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Abstract – Free-surface flow past a disturbance at critical Froude number is commonly found
to be unsteady with complex wave patterns both upstream and downstream of the disturbance.
Such flows can be undesirable as the waves that are generated can have a negative impact in
applications including the erosion of waterway banks and energy loss through wave drag on a
ship. This motivates us to develop a new approach to obtain steady solutions at critical Froude
number that are wave free in the far field. Under the assumption of two-dimensional, irrotational,
incompressible fluid flow, we show that both weakly and fully nonlinear solutions to the problem
are non-unique. A range of qualitatively different types of numerical solutions and analytical
approximations are discovered, for example for flow over a corrugated channel bottom.

Copyright c© EPLA, 2014

Introduction. – The study of steady two-dimensional
gravity waves in finite depth channels has a rich and
long history [1–11], which has continued to attract at-
tention in more recent years [12–21]. A physical motiva-
tion for considering these flow problems is the well-known
phenomenon where surface waves occur both upstream
and downstream of a disturbance (e.g. ship or obsta-
cle) that is moving at critical speed (fig. 1). Both ex-
perimental observations and theoretical predictions have
shown that critical flows are in general unsteady with soli-
tons [22] being radiated ahead of the steadily moving dis-
turbance [17,19,23–30]. Unsteady critical flows provide
interesting and complex wave patterns to investigate, but
from a practical viewpoint the waves generated are unde-
sirable for a number of reasons.

One reason is that the wash or wake generated by dis-
turbances moving close to or at critical speed can damage
both the integrity of waterway banks, leading to erosion
and leaking, and the delicate eco-systems that live along-
side them [31–34]. Another reason is that the energy lost
in these surface waves is an important component of the
overall drag on the disturbance [5,6,35–37]. This provides
us with the incentive to develop a general approach to ob-
tain steady critical flows [15,18,19,26,38], with no waves
in the far field both upstream and downstream of the

H

U

Fig. 1: Sketch of unsteady flow past a submerged obstacle mov-
ing at critical speed U =

√
gH in an otherwise quiescent fluid.

A frame of reference has been taken with the steadily mov-
ing obstacle. Typically, solitons are periodically generated up-
stream of the bump. Downstream of the obstacle there is a
uniform depression and a wake that propagates downstream.

disturbance [26,38]. In particular, we demonstrate that
steady critical flows are not unique —a fundamental result
that, to the best of our knowledge, has not been previously
reported in the vast amount of literature on this subject.

We assume the steady two-dimensional irrotational
channel flow of an incompressible fluid. In a frame of
reference moving with the disturbance the parameter that
characterises the flow is the Froude number,

F =
U√
gH

, (1)
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where U and H are the uniform velocity and depth in the
far field upstream, and g is the acceleration due to gravity.
Equation (1) is the ratio of the uniform flow speed to the
speed of small-amplitude (non-dispersive) waves in shallow
water. The flow is supercritical upstream when F > 1, and
subcritical upstream when F < 1. We define the flow to be
critical when F = Fd = 1, where Fd is the Froude number
in the far field downstream, but note that some authors
define critical flow to mean F < 1 and Fd > 1 [9,12].
A hydraulic fall occurs when there is uniform subcritical
flow upstream F < 1 and supercritical flow downstream
Fd > 1.

In this letter we examine the existence and
non-uniqueness of solutions for critical steady flows
when F = 1 (and implicitly Fd = 1). Analytic and
numerical solutions to a weakly nonlinear flow approxi-
mation [12,14,18,39,40] and fully nonlinear solutions to
Euler’s equations of motion, obtained by numerically solv-
ing a boundary integral equation [35,40–44], are found.
The weakly and fully nonlinear results are illustrated
respectively by solid and broken curves in our figures.

The success in obtaining solutions to both the weakly
and fully nonlinear problems can be attributed to a
common approach in methodology. The first stage in this
general approach is to prescribe the boundary or inter-
face between the air and water, called the free surface,
and find the disturbance or forcing inversely [20,26,38].
We call this the inverse problem and it establishes the ex-
istence of at least one steady solution at critical Froude
number. The second stage in the method is to prescribe
the forcing (found using the inverse method in stage 1)
and allow the free surface to come as part of the solu-
tion. This we call the forward problem and it is the usual
approach taken in studies on free-surface flow problems
(see references). Using parameter continuation methods
for the forward problem, a second solution can sometimes
be found.

