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Abstract

Lagrangian coherent structures (LCSs) are time-varying entities which capture

the most influential transport features of a flow. These can for example identify

groups of particles which have greatest stretching, or which maintain a coher-

ent jet or vortical structure. While many different LCS methods have been

developed, the impact of the inevitable measurement uncertainty in realistic

Eulerian velocity data has not been studied in detail. This article systemat-

ically addresses whether LCS methods are self-consistent in their conclusions

under such uncertainty for nine different methods: the finite time Lyapunov

exponent, hyperbolic variational LCSs, Lagrangian averaged vorticity devia-

tion, Lagrangian descriptors, stochastic sensitivity, the transfer operator, the

dynamic Laplacian operator, fuzzy c–means clustering and coherent structure

colouring. The investigations are performed for two different realistic data sets:

a computational fluid dynamics simulation of a Kelvin–Helmholtz instability,

and oceanographic data of the Gulf Stream region. Using statistics gleaned

from stochastic simulations, it is shown that the methods which detect full-

dimensional coherent flow regions are significantly more robust than methods

which detect lower-dimensional flow barriers. Additional insights into which

aspects of each method are self-consistent, and which are not, are provided.
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1. Introduction

With the realisation several decades ago that viewing Eulerian snapshots of

various fields can give misleading information about transport, a suite of meth-

ods for detecting Lagrangian coherent structures (LCSs) has come to the fore.

Identifying time-varying LCSs has particular importance in turbulent flows in5

which coherent structures at different lengthscales are influential, but difficult

to distinguish from the turbulence. Many LCS techniques have been suggested,

each of which defines its own notion for “coherence” with respect to flow over

a chosen time interval. Several recent review articles [1, 2, 3, 4, 5] provide de-

scriptions and additional citations to the multitude of proposed methods. Many10

applications of these methods for realistic observational [6, 7, 8, 9], experimental

[10, 11, 12, 13] and computational [14, 15, 16, 17, 3] velocity data have been

published. Hence, the results from numerically obtaining LCSs from unsteady

Eulerian velocity data are now highly influential in the analysis and prediction

of fluid transport.15

Interpreting exactly what an LCS is continues to be a debated issue, since

the various methods for finding LCSs use different criteria. LCSs detected from

one method may not be detected from another. Thus, there are ongoing at-

tempts to distinguish and/or consolidate the many LCS methods which are

being used, with a particular emphasis on interpreting exactly what is being20

identified [1, 2, 3]. This paper will not venture into this debate, but will in-

troduce a crucial aspect of LCSs which has received little attention: the fact

that the Eulerian velocity fields which must be used as input into any detection

scheme contain uncertainties. These uncertainties are inevitable: they occur be-

cause of observational/measurement error (limitations of a sensor’s sensitivity),25

subgrid error (because the velocity is often sampled on a spatio-temporal grid

that is too coarse to resolve the finest scales), observational limitations (miss-
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ing or limited data; e.g., further away from satellite tracks or the presence of

cloud cover), modelling error (because data sometimes requires conversion; e.g.,

sea-surface heights are usually converted to velocities by using a geostrophic30

assumption), and simulation limitations (e.g., when a computational fluid dy-

namics simulation uses a finite number of modes). Given the inevitability of

uncertainty in the Eulerian data, how confident can we be in identified struc-

tures generated from an LCS computation? How robust is this identification to

uncertainties?35

Our aim in this article is therefore to examine the self-consistency of sev-

eral LCS detection methods in realistic data-derived scenarios with uncertainty.

Under this remit we forego toy models despite their popularity in the LCS lit-

erature, but instead use two flavours of “real-world” data: (i) computational

fluid dynamics (CFD) simulation of a double shear layer, featuring coherent40

flow structures as well as turbulence, and (ii) observational data of the Gulf

Stream. These are both in the realm of flows for which the detection of LCSs

is relevant but difficult, namely possessing both turbulence and coherence. We

investigate nine LCS methods which are significantly different from each other:

(i) finite-time Lyapunov exponents (FTLEs), which relate to stretching of fluid45

parcels [16]; (ii) hyperbolic variational LCSs (hyp-vLCS), which identify flow

separators towards which there is extremal contraction/repulsion [18, 5]; (iii)

Lagrangian averaged vorticity deviation (LAVD), which attempts to quantify

vorticity in a frame-independent fashion [19]; (iv) Lagrangian descriptors, which

use the arclength of Lagrangian flow trajectories [20], (v) stochastic sensitivity50

S2, in which the uncertainty in eventual Lagrangian location is formalised as a

field [21, 22]; (vi) coherent set detection using a probabilistic transfer operator

method [23]; (vii) coherent set detection using a dynamic Laplacian operator

[24, 25]; (viii) partitioning a flow domain using a fuzzy c-means (FCM) cluster-

ing algorithm [26]; and (ix) identifying kinematic flow similarity using spectral55

colouring techniques [27]. We initially compute the relevant LCSs for each

method using the data representing each of our flow systems; these would be

the ‘reported LCSs’ if we treat each of the methods as error-free, as is standard
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practice in the literature. We might construe such a computation as being “de-

terministic” in the sense that for every system, the procedure for computing the60

LCSs treats the velocity field as if it were deterministic and accurate, and does

not rely on stochastic simulations. Next, we compute the LCSs when we have

introduced noise into the Eulerian velocity data, and perform many simulations.

These computations are then used as a basis for a quantitative evaluation of the

self-consistency of each method.65

Given that the data contains uncertainties and the “truth” is unknown, the

quantitative analysis we perform falls under the standard philosophy of uncer-

tainty quantification: obtaining the expected LCSs along with an uncertainty

determined using statistical means. We quantify these based on stochastic sim-

ulations, and in the cases when the LCSs are associated with scalar fields, use70

the mean and standard deviation respectively for this uncertainty quantification.

When the LCSs are associated with regions and/or curves, we develop probabil-

ity distributions to identify membership within sets. In all cases, we check that

sufficiently many stochastic simulations are included to ensure convergence of

the mean and standard deviation. Since the key in LCS methods is identifying75

their spatial distribution, we compute and display the spatial variation of the

expected and uncertainty fields for each method.

There have been a few prior articles of the effect of noise on certain indi-

vidual LCS computations: FTLEs averaged in different ways over noise real-

isations [28], a theoretical quantification of the error in the FTLE field [22],80

and trajectory-averaged scalar fields in noisy situations [29]. These studies are

mostly for toy models (where the velocities are given by explicit formulæ), and

are confined to one LCS method in each case. In contrast, BozorgMagham et al

[30] use real atmospheric data is used in comparing between forecast and archive-

based FTLE fields for real atmospheric data, using point-based and cross-85

correlation measures. Lermusiaux [31], in a review of uncertainty quantification

in oceanography, provides an example of the uncertainty in the FTLE field and

its ridges. In a similar spirit, Olcay et al [32] analyze the impact of Eulerian ve-

locity data uncertainty on FTLE ridges associated with a idealized vortex pair,
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as well as CFD-generated axisymmetric vortex ring. Taking things further, the90

present paper uses realistic velocity data, and examines self-consistency for a

range of different LCS methods, thereby providing a comprehensive, compara-

tive and systematic analysis on the impact of velocity uncertainty on conclusions

of Lagrangian coherence.

