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An exact solution to the barotropic potential vorticity equation is used to examine the properties of barotropic
vortices under arbitrary nth-order hyper-diffusivity. Analytical expressions are derived for an eddy’s lifetime,
meridional drift, decay in size, and energy, as functions of the Coriolis parameter, order and magnitude of
diffusivity, and the eddy’s size, shape and strength. These expressions provide a simple explanation for
many observed features of oceanic and atmospheric vortices. For example, the competition between the
Coriolis effect and eddy strength in giving permitted eddy geometries; the bias towards a zonal anisotropy
for large vortices but not for small ones; energetic preference for axisymmetry; poleward meridional drift
of cyclonic vortices; and meridional speed variation depending on eddy geometry and strength.
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1. INTRODUCTION

Oceanic and atmospheric eddies have lifetimes ranging from the infinitesimal (in turbu-
lent flows), to several years (in Gulf Stream rings), to centuries (Jupiter’s Great
Red Spot); see reviews such as Richardson (1983), Provenzale (1999), Hopfinger
and van Heijst (1993) or Nezlin and Snezhkin (1993). Catastrophic events such as
vortex collisions obviously have an enormous effect on vortex lifetime. The influence
of nearby vortices, strain fields, and diffusion also contribute towards vortex decay.
An interesting question would be to attempt to quantify the role of diffusion,
Coriolis effect, and eddy geometry in the lifetime expectation of an eddy. This is one
issue this article will address, through an elementary model which nonetheless exactly
incorporates arbitrary-order hyper-diffusivity.

Given the destructive capacities of geophysical phenomena such as tropical cyclones,
there has also been considerable interest in determining the trajectories followed
by eddies. A feature often observed in experimental and numerical studies is that in
addition to a typical westward motion, a poleward meridional drift is to be observed
in cyclones, whereas an equator-wards drift occurs in anti-cyclones. Since the initial
work of Rossby (1948), many experimental (Masuda et al., 1990; Carnevale et al.,
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1991; Stegner and Zeitlin, 1998; Flór and Eames, 2002) analytical (Adem, 1956;
McWilliams and Flierl, 1979; Willoughby, 1989; Reznik, 1992; Korotaev and
Fedotov, 1994; Reznik and Dewar, 1994; Llewellyn Smith, 1997) and numerical
(McWilliams and Flierl, 1979; Masuda et al., 1990; Smith and Ulrich, 1990;
Carnevale et al., 1991; Korotaev and Fedotov, 1994; Sutyrin et al., 1994) studies
have confirmed this observation, using many different ideas. Many of the theoretical
and computational models cited are potential vorticity (PV) conserving, and use
eddies with Gaussian, Rankine or singular cores (Carnevale et al., 1991; Reznik,
1992; Korotaev and Fedotov, 1994; Reznik and Dewar, 1994; Sutyrin et al., 1994;
Llewellyn Smith, 1997). McWilliams and Flierl (1979) additionally consider frictional
and baroclinic effects. The analytical hyper-diffusive model developed in the current
article will also possess a poleward drift of cyclonic eddies. It will moreover obtain
an exact expression for the trajectory followed by such an eddy, and its meridional
drift speed. In this idealised but dynamically exact situation, the dependence of these
quantities on the parameters of the situation will be obtained. The results are consistent
with observations that the meridional speed increases with time (McWilliams and Flierl,
1979), and the observation in some cases that the meridional displacement tends to a
finite value (Carnevale et al., 1991; Korotaev and Fedotov, 1994; Llewellyn Smith,
1997; Flór and Eames, 2002).

Determining the energy associated with an eddy is an important exercise, which is
often studied with turbulence in mind. The current model draws some connections
with energetic observations. For example, the expectation that axisymmetric vortices
would eventually dominate (McWilliams, 1984; Hopfinger and van Heijst, 1993)
can be shown by examining the energy associated with this solution. The model
also shows why a preference for larger-scaled coherent eddies could be expected as
time progresses.

It has been known for some time that, for small wavenumbers, the energy resides
mainly in the zonal velocities, whereas for higher wavenumbers, the zonal and meridio-
nal modes have approximately the same energy. Such evidence is provided from actual
atmospheric data by Eliasen (1958) in his Figure 1, Baer (1972) in his Table 1, and
Kao and Wendell (1970) in their Section 5. Discussions and numerics on this behaviour
are also provided by Kenyon (1967) and Rhines (1975). The present model is able to
provide an interesting explanation for these observations.

The evolution of barotropic eddies will be studied here using an exact analytical
model in which the potential vorticity is subject to nth-order diffusivity. The emphasis
will be on determining expressions for an eddy’s lifetime, decay in size, and trajectory.
The dependencies of these on the eddy’s initial length-scale, geometry and strength, the
Coriolis parameter, and the order and strength of diffusivity, will be investigated.