Although we present solutions to both the weakly and
fully nonlinear problems, we only give mathematical de-
tails of the weakly nonlinear problem, as it serves to better
illustrate the key findings of this work. The formulation
and computational procedures involved in the nonlinear
problem can be found in [38].

To model the weakly nonlinear problem we use the
forced Korteweg-de Vries (KdV) equation [39].

Forced KdV equation. – The (integrated) steady
forced KdV equation [10,12,19,26,39,45–49], re-expressed
in terms of dimensionless variables with only one char-
acteristic length scale H , the constant depth in the far
field [14,15], is

ηxx(x) +
9

2
η2(x) − 6(F − 1)η(x) = −3σ(x), (2)

where x measures distance in the streamwise direction.
For a prescribed forcing, σ(x), solutions of eq. (2) provide
the free-surface elevation η(x) above the unit level (in

dimensionless terms) in the far field. Formally, if we set
ǫ = max |σ(x)|, then eq. (2) is valid for ǫ ≪ 1, η = O(ǫ1/2)
and |1 − F | = O(ǫ1/2).

The forcing σ can represent either a distribution of
pressure on the free surface or a non-trivial (i.e. non flat)
channel bottom topography [14,26,30,50]. Physically, a
distribution of pressure can model the normal stress on the
free surface generated by a moving ship [23,24,28,35,36,50]
or the Maxwell stress due to a charged electrode [40], while
changes in the channel bottom topography have a more
obvious application in modelling flow over submerged ob-
stacles [12,13,15,17,20,26,51].

We begin our investigation with the forward problem,
taking a localised forcing with compact support given by

σ(x) = αδ(x), (3)

where δ(x) is the Dirac delta function.

The forward problem. – The existence of steady so-
lutions for localised forcing with compact support can be
explained with an analysis in the weakly nonlinear phase
plane of the problem [12,14,18,40], by replacing the model
eqs. (2) and (3) with

ηxx(x) +
9

2
η2(x) − 6(F − 1)η(x) = 0 (4)

for x �= 0, and

ηx(0+) − ηx(0−) = −3α. (5)

Equation (4) is a two-dimensional nonlinear autonomous
dynamical system, and integrating (4) gives the solution
trajectories

η2
x(x) = 6(F − 1)η2(x) − 3η3(x) + C (6)

in the phase plane (η, ηx). The constant of integration, C,
in eq. (6) determines the solution trajectory in the phase
plane, and the equilibrium points are classified in the cap-
tion of fig. 2. The vertical jump condition, eq. (5), with
amplitude of forcing α, provides a way to jump discontin-
uously between the trajectories.

Consistent with the work of others [19,25,52], we can
define, using eqs. (5), (6), a transcritical range valid for
α > 0, in which no steady solutions exist,

1 −
(

9α

4
√

2

)2/3

< F < 1 +

(

9α

8
√

2

)2/3

. (7)

The lower bound of the transcritical range occurs when
the period of the cnodial waves, typically found in sub-
critical flow, approaches infinity, and in this case there is
a hydraulic fall. This is illustrated in the phase plane dia-
gram, fig. 2(a), by a vertical jump from the null solution to
the homclinic solution trajectory. The upper bound corre-
sponds to the turning point in the saddle-node bifurcation
diagrams [8,25,40], η(0) vs. F , for supercritical flow. This
is illustrated in the phase plane diagram, fig. 2(b), with a
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η

η
x

η

η
x

F>1F<1
(b)(a)

Fig. 2: (Colour on-line) Existence of steady solutions in the
phase plane (η, ηx) for a localised forcing with compact support
and amplitude of forcing α > 0. (a) Subcritical flow, F < 1,
with a saddle at (4/3(F − 1), 0) and a centre at (0,0). The
homoclinic orbit is for a value of C = 32

9
(1−F )3 in eq. (6). The

length of the broken arrow illustrates the maximum amplitude

of forcing, α = 4
√

2

9
(1 − F )3/2. (b) Supercritical flow, F > 1,

with a saddle at (0,0) and a centre at (4/3(F − 1), 0). The
homoclinic orbit is for a value of C = 0 in eq. (6). The length of
the broken arrow illustrates the maximum amplitude of forcing,

α = 8
√

2

9
(F − 1)3/2.

vertical jump between the maximum and minimum values
in ηx for the homclinic solution trajectory. Within this
transcritical range the flow in general is intrinsically un-
steady, and can exhibit the complex wave patterns shown
in fig. 1.