Our results indicate a substantial variation in how the LCS methods re-95

act to uncertainties in the data. As a rule, fields on the entire space of initial

points, as computed at either an intermediate or final stage in the LCS pro-

cess, change relatively little when the uncertainties are small. Flow regions

or sets which are detected as ‘coherent’ according to the relevant characterisa-

tion (e.g., where the LAVD exceeds a threshold, the FTLE or S2 is less than100

a threshold; or where particle trajectories remain in close proximity or exhibit

similar flow behaviour) are therefore relatively robust. Conversely, when seeking

lower-dimensional objects (such as ridges of the FTLE field, or flow separators

as identified through the hyp-vLCS approach), significant sensitivity to uncer-

tainty is observed. In the hyp-vLCS method in particular, the inferred LCSs105

undergo dramatic changes with high probability, indicating their lack of self-

consistency according to our definition. We provide additional insights into

how the different aspects of each LCS method are impacted by uncertainty in

the Eulerian data. Given the inevitability of uncertainty in velocity data in any

realistic situation, we therefore provide cautions on each LCS method’s usage110

in reliably inferring transport characteristics.

2. Lagrangian Coherent Structure Detection Methods

This section details the Lagrangian coherent structure (LCS) detection meth-

ods which will be tested against velocity uncertainties in this study. In general,

we assume we have Eulerian velocity data u from an initial time t0 for an

additional time T in a spatially two-dimensional domain. This implies that La-

grangian trajectories are generated from the non-autonomous flow defined by
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ẋ = u(x, t) for t ∈ [t0, t0 + T ] . (1)

Let Ω ∈ R2 be the domain at time t0, and x ∈ Ω be a general initial condition.

The flow map Ft0+Tt0 (x) then defines the location at the final time t0 + T of

this initial condition subject to the flow defined in (1). The detection of LCSs is115

concerned with finding coherent sets or objects within Ω at time t0, with respect

to the flow over the next T time units. What defines a coherent structure

varies considerably between each of these methods. We will only give brief

and primarily intuitive definitions of each method in this section; for more

comprehensive details, the reader is referred to a variety of review papers [1, 2, 3],120

or original papers that we cite. For more details regarding the computational

specifics of each method relevant to this study, the reader is referred to the

supplementary material.

2.1. Finite Time Lyapunov Exponent

One of the most well-known and easy-to-use methods for detecting La-

grangian coherent structures involves the use of the finite time Lyapunov ex-

ponent (FTLE), a measure of the exponential stretching of infinitesimal fluid

parcels over a pre–determined finite period of time. We define ∇Ft0+Tt0 (x), the

2 × 2 gradient (or Jacobian) of the flow map at x, and use this to define the

Cauchy-Green strain tensor field

Ct0+T
t0 (x) =

(
∇Ft0+Tt0 (x)

)>
∇Ft0+Tt0 (x) (2)

over Ω. The FTLE field is then given by [16]

Φt0+Tt0 (x) =
1

|T |
ln
√
λmax(x), (3)

where λmax(x) is the largest eigenvalue of (2), and pertains to the maximal rela-125

tive stretching of the infinitesimal fluid particle at x, converted to an exponential-

in-time rate. Some studies, consonant with the theory of stable and unstable

manifolds for infinite–time flows, then seek maximal ridges of the scalar field

of (3) to define LCSs which act as flow barriers along which particle stretching
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capability is maximal, and thereby segregate the flow domain Ω into more coher-130

ent sub-regions. The relative simplicity of this method has made this a “go-to”

method for several researchers who have used LCSs to solve problems pertaining

to a wide variety of simulated and real-world flows [33, 34, 35, 36, 37, 38].

2.2. Variational LCSs

Haller [39] proposed an alternative method to the FTLE for detecting LCSs135

called the variational LCS (VLCS) detection method. It involves defining varia-

tional problems for the eigenbasis of (2) and solving these problems to produce

geodesic curves which are tangential to relevant eigenvector fields. The basic

idea is that these are material curves (or higher-dimensional analogues) to which

there is maximal attraction or repulsion over the chosen flow time. An impor-140

tant observation that is often overlooked is that this process initially defines a

collection of curves which is effectively a foliation of Ω (generically, the folia-

tion will have a finite number of singular points), and some selection process is

required for extracting a subset of these curves as being the “most influential.”

A variety of algorithms [17, 39, 5, 18] have been published for executing this145

method, with each of these using a different set of computational and selection

techniques. The algorithm which will be used in this study is the “LCS Tool”

algorithm [18]. This initially looks for the point in Ω which has the largest

eigenvalue λmax of the Cauchy–Green tensor (2), selects the curve from the foli-

ation passing through this, then excludes a neighbourhood of a pre-determined150

size from this, looks for the point in the remaining domain with the largest λmax

value, determines the curve passing through that, and so on. An underappre-

ciated observation is that locations where λmax is maximal is equivalent to the

FTLE being maximal (see (3)), and hence the FTLE field’s variation strongly

impacts the selection process. The collection of curves extracted from this pro-155

cess are termed “the” hyp-vLCSs. For a more comprehensive description of the

steps involved in this algorithm, the reader is referred to the Supplementary

Material.
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2.3. Lagrangian Averaged Vorticity Deviation

Not all LCS detection methods are concerned with generating codimension–

1 flow separating barriers within regions of the domain where more chaotic

flow behaviour is exhibited. There are a wide variety of methods available for

detecting coherent flow regions within the domain of the fluid rather than the

boundaries which separate them. One such method involves the computation

of Lagrangian averaged vorticity deviation (LAVD) [19], a frame-independent

measure of the relative vorticity of a flow trajectory over the time interval [t0, t0+

T ] against the mean vorticity over the entire domain Ω. Haller et. al [19] define

the LAVD through numerical evaluation of the integral

Θt0+T
t0 (x) =

t0+T∫
t0

|ω3(Fst0(x), s)− ω(s)| ds , (4)

where ω3 is the only non-zero component of the vorticity vector ω = ∇×u, and160

ω(t) its mean over the whole domain at time t. Large values (local maxima) of

the field in (4) identify coherent vortical structures.

2.4. Lagrangian Descriptors

The LAVD is computed by integrating the vorticity deviation along a trajec-

tory, and helps identify rotational coherence. The process of integrating general

functions over a flow trajectory defines so-called Lagrangian descriptors, ini-

tially developed for their utility in identifying stable and unstable manifolds in

infinite-time flows [20]. The standard choice of the relevant function is the speed

[20], and hence we use the form

Ψt0+T
t0 (x0) =

t0+T∫
t0

∥∥u(Fst0(x0), s))
∥∥ ds, (5)

which effectively computes the arclength traversed by a trajectory beginning at

x0 over the relevant time interval. We use the limits t0 to t0 + T consistent165

with other comparative LCS studies [40, 2]; this is fundamental to the idea of

identifying structures at time t0 which are ‘coherent’ due to the flow till time

t0 + T , and allows comparison across all the methods that we use.
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2.5. Stochastic Sensitivity

