n. This understanding can be extended to
unsteady systems, to come up with a more general definition of
hyperbolicity which encapsulates all the entities enumerated
in the introduction. Formally, a trajectory x(0)(t) of (1) is
hyperbolic if the n×n fundamental matrix solution Y (t) of
the linearized (variational) system

ẏ = Du(x(0)(t),t) y (A1)

[in which Du represents the Jacobian matrix derivative of
u evaluated along the relevant trajectory x(0)(t)] has the
property that there exist constants αs,αu,Ks,Ku > 0 and a
projection P : Rn → Rm where m ∈ {0,1,2, . . . ,n} such that
the exponential dichotomy conditions [1–4]

‖Y (t)PY−1(s)‖ � Ks e−αs (t−s) for t � s and (A2)

‖Y (t)(id − P )Y−1(s)‖ � Ku e−αu(s−t) for s � t (A3)

are satisfied. This is a cumbersome definition but is necessary
in unsteady situations, in which instantaneous eigenvalues are
meaningless. We will give some quick intuition on this; for
more detailed explanations see Ref. [4]. If thinking of s as
an initial value, (A2) indicates that initial conditions chosen
in the range of P decay exponentially with rate αs . Thus,
P represents a projection on to the stable manifold of the
hyperbolic trajectory. For the steady saddle point example,
−αs would be the real part of the stable eigenvalue which is
closest to the imaginary axis. On the other hand id − P is a
projection to the “remainder,” which is (n − m)-dimensional,
and (A3) ensures that there is exponential decay in forward
time. This is thus a projection to the unstable manifold, and
for the steady saddle example, αu would be the real part of the
unstable eigenvalue which is closest to the imaginary axis. If
m = 0, there is no stable manifold, and the unstable manifold is
n-dimensional (full-dimensional). This, as well as the situation
in which m = n and no unstable manifold exists, is permitted.

The definition of exponential dichotomies therefore pro-
vides for the possibility of all the entities detailed in the first
paragraph of the introduction to be classified as “hyperbolic.”
The intuition is that it is any trajectory of a system of the
form (1) (which may be autonomous or nonautonomous),
which possesses full-dimensional stable and unstable mani-
folds.
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