When α < 0, there are no steady solutions if F lies in
the subcritical range

1 −
(

9|α|
4
√

2

)2/3

< F < 1. (8)

However, steady solutions may be constructed for localised
point forcing if F ≥ 1 and α < 0. This is illustrated for
critical flow (F = 1) in fig. 3(b). Here there is only one
equilibrium point, which is located at the origin, and any
bounded solution must start and end its journey through
the phase plane at this point in order to fulfil the far-
field conditions. This equilibrium point is degenerate (in
contrast to the subcritical and supercritical regimes) and
thus straightforward linearisation techniques for analysis
of nearby behaviour fail. We see from fig. 3(b) that it
is impossible to make a downwards vertical jump (corre-
sponding to a positive amplitude of forcing, α > 0) in
the phase plane to create a bounded solution. However
a bounded solution can be constructed by making an up-
wards vertical jump, with α < 0, as is illustrated by the
broken line in the figure. A similar construction in the
phase plane for supercritical flow, F > 1, is permissible
by following a similar path out of the saddle in the left-
hand plane of fig. 2(b) (not shown).

For the critical flow case, F = 1, we computed numerical
solutions to both the weakly and fully nonlinear (forward)
problems by approximating the forcing σ(x) = αδ(x) with

σ(x) =
αβ√

π
exp [−(βx)2], (9)

(a) (b)

η
x

η

y

1.2

0

0.4

0.8

0 10-10 x

Fig. 3: (Colour on-line) Steady solution at critical Froude num-
ber for localised forcing. (a) Free-surface solutions to the for-
ward problem with F = 1 for prescribed forcing, α = −0.60
and β = 0.50. The solid and broken curves are for the weakly
nonlinear and nonlinear values, respectively. (b) Sketch of so-
lution in the weakly nonlinear phase plane (η, ηx).

for constants α and β, noting that

σ(x) → αδ(x) as β → ∞. (10)

As predicted by the phase plane analysis, we only find
one solution for a given value of α, even when β = O(1).
Typical wave profiles are shown in fig. 3(a).

We are not the first to compute steady flow at critical
Froude number [15,17,19,26,40], but to our knowledge we
are the first to recognise that in the case of localised forc-
ing with compact support the solution is unique, as has
been demonstrated by our phase plane analysis. Next we
broaden the range of critical solutions when F = 1 by re-
laxing the assumption of a point forcing in our phase plane
analysis. In this case the resulting dynamical system to be
studied is non-autonomous and the previous phase plane
analysis is not applicable.

The inverse problem. – One solution to eq. (2) can
be found by prescribing the function η(x) which sat-
isfies the far-field uniform flow conditions ηxx(x) → 0
ηx(x) → 0, η(x) → 0, as x → ±∞. The forcing σ(x)
is then determined inversely from eq. (2), with σ(x) → 0
as x → ±∞. For example,

η(x) = a1 exp [−b2(x − p)2] + a2 exp [−b2(x + p)2]

+ c tanh [b(x − q)] − c tanh [b(x + q)], (11)

where a1, a2, b, c, p and q are chosen constants, is a suit-
able linear combination of candidate functions provided
b > 0.

The solid upper and lower curves in fig. 4(a) is an in-
verse (weakly nonlinear) solution, with only the non-zero
parameters of eq. (11) being reported in the figure caption.
A similar approach is used in the nonlinear solutions, al-
though the forcing has to be solved for numerically [38].
The close-up plot shown in fig. 4(b) illustrates the differ-
ence between the weakly and fully nonlinear solutions for
the forcing.

The idea now is to obtain a second forward solution for
η(x) with this inversely found forcing. In both the weakly
and fully nonlinear problems this is done numerically us-
ing continuation methods —see the middle curves (solid

44003-p3
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(a)
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(c)

y
1.2
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0 10-10 x
(d)

0.6

0

0.3

1 1.60.4 F

-0.3

η

(c)

0

0 4-4 x
(b)

y

0.02

-0.02

0

Fig. 4: (Colour on-line) Non-uniqueness of solutions at critical
Froude number. The solid and broken curves are for the weakly
nonlinear and nonlinear values, respectively. (a) Flow with
F = 1. The two bottom curves are solutions for the forcing
found using the inverse method for a prescribed free-surface
shape (top two curves), a1 = 0.20 and b = 0.50. The two
middle curves are forward solutions for the free surface with
prescribed forcing (bottom two curves). (b) Close-up of the
inversely found forcing in (a). (c) Free-surface profiles (top
two curves) with F = 0.60 for prescribed forcing (bottom two
curves). (d) Plot of η(0) = η0 vs. F , for the inversely found
forcing.