Another way of quantifying the coherence of flow trajectories is by measuring

the numerical uncertainty of the eventual location of each trajectory. A model

for the uncertainty in the Eulerian velocity u could be to examine the stochastic

differential equation (SDE)

dxt = u(xt, t) dt+ εσ(xt, t) dWt ; t ∈ [t0, t0 + T ] (6)

instead of the ordinary differential equation (1). The drift function u is as

in (1), ε represents the level of known or anticipated uncertainty within the

velocity (assumed small in an appropriate sense), σ is the volatility (diffusion)

matrix, which is allowed to be spatio-temporally dependent, and Wt ∼ N(0, 1)

represents two-dimensional geometric Brownian motion in units of the square

root of time [22]. Let xt be a stochastic solution to (6) subject to the initial

condition xt0 = x ∈ Ω. Balasuriya [21] defines the stochastic sensitivity (S2)

field on Ω by

S2(x) = lim
ε→0

max
φ∈[−π/2,π/2)

Var


cos(φ)

sin(φ)

> xt0+T − Ft0+Tt0 (x)

ε

 . (7)

This variance represents the expected uncertainty in the final location, and is

thus a direct measure of the unpredictability of a fluid particle beginning at

x. Balasuriya [21] develops an explicit analytical expression for S2 based on

only knowledge of the deterministic flow and the stochastic model (6), and does

not require any stochastic simulation. The reader is referred to the supple-

mentary material for more information on the steps required for numerically

computing S2 via this expression. While the original development [21] used a

non-dimensional ε and a dimensional σ, in this paper we use the alternative

scaling technique [22] which highlights the physical quantities limiting the data:

we set

ε =
√
hvr (8)
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in which h is the spatial resolution scale, and vr is the velocity uncertainty scale,

and we set σ to be nondimensional. Then, the scaled version of S2 given by

Sv(x) = ε
√
S2(x0) =

√
hvrS2(x) (9)

is explicitly a lengthscale associated with the uncertainty of eventual location

of a trajectory beginning at x0. The quantities S2 or Sv typically range over

several orders of magnitude within a flow region [21], and thus their logarithms

are sometimes used in visualisations. One can also define coherent flow regions

within Ω at a lengthscale L using the robust sets [21]

R(L, vr, h) = {x ∈ Ω : Sv(x) < L} . (10)

In the absence of any additional information on the uncertainty distribution,170

we make the default choice of σ being the identity matrix [21] throughout this

paper.

2.6. Transfer Operator

There also exist probabilistic methods for detecting coherent sets within a

flow domain. Suppose we divide the flow domain at time t0, Ω, into Mx ×My175

rectangular boxes of equal size, and divide the flow domain at time t0 + T ,

Ω̃ = Ft0+Tt0 (Ω) into Nx × Ny rectangular boxes of equal size. The operator P

is defined as a NxNy ×MxMy column-stochastic transition matrix where the

(i, j)-th element indicates the probability of a particle beginning in box j at

time t0 ending up in box i at time t0 + T under the influence of (1). While this180

matrix is often defined in the literature as a row stochastic transition matrix

[23, 41], we will here use the column-stochastic formulation instead. Thus P is

a discrete approximation for the transfer or Perron–Frobenius operator [23, 41].

If v0 is a vector of the initial distribution of a collection of particles over the

boxes within Ω at time t0,

vT = Pv0,

represents the distribution of the same collection of particles throughout Ω̃ fol-

lowing the advection of these particles by Ft0+Tt0 . Since P> represents the
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pullback from time t0 + T to t0, in seeking “coherence” the idea is to look for

initial distributions v0 such that the pullback of vT approximately preserves v0,

that is,

v0 ≈ P>Pv0.

In other words, we seek v0 corresponding to the larger λ values of the eigenvalue

problem

P>Pv0 = λv0. (11)

Since the eigenvalues of P>P are non-negative and bounded by 1, and λ1 = 1

is always the largest eigenvalue [23, 41], the eigenvector v0 corresponding to the185

second largest eigenvalue λ2 can be considered a “highly coherent” initial distri-

bution. The simplest implementation of the transfer operator approaches is to

partition Ω based on the zero contour of this distribution [23], thereby splitting

Ω into two “almost coherent” sets. Extensions of this technique (seeking an

optimal partition value, taking into account next-level eigenvalues, looking for190

a clear spectral gap, etc) are available, and continue to be developed. We will

use the most fundamental approach in this paper.

2.7. Dynamic Laplacian Operator

Another way to divide a flow domain Ω into two coherent sets involves using

the Laplacian operator ∆ to define the eigenvalue problem

∆v = λv. (12)

The second eigenvector of ∆ applied to an autonomous system helps divide

a flow domain into two coherent sets by optimising the ratio of the boundary

length of the sets to their area [24]. A similar result for non-autonomous flows

requires defining the dynamic Laplacian operator [25]

∆D =
1

2

(
∆0 + P>∆TP

)
,

where P is the transfer operator matrix as defined in the previous section, and

∆0 and ∆T are Laplacian matrix operators defined over the box configurations
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of Ω at time t0 and Ω̃ at time t0 + T respectively. We then solve the eigenvalue

problem

∆Dv = λv (13)

and use the second eigenvector v2 to extract two coherent sets for Ω in similar

fashion to the transfer operator method [24].195

2.8. Fuzzy C-Means Clustering

The aforementioned methods can all be used on flow systems where the

velocity data of said system is available, either in the form of analytic equations

or Eulerian snapshots of the data defined at different time intervals. However

for some systems, only the data representing sparsely defined flow trajectories200

is available, and therefore LCSs can only be detected using trajectory-based

techniques. One such method involves grouping together flow trajectories based

on their spatial proximity using a fuzzy c-means (FCM) clustering algorithm

[42, 43], such as the fcm algorithm available in MATLAB [1].

We have as input N trajectories of (1) each with data for a discrete set of

times between t0 and t0 + T which are equally spaced by a time step ∆t and

are arranged in the form

Xj = [xj(t0),xj(t0 + ∆t),xj(t0 + 2∆t), . . . ,xj(t0 + T )] ;

where each xj(t0+i∆t) = (xj(t0+i∆t), yj(t0+i∆t)). Given a pre-determined or205

guessed number of clusters K, the idea of the fuzzy c-means clustering algorithm

is to partition these N trajectories into K clusters by optimising the distance to

a “centre trajectory” of each cluster. A recursive algorithm determines the K

clusters and centre trajectories Ck, along with the probability pk,j of trajectory

j belonging to cluster k [1, 42, 43]. For further details relating to the fuzzy210

c-means clustering algorithm, refer to the supplementary material or to [42, 43].

2.9. Coherent Structure Colouring

The biggest drawback of the FCM clustering algorithm is the requirement

of the number of coherent clusters to be specified beforehand, or just arbitrarily
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guessed. In an effort to overcome this, the coherent structure colouring (CSC)

method which detects LCSs using kinematic similarities of certain quantities of

interest (the distance between trajectories, or the relative vorticity of trajecto-

ries) was conceptualised [27] . Given the same N sparse trajectories defined in

the previous subsection, we calculate the N ×N adjacency matrix A, where the

(i, j)-th element is the coefficient of variation of our quantity of interest between

two trajectories Xi and Xj over all time steps tk = t0 + k∆t. The sums of the

rows of A form the elements of the diagonal matrix D, and given the graph

Laplacian L = D−A, one solves the generalised eigenvalue problem

Lv = λDv. (14)

Let λmax be the largest eigenvalue for (14), and vmax its corresponding eigen-

vector. The eigenvector vmax assigns a CSC coefficient to the final point of each

trajectory, all of which are subsequently mapped back to the initial points of215

said trajectories. LCSs are then identified as sub-regions of Ω which correspond

to similar CSC values [27].

3. Results

We will now display the results obtained from executing each of the methods

described in Section 2 on two systems in which numerical data for the Eulerian220

velocities is available. The first of these is based on a computational fluid dynam-

ics simulation of a flow which contains two rapidly evolving Kelvin–Helmholtz

vortex layers, and the other is using direct oceanographic velocity data pertain-

ing to the Gulf Stream in the North West Atlantic Ocean, positioned off the

North East coast of the United States. Each LCS detection method will be225

implemented on these data sets in their regular, unperturbed form, and with

the addition of artificial noise to the velocity using the stochastic differential

equation (6), with noise added uniformly to the velocity at every point within a

uniformly spaced initial grid of points. The noise is updated at each time-step.

Our own codes were produced to execute all of the LCS detection methods,230
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which were tested against previously published results for analytically defined

flows.

Rather than performing a few simulations for a qualitative comparison, we

implement a quantitative statistical analysis on the LCS results generated from

each method over sufficiently many different realisations of solutions to (6). For235

each of these methods (except the hyp–VLCS method and the stochastic sensi-

tivity robust sets), we generate 100 stochastic flow maps for every initial point in

Ω, perform LCS analysis on each of these realisations, and iteratively calculate

the mean and standard deviation of quantities such as the FTLE, the coeffi-

cients of the transfer operator optimal vector, or the membership probability of240

a flow particle to a fuzzy c–means cluster. A sample size of 100 was sufficient

to obtain convergence of the statistics for every method, as we demonstrate in

the Supplementary Material.

Given that they are not directly associated with fields unlike the other tech-

niques, the hyp–VLCS method and the robust sets arising from stochastic sen-245

sitivity are not amenable to analysis using means and standard deviations. For

the hyp–VLCS method, we divide our flow domain into equally sized boxes or

“bins”, record which of these bins each hyp–VLCS traverses through for each

realisation of this method and use this to produce a sample likelihood field. We

also include a similar field showing the iteratively calculated variation (standard250

deviation) of these sample probabilities. In the case of the stochastic sensitivity

robust sets, we produce a probability density function from the coordinates of

the points which fall within the robust set from each stochastic simulation.

3.1. Simulated Kelvin–Helmholtz Flow

First, we will look at numerical velocity data simulated from the Navier–

Stokes equations with an initial condition set up to generate Kelvin–Helmholtz

type vortex layers on the doubly periodic flow domain Ω = [0, 2π) × [0, 2π);

inspired by several computational fluid dynamics experiments documented in

the literature [44, 45, 46, 47]. To generate a typical flow in which both coherence
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and transience is present, we choose the initial condition

u0(x, y) =

 1
2

(
tanh

[
1
δ (y − π

2 )
]
− tanh

[
1
δ (y − 3π

2 )
])

1
100

(
sin [αx] + 1

2 sin [(α− 1)x] + 1
2 sin [(α+ 1)x]

)
 , (15)

where δ = 0.05 and α = 9, the closest integer to the most unstable wavenumber255

mode 0.22/θ0 ≈ 0.44/δ [48]. For concreteness in our subsequent uncertainty

analysis, we treat the lengthscale, time and velocities as being scaled respectively

by 1 m, 1 s and 1 m s−1. Our own validated MATLAB code was used to produce

CFD simulations from the initial condition (15) using a fast Fourier transform

algorithm. We generate Eulerian velocity data on a uniform 1024×1024 spatial260

grid within the double-periodic domain Ω using a third-order Runge–Kutta

integration method from time 0 to 20, with time-step ∆t = 0.001 s and velocity

data captured after time intervals of length 0.1 s. We also apply modest viscosity

to these simulations using a Reynolds number Re = 104, computed using the

lengthscale L = 1 m, the maximal velocity 1 m/s and kinematic viscosity ν =265

10−4 m2/s.

A basic description of the generated flow is in order. It consists of a channel of

horizontal particle flow centred along y = πm with velocity magnitude ∼ 1 m/s,

very small velocities in the outer layers of the flow domain where y < π/2 m and

y > 3π/2 m, and two Kelvin-Helmholtz vortex layers centred along y = π/2 m270

and y = 3π/2 m at initial time t = 0 s. Beginning from t ≈ 5 s, these vortices

begin to combine and grow in size, increasing the width of the vortex layers. This

continues until t ≈ 15 s, by which time four large vortices have been created and

the width of the coherent flow channel centred at y = πm has approximately

halved.275

We perform LCS analysis on this system using all of the methods listed in

Section 2 on the flow period ranging from t0 = 12 s to t0 + T = 15 s. The level

of velocity uncertainty vr which will be applied to all stochastic simulations has

been set to 1.63 × 10−2 ms−1 which represents approximately a 1.6% velocity

uncertainty. Given that the data resolution is h = 2π/1024 ≈ 6.1×10−3 m, this280

gives a value of ε =
√
hvr = 10−2 ms−1/2 for the SDE (6).
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Figure 1: The deterministic FTLE of the Kelvin–Helmholtz flow from t0 = 12 s to t0+T = 15 s

(top-left), one realisation of the FTLE with noise applied to the flow (top-right) and the

mean (bottom-left) and twice the standard deviation (bottom-right) of 100 realisations of the

stochastic FTLE.

The first LCS detection method to be examined is the FTLE, which ap-

pears to be modestly robust to velocity uncertainty as shown in Figure 1. The

panels represent the FTLE scalar field generated from the deterministic Kelvin-

Helmholtz flow (top left), one realisation of the FTLE with noise applied to285

the flow (top right), the mean (bottom left) and twice the standard deviation

(bottom right) of the FTLE obtained from 100 stochastic realisations. We plot

twice the standard deviation to enhance the visibility of key structures within

this scalar field. We will follow this structuring of panels for (almost) all the

figures in this section. Under noise perturbation, the FTLE field wobbles, and290

some of the maximal ridges become jagged and less smooth. From the mean
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FTLE field, the central flow channel, within which the FTLE is low and par-

ticle movement more robust, more or less maintains its shape. However, due

to a large variation in FTLE values within the upper and lower vortex layers,

many of the maximal ridges from the deterministic FTLE field have been ironed295

out. The standard deviation field indicates that errors are more likely near the

higher FTLE values, i.e., near the ridges. That being said, most of the maximal

ridges corresponding to the globally largest values of the FTLE have more or

less maintained their shape.

Figure 2: Deterministic hyp–VLCSs of the Kelvin–Helmholtz flow from t0 = 12 s to t0 + T =

15 s (top–left), one realisation of these hyp–VLCSs with noise applied to the flow (top–right)

and the likelihood (bottom–left) and twice the variation in this likelihood (bottom–right) of

a hyp–VLCS passing through one of 50 × 50 = 2500 bins computed from 100 realisations of

stochastic hyp–VLCSs.