and broken) in fig. 4(a). For the inversely found forc-
ing, the bifurcation diagram of fig. 4(d) illustrates that
the solution branches are disconnected at F = 1. The
solutions on the top and bottom branch (fig. 4(d)) with
F = Fd > 1 look qualitatively similar to the upper and
lower free-surface curves in fig. 4(a), respectively. Solu-
tions on the top branch (fig. 4(d)) with F < 1 are charac-
terised with a train of periodic waves on the free surface
and uniform flow as x → −∞ as is shown in fig. 4(c).
The amplitude and wavelength of the periodic waves are
independent of where the domain is truncated (provided
the truncated domain is large enough), and the solutions
are therefore unique. The subcritical solutions of fig. 4(c)
correspond to the arrow seen in fig. 4(d).

Using our inverse-forward-approach, a wide range of
other qualitatively different non-unique solutions with
F = 1 are shown in fig. 5(ai)–(aiii).

Corrugated channel bottom topography. – To
conclude our study we consider a trapped cosine wave-
train on the free surface (top curves, fig. 5(bi)–(biii)) pre-
scribed by

η(x) = A cos [Dx]

(

1

2
+

1

2
tanh [Q − x]

)

×
(

1

2
+

1

2
tanh [Q + x]

)

, (12)

where A, D, and Q are chosen constants. Inverse so-
lutions for the forcing are shown by the bottom curves

(ai)
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0.4

0.8

0 10-10 x

0

(aii)

y
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0 10-10 x

0

(aiii)
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0.4

0.8
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0

(bi)
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0
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0.4

0.8

0

0 20-20 x
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0

0 20-20 x

Fig. 5: (Colour on-line) Further examples of non-uniqueness
at critical Froude number, F = 1. (ai)–(aiii): qualitatively
different weakly nonlinear solutions. (ai) a1 = a2 = 0.20,
p = 2.0 and b = 0.70. (aii) a1 = −0.2, a2 = 0.20, p = 2.0 and
b = 0.70. (aiii) c = −0.10, q = 10.0 and b = 0.50. (bi)–(biii):
weakly nonlinear and nonlinear solutions for a corrugated chan-
nel bottom, Q = 15 and D = 1.0. The solid and broken curves
are for the weakly nonlinear and nonlinear values, respectively.
(bi) A = 0.05, (bii) A = 0.1, (biii) A = 0.2.

in fig. 5(bi)–(biii), for increasing amplitude, A, of the
free-surface cosine waves. Forward solutions with the in-
versely found forcing are then computed (middle curves of
fig. 5(bi)–(biii)), and demonstrate the non-uniqueness of
solutions at the critical value of the Froude number.

We see that the two qualitatively different types of wave-
trains on the free surface converge when A ≪ 1, and
the nonlinear solutions are visually indistinguishable (not
shown) from the weakly nonlinear solutions (fig. 5(bi)).
It is also easy to show using eqs. (2) and (12) that the
trapped wave-train of the forcing is given by

σ(x) ≈ AD2

3
cos [Dx] − 3A2

2
cos2 [Dx] for |x| < Q,

(13)
where the approximate form represents the forcing which
is formally obtained in the limit Q → ∞. For small-
amplitude forcing, the free-surface deformation is approx-
imately 3/D2 of the forcing amplitude, implying that the
surface response is amplified (according to a square law)
for longer-wavelength forcing.

Closing remarks. – We have demonstrated the non-
uniqueness of solutions at the critical value of the Froude
number, and have discovered many new qualitatively

44003-p4
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different types of solutions. The non-uniqueness for non-
local forcing arises from the fact that the phase plane in
fig. 3(b) needs to have an appended coordinate x out of
the page in this non-autonomous case, thereby allowing for
the possibility of several different solutions which asymp-
tote to the x-axis as x → ±∞. Our approach can easily
be extended to a general surface by replacing eqs. (11)
or (12) with a different specification, calculating the re-
quired forcing using the inverse approach, and then per-
forming numerical investigations.

We remark that in a more general bottom topography
problem, the free-surface profile does not necessarily flat-
ten out as x → ±∞. This hinders most numerical
schemes, while also providing theoretical difficulties as the
system is no longer uniform in the far field (both up-
stream and downstream). As a result, there is little cur-
rent insight into such solutions. In a forthcoming paper,
we will provide a theoretical framework building on non-
autonomous dynamical systems ideas [53–55] which estab-
lishes the existence and uniqueness of solutions when σ(x)
is non-decaying but small, and which, moreover provides
explicit analytical approximations for such solutions.
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