While the FTLE method is reasonably robust to stochastic noise, the vari-300

ational hyperbolic LCS method is considerably affected, as demonstrated by
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Figure 2. In the top row, we show the deterministic hyp–VLCSs along with one

stochastic realisation. The LCS curves in the noisy simulation are significantly

different from the deterministic one. A quantitative analysis across many sim-

ulations is shown in the lower row. The left panel shows the likelihood of a305

hyp–VLCS passing through 50× 50 = 2, 500 equally sized bins (we only choose

this many boxes so that the width of each of these boxes is approximately the

same as the separation radius parameter ρ for the LCS Tool algorithm - the

reader is referred to the Supplementary Material for further information), along

with a similar field showing twice the variation of these sample probabilities.310

The likelihood field has few discernible features, save for some hook–shaped

curves which surround the coherent vortices. The abundance of bins with a low

probability of being traversed by a hyp–VLCS (indicated by blue coloured cells)

indicates a general lack of certainty in identifying features. This is further ver-

ified by the variation field which is high throughout most of the domain. Thus,315

the shape and locations of hyp–VLCSs is highly susceptible to any uncertainty

in the data.

Next we consider the LAVD, which is structurally robust to velocity uncer-

tainty as displayed in Figure 3. The vortices which correspond to the largest

values of the LAVD do not change position under noise, however their size320

and LAVD amplitude do. The mean and standard deviation fields show that

the LAVD is robust in the sense that it is able to locate the centres and ap-

proximate shapes of coherent vortices well, despite the variation in the size of

the LAVD field. The relative error—the ratio of the standard deviation to the

mean—is fairly uniformly distributed across the domain.325

We next examine the Lagrangian descriptor method, which as Figure 4

demonstrates, is similarly robust. The noise causes minor distortions of the

structures within the flow layers, while preserving the shape of the central flow

channel. The mean, as in the FTLE, is a diffused version of the deterministic

field. The standard deviation is relatively low, and appears to be concentrated330

not only between the coherent vortices, but also around the centres of these

vortices.
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Figure 3: LAVD diagnostics for the Kelvin–Helmholtz flow arranged in the same fashion as

seen in Figure 1.

Figure 5 shows that the generated values of the stochastic sensitivity are

mildly compromised under the influence of velocity uncertainty. (Due to the

known large variation in the values of S2 [21], we plot the scaled quantity335

ln (Sv) = ln
(√
hvrS2

)
rather than the raw S2 for improved visibility.) Stochas-

tic sensitivity, as it is a measure of unpreditability, is largest within the vortex

layers above and below the flow channel, and its maximal ridges are similar to

that of the FTLE field shown in Figure 1. Similar to the FTLE, the ridges

deform under the influence of stochastic noise. The mean ridges from the 100340

stochastic realisations are consistently located with respect to the determinis-

tic ones, though some deterministic ridges have disappeared indicating their

uncertainty. The standard deviation is noticeably high, particularly along the
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Figure 4: Lagrangian descriptor diagnostics for the Kelvin–Helmholtz flow arranged in the

same fashion as seen in Figure 1.

ridges where ln (Sv) is largest. This can be attributed to large values and the

high spatial gradients of S2 near these ridges [21], which will amplify velocity345

uncertainties.

The robust sets, as defined in (10), are much more self-consistent, as Figure

6 indicates. In the left panel we display the deterministic robust set R (with

velocity uncertainty vr = 1.63×10−2 and grid-spacing h = 6.1×10−3) of regions

of flow where the eventual lengthscale of uncertainty is less that L = 0.25m. The350

right panel is a likelihood, representing the sample probability density of being

selected in a robust set from the 100 realisations. The central flow channel is

included with high probability notwithstanding the velocity uncertainty. The

jet being significantly more robust than the vortex centres is understandable in
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Figure 5: Diagnostics for the scaled stochastic sensitivity Sv for the Kelvin–Helmholtz flow

arranged in the same fashion as seen in Figure 1. The natural logarithm of Sv has been used

to enhance the visibility of key structures within each contour plot.

this Kelvin–Helmholtz flow in which the vortex layers are unstable.355

The scalar field associated with the optimal vector derived from the transfer

operator method is mostly robust to velocity uncertainty, according to the re-

sults in Figure 7 (see the Supplementary Material for more details regarding how

the optimal vector is produced). The lower panel shows the mean and twice the

standard deviation generated from 100 stochastic realisations. If partitioning at360

the zero contour (as in the original idea of partitioning into two coherent sets

[23], the central flow channel along with most of the flow domain lying between

the vortex layers appears to form one coherent set, while the two vortex layers

form the other coherent set. Applying stochastic noise produces the same co-

herent sets, except with some fuzziness. The mean optimal vector field appears365
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Figure 6: The deterministic robust set R at lengthscale 0.25 m of the Kelvin–Helmholtz flow

from t0 = 12 s to t0 +T = 15 s (left) and the sample probability density function of the points

which form this set from 100 stochastic realisations of S2 (right).

a diffused version of the deterministic field, while the standard deviations of the

vector coefficients appear to be low with the largest values scattered throughout

the central flow channel instead of within the vortex layers. The coherent sets

detected from this one eigenvector are unable to detect the smaller structures

within the vortex layer unlike in other methods; hence the lack of uncertainty370

in the larger vortex layer region. Distinguishing these structures relies on con-

sidering eigenvectors corresponding to eigenvalues much lower in the ordering.

We remark, however, that in this complicated flow the first 10 eigenvalues are

all within one thousandth (10−3) of each other with consistently small gaps be-

tween consecutive eigenvalues, making it difficult to use the transfer operator375

method to detect these individual structures. The fact that the flow is “more

turbulent” in this region is likely relevant, with the presence of structures at

finer and finer scales. Thus, as the flow gets more turbulent, the transfer oper-

ator approach is likely an impractical approach for distinguishing smaller-scale

coherent structures.380

The second eigenvector of the dynamic Laplacian operator is similarly ro-

bust, as the results in Figure 8 show. As was the case with the transfer operator
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Figure 7: Transfer operator optimal vector diagnostics for the Kelvin–Helmholtz flow arranged

in the same fashion as seen in Figure 1.

optimal vector field (see Figure 7), the central flow channel is identified as the

first coherent set, and the two vortex layers as the other. Unlike the transfer

operator optimal vector, the dynamic Laplacian operator second eigenvector385

is noticeably less fuzzy under the influence of stochastic noise. This is most

likely due to smoothening generated via adding the Laplacian operator. Indeed,

this method conceptualises the explicit addition of diffusive noise in the original

calculations, and hence the ‘deterministic’ and mean fields (two left panels in

the figure) do end up being remarkably similar. The standard deviation field390

indicates that the error is reasonably low and, as was the case with the transfer

operator method, is at its largest within the flow channel rather than along the

boundaries between the flow channel and the vortex layers.
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Figure 8: Dynamic Laplacian operator second eigenvector diagnostics for the Kelvin–

Helmholtz flow arranged in the same fashion as seen in Figure 1.

The FCM Clustering algorithm also shows self-consistency under the in-

fluence of noise, as observable from Figure 9. Here, we program the FCM395

Clustering algorithm to partition Ω into four coherent clusters. These clusters

have been identified as the central flow channel, the upper and lower vortex

layers; and two disjoint wave–like sets positioned between the flow channel and

each vortex layer. Applying noise only appears to have a minor impact on the

membership probabilities and shapes of each cluster, and the mean membership400

probabilities are more or less consistent with the deterministic results. From

the standard deviation fields, the largest variation in membership probability

is observable primarily along the boundaries of each cluster as expected, with

only some very minor exceptions identifiable.
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Figure 9: The deterministic membership probability fields for four FCM clusters K1, K2, K3

and K4 relevant to the Kelvin–Helmholtz flow from t0 = 12 s to t0 +T = 15 s (first row); one

realisation of each of these fields with noise applied to the flow (second row) and the mean

(third row) and twice the standard deviation (fourth row) of these probabilities generated

from 100 realisations of the FCM clustering method.

The CSC scalar field also shows robustness to noise, as demonstrated by405

Figure 10. We can once again identify the coherent flow channel and the vortex

layers, along with approximate outlines of the actual vortices themselves. In

a flow with clearly defined vortices which do not merge and remain consistent

in size, such as the Bickley jet [27], one would be able to clearly identify these

vortices structures using the CSC method. In the current Kelvin–Helmholtz410

system, the vortices at time t0 = 12 s are the product of smaller vortices having

merged as the flow progressed over the preceding 12 seconds, and are not well

25



Figure 10: CSC diagnostics for the Kelvin–Helmholtz flow arranged in the same fashion as

seen in Figure 1.

detected by the CSC method. (The LAVD, in contrast, is primed for explicit

vorticity detection, and performs well in this endeavour as is seen in Figure 3.)

The statistics from the 100 stochastic realisations (lower panels) confirms that415

the CSC is self-consistent to the influence of noise.

3.2. Gulf Stream Data

Next, we consider oceanographic velocity data representing the Gulf Stream,

which is highly influential to climate patterns in the Northern and Western hemi-

spheres [49]. We use absolute geostrophic velocity data compiled by SSALTO/420

DUACS and supplied by the AVISO Satellite Altimetry Data service (https://

www.aviso.altimetry.fr) to perform LCS analysis on the Gulf Stream. We use

data on Ω = [65◦W, 35◦W] × [32◦N, 48◦N], at a spatial resolution of h = 1/8
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degrees, and time ranging from t0 = midnight, January 15th 2015 to t0 + T =

midnight, April 15th 2015 (UTC) with a temporal resolution of 1 day, to425

be consistent with other studies [50]. We use the velocity uncertainty vr =

1.63 × 10−2ms−1 or roughly, 1.27 × 10−2 degrees latitude/longitude per day,

corresponding to a value of ε =
√
hvr ≈ 4 × 10−2 degrees per square root day

for the SDE (6).

Figure 11: The deterministic FTLE of the Gulf Stream flow from t0 = midnight, January

15, 2015 to t0 + T = midnight, April 15, 2015 (UTC) (top-left), one realisation of the FTLE

with noise applied to the flow (top-right) and the mean (bottom-left) and standard deviation

(bottom-right) of 100 realisations of the stochastic FTLE.

We begin in Figure 11 with the FTLE method, which once again shows430

self–consistency against uncertainty. We have included the deterministic FTLE

(top left), one realisation of the FTLE generated following the application of

stochastic noise to the data (top right), and the mean (bottom left) and standard

deviation (bottom right) of 100 stochastic realisations of the FTLE (there is no
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need to enhance the standard deviation field for improved visibility this time).435

The other Figures in this Section (almost always) conform to this ordering of

panels. We demonstrate in the Supplementary Material that 100 realisations

is sufficient to obtain convergence of these statistics across this, and all, LCS

methods. At this scale, maximal ridges appear to cover most of the chosen

domain. We observe smaller (and sometimes negative) values of the FTLE440

within coherent eddies produced by the Gulf Stream, along the Northern and

Southern boundaries of the domain and within the Gulf of St Lawrence in the

North West corner of the domain. Like with the Kelvin–Helmholtz system, the

presence of stochastic noise causes the FTLE field to wobble slightly, changing

the shapes of some of the maximal ridges. The flow patterns remain generally445

consistent in the stochastic simulation shown. The mean FTLE field appears

to be a smoothened version of the deterministic field with most of the maximal

ridges still readily identifiable and all of the coherent eddies observed from low

FTLE values having been obscured. The standard deviation is reasonably low

throughout the domain, with larger values observable around the Northern and450

Southern edges of the domain and closer to land in the North Western portion of

the domain. This is likely due to the large exodus of particles from the domain

over the 90 day flow period and a large number of particles “washing up” on

land, which will change with every new stochastic flow map realisation. These

larger standard deviation values outweigh those observable closer to the maximal455

ridges of the FTLE field, likely owing to the fact that most of the domain is

dominated by large FTLE values and the error is therefore consistent.

Figure 12 indicates that the variational LCSs have once again been signif-

icantly compromised by the presence of noise. As for the Kelvin–Helmholtz

system, hyp–VLCSs produced for the Gulf Stream completely deform under the460

influence of even a relatively small amount of stochastic noise. We produce a sta-

tistical analysis of the 100 simulations by dividing the Gulf Stream domain into

241 × 159 = 38319 equally sized bins (chosen after some experimentation with

the number of bins defined). From the sample probability field, some consis-

tent structures are identifiable by green coloured streaks within the field. Most465
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Figure 12: Deterministic hyp–VLCSs of the Gulf Stream flow from t0 = midnight, January 15,

2015 to t0+T = midnight, April 15, 2015 (UTC) (top–left), one realisation of these hyp–VLCSs

with noise applied to the flow (top–right) and the likelihood (bottom–left) and the variation

in this likelihood (bottom–right) of a hyp–VLCS passing through one of 241 × 159 = 38319

bins computed from 100 realisations of stochastic hyp–VLCSs.

of these streaks appear to look like diagonal lines, which is likely attributable

again to the exodus of particles over the large period of flow considered. The

fact that most of the bins in the likelihood Figure are coloured dark or light blue

indicates that the spread of the hyp–VLCSs generated covers approximately the

whole flow domain and therefore verifies the volatility of these structures under470

velocity uncertainty. This is further highlighted by the variation in these sample

probabilities, which is consistently high over the entire domain. It is therefore

difficult to think of the hyp-VLCSs computed from the deterministic flow as

being reliable.

Figure 13 demonstrates the structural robustness of the LAVD method, con-475
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Figure 13: LAVD diagnostics for the Gulf Stream arranged in the same fashion as seen in

Figure 11.

sistent with the Kelvin–Helmhotz results (see Figure 3). The vortices (Gulf

Stream eddies) detected by the LAVD maintain their position under noise, but

change shape slightly while being associated with changed LAVD values. The

mean LAVD field appears to be a smoothened version of the deterministic LAVD

field with extremal LAVD values reduced, while the standard deviation of the480

LAVD appears to be larger near the centres of key coherent eddies and within

the Gulf Stream itself where large LAVD values are also observable.

Once again, the Lagrangian descriptor method shows structural robustness

as shown in Figure 14. The mean is a diffused version of the deterministic

Lagrangian descriptor, and the standard deviation is low.485

The stochastic sensitivity method is mildly susceptible to noise, as shown

in Figure 15. Once again, we plot ln (Sv) due to large variations in the raw

30



Figure 14: Lagrangian descriptor diagnostics for the Gulf Stream arranged in the same fashion

as seen in Figure 11.

quantity S2. The mean field from 100 realisations appears to be a smoothened

out version of the deterministic field with a large portion of extremal values

observable throughout the Gulf Stream. The standard deviation is once again490

large close to large values of S2. We observe larger values of the mean and

standard deviation in the western part of the region, possibly caused by the

inevitable oversampling of initial conditions in this region (initial conditions

further east are more likely to pass out of the domain because of the direction

of flow, particularly when noise is added, and thus are discounted from the495

calculations). Hence, while this is chosen to produce comparable figures to

published work [50], this particular choice of domain is not optimal for LCS

computations for a 90 day flow.

On the other hand, the stochastic sensitivity robust sets are self–consistent
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Figure 15: Diagnostics for the scaled stochastic sensitivity Sv for the Gulf Stream arranged in

the same fashion as seen in Figure 11. The natural logarithm of Sv has been used to enhance

the visibility of key structures within each contour plot.

under the influence of noise as indicated in Figure 16. We display the deter-500

ministic robust set R at the level of lengthscale uncertainty of 6 degrees (with

vr = 1.27× 10−2 degrees per day and h = 1/8 degrees) in the left panel. We re-

mark that the white regions in the left panel identify the Northeastern bending

of the Gulf Stream much clearer than any of the other methods in this section

(save perhaps the CSC). This is because the large stretching rates in the jet,505

coupled with the intense vorticity in the adjacent regions, renders the eventual

fluid parcel locations much less predictable. The likelihood function from the

100 stochastic realisations (right panel) indicates that the robust set is more

likely to contain portions of the flame shaped objects located along the South-

ern edge of the domain along with the inner portion of the Gulf of St Lawrence510

(as indicated by yellow and green shaded portions of the domain). Fluid parcels
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Figure 16: The robust set R at lengthscale 6 degrees for the Gulf Stream from t0 = midnight,

January 15, 2015 to t0+T = midnight, April 15, 2015 (UTC) (left) and the sample probability

density function of being in a robust set from 100 stochastic realisations (right).

beginning in these regions have the most predictable final locations, whereas

regions in and adjacent to the jet are identified as not being in the robust set.

The flame-shaped regions are consistent with low stretching rates, while the less

robust regions are consistent with larger stretching and vorticity (see Figures515

11) 13).

Figure 17 indicates that the transfer operator optimal vector is also reliable.

Consistent with Froyland et al [50], we consider the third singular vector of the

transfer operator and the third eigenvector of the dynamic Laplacian operator

to find two coherent sets for this system. The claim is that the main jet region520

of the Gulf Stream is identifiable along the zero contour of the transfer operator

optimal vector field, which is used to divide the flow domain Ω into two coherent

sets [50]. (However, this produces an essentially East–West curve, in contrast to

the Northeastern bending of the jet visible in Figure 16.) Consistent with our

CFD application, applying noise to the Gulf Stream velocity causes fuzziness525

in the optimal vector field (see Figure 7), though in a more unique observation,
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Figure 17: Transfer operator optimal vector diagnostics for the Gulf Stream arranged in the

same fashion as seen in Figure 11.

entries of the optimal vector closer to land and the Northern and Southern

edges of the domain, while maintaining their sign, have changed considerably in

value. The standard deviation is reasonably low overall with larger quantities

observable within the Gulf of St Lawrence and along the Northern and Southern530

edges of the domain. As with most of the previously discussed methods, this can

be attributed to the exodus of particles from the domain over our 90 day flow

period. The standard deviation around the zero contour lines of the optimal

vector field remain relatively low in comparison, providing a sense of confidence

and reliability in the results produced from this method.535

The third eigenvector of the dynamic Laplacian also shows resistance to

velocity uncertainty as seen in Figure 18. However, the size of the eigenvector

is less extreme within the Gulf of St Lawrence and along the Northern and
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Figure 18: Dynamic Laplace operator third eigenvector diagnostics for the Gulf Stream ar-

ranged in the same fashion as seen in Figure 11.

Southern edges of the domain in comparison to the transfer operator. Applying

noise results in only a minor change to the formation of the two sets, with540

noticeable fuzziness and a change in shape of the zero contour as we move

Eastwards. Further West, no such changes in the zero contour can be observed.

Most of the other observations we have made regarding the transfer operator

method also hold in this case.

Figure 19 demonstrates that the FCM Clustering method is also self–consistent.545

This time we program this method to detect five clusters, and we note that each

cluster does not have an obvious interpretation in terms of the jet or eddies. The

method has essentially divided the domain Ω into partitions of approximately

equal size (the same is true when we experimented with different numbers of

clusters). That said, the results are self–consistent with noise having a relatively550
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Figure 19: The deterministic membership probability fields for five FCM clusters K1, K2, K3,

K4 and K5 relevant to the Gulf Stream from t0 = midnight, January 15, 2015 to t0 + T =

midnight, April 15, 2015 (UTC) (first row); one realisation of each of these fields with noise

applied to the flow (second row) and the mean (third row) and standard deviation (fourth

row) of these probabilities generated from 100 realisations of the FCM clustering method.

minimal impact on the membership probability fields for each cluster, and the

mean membership probabilities looking approximately like a smoothened out

version of the deterministic results. The standard deviations of the realisations

for each cluster are also relatively low, and are concentrated around the edges

of each cluster which lie closer to the centre of the domain. The spatial spread555

of the standard deviation is considerably large (particularly for the second and

fourth FCM clusters), however this again can be attributed to the added uncer-

tainty stemming from the large length of the flow interval.

The functionality of the CSC method also appears reasonably unaffected by

noise, as indicated in Figure 20. Structures corresponding to strongly positive560
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Figure 20: CSC diagnostics for the Gulf Stream arranged in the same fashion as seen in Figure

11.

CSC coefficients represent eddies and coherent parcels of flow closer to land or

within the Gulf of St Lawrence, while strongly negative CSC coefficients help

identify the Northeastern bending of the Gulf Stream jet, along with streaks

of thin flow which separate coherent eddies. Adding noise does not have much

visible impact, with the mean being comparable to the deterministic field, and565

standard deviation being small and uniform.

4. Concluding Remarks

LCS detection is important particularly in flows which possess both turbu-

lent and coherent features, since detecting the influential coherent structures

amidst complicated flow is difficult. We have examined in this paper Eulerian570

velocity data from two such flows, as opposed to from simpler flows (idealised
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and/or nonturbulent) where the concept of LCS detection can be argued to be

redundant. Ultimately, the functionality of any LCS detection method will be

compromised to some degree by the presence of numerical uncertainty within the

Eulerian velocity data. We have in this paper performed a systematic analysis575

of the impact of this uncertainty for a range of LCS methods.

A common observation for the LCS methods which produce fields on Ω is

that the mean of the stochastic fields usually looks like a diffused version of the

deterministic field. This implies that these fields exhibit self-consistency with

respect to random perturbations in the Eulerian data. This is true across both580

our systems for the FTLE, S2, LAVD, Lagrangian descriptor, CSC, transfer-

operator, and dynamic Laplacian fields. The latter field is interesting in that the

mean stochastic field appears to be much closer to the deterministic one than

for the other methods, as is clear in Figure 8 in particular. The fact that the

dynamic Laplacian includes diffusion within its definition likely contributes to585

this fact. While the fields appear diffused, the standard deviation plots indicate

that the errors tend to not be spatially uniform. For the FTLE and S2, there

are large deviations in the fields in regions where the deterministic field is large.

These observations are intuitively reasonable. Since a large FTLE implies a

large exponential stretching rate for the deterministic flow, noise added to such590

a system will invariably be amplified far more at large FTLE values. Similarly,

if there was a large expectation of uncertainty in the eventual location of a

trajectory (i.e., if S2 is large), inclusion of noise throughout the time of flow

should exacerbate this uncertainty. Consequently, the self-consistency of the

FTLE and S2 fields with respect to noise is diminished at very large values. Put595

another way, if reported FTLE or S2 values are very large from a deterministic

calculation, then the actual values reported cannot be considered to be too

reliable. Thus, codimension–1 entities such as maximal ridges of the FTLE field

cannot be considered robust under Eulerian velocity uncertainty. However, it is

not completely clear whether such ridges can be identified in a well-defined way,600

or whether it makes any sense to try to use ridges as proxies of stable/unstable

manifolds in infinite-time flows [39, 51], because realistic data-driven flows are

38



of finite-time and possess different time-scales of motion. On the other hand,

the FTLE and S2 fields have meaning (respectively quantifying stretching [16]

and unpredictability in final position [21]), and these remain robust in the sense605

that their stochastic mean is effectively a diffused version of the deterministic

field.

It is worth emphasising that the methods which detect coherent flow regions

rather than the boundaries which separate them are more robust under these

conditions as co-dimension–0 entities would tend to simply wobble as opposed610

to co-dimension–1 entities which can disappear entirely. Thus, methods such as

set-selection using the transfer or dynamic Laplacian operator, robust sets from

stochastic sensitivity, local maxima locations of the LAVD to identify coherent

vortices, sets via fuzzy c-means clustering, or sets with FTLE values less than

a threshold to identify flow regions which have lower stretching, will in general615

be fairly robust to uncertainty in the Eulerian data.

Out of all of the LCS detection methods examined in this paper, the hyp–

VLCS method has the most concerning performance as Figures 2 and 12 in-

dicate. Some stochastic simulations (pictured in the top right panels of these

figures) are radically different from the deterministic (top left) results. Our620

quantitative analysis on the statistics indicates that these simulations are not

atypical, with the stochastic hyp–VLCS spreading out to cover almost the whole

flow domain. There are few (if any) discernible curves when the mean of the

stochastic realisations is plotted (bottom left panel), and the likelihood (bottom

right) of finding hyp-vLCS curves is effectively constant everywhere. Indeed, the625

simulated curves tend to fill the entire domain with no gaps as the separation

radius parameter is made smaller (see the Supplementary Material for more of

a discussion related to this computational parameter). This method’s high sus-

ceptibility to noise can be inferred to be the result of the many computational

steps required: numerical differentiation of flow maps, integration of eigenvec-630

tor fields and interpolation of various quantities required for regulation of the

resultant solution curves. However, also (and possibly more) important is the

selection method of curves from the foliation [17, 39, 18]. We recall that in the

39



LCS Tool algorithm [18] this is performed by first locating a point where the

larger eigenvalue λmax if the Cauchy–Green tensor (2) is maximum, finding the635

relevant curve through this point, and then excluding regions within a specified

separation radius and continuing this process for the remaining part of Ω. An

underappreciated fact is that the maximal λmax location is exactly the maximal

FTLE location, as is clear from (3). Thus, the FTLE comes into play in the

variational LCS selection process, and as discussed previously the FTLE field640

at large values is particularly susceptible to uncertainty in the Eulerian velocity

field. Consequently, the LCS Tool algorithm in seeking hyp-vLCSs inherits this

uncertainty in addition to uncertainties in the remaining calculations. The or-

dered selection process of curves in a stochastic simulation can jump completely

to a different region from the deterministic one, because the FTLE field’s value645

(at these large values) has changed radically. Exclusion of a region (associated

with the separation radius parameter) will further impact the next selection, and

consequently the computed hyp-vLCSs (see Figures 2 and 12) can be markedly

different. The inevitable uncertainty in Eulerian velocity data implies that the

hyp-vLCS method using the LCS Tool algorithm is therefore highly non-robust.650

The methods which have shown the greatest self–consistency (with respect to

the value of the relevant field, in addition to shapes of objects) are the dynamic

Laplacian operator, CSC, FCM Clustering and stochastic sensitivity robust sets.

The LAVD’s identification of vortical structures is self–consistent (though the

values of the LAVD field change quite drastically). Indeed, essentially all the655

vortices visible in the deterministic implementation are also visible in the mean

stochastic ones (see Figures 3 and 13). The relative errors (thought of as the

ratio between the standard deviation and the mean) appears to be fairly uniform

across the domain, indicating that factors such as excessive stretching in certain

regions do not necessarily inordinately impact noise amplification. Likewise,660

the Lagrangian descriptor method shows good self–consistency, with only the

identification of smaller vortices being susceptible to noise. While the FCM

clustering method does show a great deal of self–consistency under the influence

of additional velocity uncertainty, it must be noted that this method comes with
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the significant drawback of the requirement to pre–determine the number of665

clusters anticipated to exist within a flow domain. The transfer operator optimal

vector becomes noticeably more fuzzy when computed for noisy data though still

manages to capture important structures. The dynamic Laplacian operator is

able to divide a flow domain into two coherent sets without the boundaries

between these sets becoming too fuzzy, as any uncertainties within the operator670

are ironed out by the second derivative finite differencing information embedded

within the matrices used to produce this operator (we do observe some fuzziness

in the Gulf Stream flow, see Figure 18, but this is owed more to the large

interval of flow time rather than velocity uncertainty). The stochastic sensitivity

robust sets are able to pinpoint the most consistent flow regions of a domain675

while taking into account a specific level of velocity uncertainty along with a

lengthscale selected especially for a particular application. The CSC method

identifies a wide variety of coherent objects present within a flow system from

one relatively simple calculation, and these objects are seen to retain their shape

remarkably well under the influence of stochastic velocity uncertainty.680

Our analysis indicates that when applying LCS methods to realistic data

situations, the results need to be interpreted with much caution because of

the presence of uncertainty in the Eulerian velocity data. Irrespective of the

argument as to whether a given LCS method identifies “coherent structures” or

not, if the method is not robust to uncertainties in the Eulerian data, it cannot685

be considered reliable. We expect our results in this paper to help practitioners

to choose an LCS method which is appropriate for their application, while being

self-consistent.
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C. López, Characterization of the structure and cross-shore transport prop-730

erties of a coastal upwelling filament using three-dimensional finite-size Lya-

punov exponents, Journal of Geophysical Research: Oceans 122 (9) (2017)

7433–7448. doi:10.1002/2017JC012700.

[9] G. Froyland, R. M. Stuart, E. van Sebille, How well–connected is the surface

of the global ocean?, Chaos: An Interdisciplinary Journal of Nonlinear735

Science 24 (3) (2014) 033126. doi:10.1063/1.4892530.

[10] D. Kelley, M. Allshouse, N. Ouellette, Lagrangian coherent structures sepa-

rate dynamically distinct regions in fluid flows, Physical Review E 88 (2013)

013017. doi:10.1103/PhysRevE.88.013017.

[11] A. von Kameke, S. Kastens, S. Rüttinger, S. Herres-Pawlis, M. Schlüter,740
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