2. THE MODEL

In the general barotropic �-plane setting, the streamfunction  ðx, y, tÞ is related to the
PV qðx, y, tÞ through

qðx; y; tÞ ¼ r2 ðx; y; tÞ þ f þ �y ð1Þ
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where f is the planetary vorticity at a fixed latitude which is chosen to be y ¼ 0, and the
Coriolis parameter � � 0 represents its variation with latitude (Pedlosky, 1979). Here,
ðx, yÞ refer to the eastward (zonal) and northward (meridional) coordinates respectively,
and t is time. In the current model, the PV shall be assumed to decay subject to arbi-
trary-order hyper-diffusivity, according to

@q

@t
þ J  ; qð Þ ¼ ��n �r2

� �n
q; ð2Þ

where the Jacobian operator J is defined through Jðh, gÞ ¼ hxgy � hygx, and �n > 0 is
the diffusive parameter, assumed small. The non-negative integer n is the order of
the diffusivity applied. The coupled equations (1) and (2) can be written as a non-
linear evolution equation for  alone as

@

@t
r2 
� �

þ J  ;r2 
� �

þ �
@ 

@x
¼ �n �r2

� �nþ1
 : ð3Þ

The order of diffusivity n takes values in f0, 1, 2, . . .g. If n ¼ 0, the dissipative term
corresponds to Rayleigh friction, where a frictional force proportional to the velocity
is included at the momentum equation level (Gill, 1982; Wajsowicz, 1986). The most
standard case n ¼ 1 is ‘normal’ diffusivity (studied, for example, in Rhines, 1975;
Balasuriya, 1997; Miller et al., 1997; Rogerson et al., 1999; Yuan et al., 2002), or
equivalently viscous dissipation. The hyper-diffusive case n ¼ 2 is also used frequently
in numerical modelling (Basdevant et al., 1981; McWilliams, 1984; Flierl et al., 1987;
Babiano et al., 1994; Poje et al., 1999), and higher-order diffusivities such as n ¼ 5
have also been studied (Marcus and Lee, 1994). The general nth-order formulation
has also been used in numerical studies (Basdevant et al., 1981; Macaskill and
Bewick, 1995), but not in analytical ones. Equation (3) shall be considered to be in
non-dimensional coordinates, in which case �n could be thought of as the reciprocal
Péclet number associated with nth-order diffusivity. (If the length and velocities associ-
ated with such a non-dimensionalisation are L and U respectively, then  would be
scaled by LU, �n by UL2n�1 and � by UL�2.)

Though (3) is a ð2nþ 2Þth-order non-linear PDE for  , the following is an exact
analytical solution:

 ðx; y; tÞ ¼ Aexp ��n k2 þ l2
� �n

t
h i

sin k xþ
�t

k2 þ l2

� �� �
sin lyð Þ ð4Þ

for any positive wavenumbers k and l, and amplitude A. The no-slip condition of a
‘true’ fixed boundary cannot be satisfied by this solution, and hence its relevance
in nature is to regions far removed from such boundaries. Note that this solution is
valid for all orders of diffusivity (n ¼ 0, 1, 2, . . .), and is indeed generalisable to
fractional diffusivities. While available in the literature for the standard diffusive
case n ¼ 1 (Balasuriya et al., 1998; Balasuriya, 2001), the author is unaware of such
solutions being stated for hyper-diffusivity or n ¼ 0 (apart from Wajsowicz (1986), in
which linearised dynamical equations are considered).
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The non-diffusive limit is obtainable through setting �n ¼ 0, and then (4) becomes
the standard Rossby wave solution (Pedlosky, 1979) to the barotropic, PV-conserving
equation (i.e., (3) with �n ¼ 0). The solution (4) generalises the Rossby wave to �n 6¼ 0
and to arbitrary nth-order diffusivity. In keeping with the standard Rossby wave which
is an exact solution to the non-linear equation (3) with �n ¼ 0, this solution also pos-
sesses a fortuitous cancellation in the non-linear term J  ,r2 

� �
.

Some qualitative observations are immediate from the model streamfunction (4).
It incorporates an exponential damping on to the standard (non-diffusive) travelling
Rossby wave. The order of diffusivity n appears only in the exponential decay.
This decay rate is independent of the wavenumbers for Rayleigh friction (n¼ 0). In
other instances, if k2 þ l2 > 1 (i.e., sufficiently small wavelengths),  decays more as
n increases. Small scales suffer more dissipation as the order of diffusion increases.
Intriguingly, if k2 þ l2 < 1, increasing n reduces the decay rate (in particular, in the
‘super-diffusive’ limit n ! 1, there is virtually no dissipation at these large scales!).
There appears a connection with the preference for large sized coherent eddies;
more on this issue is addressed in Section 6. Moreover, the difference between the
streamfunction (4) and its non-diffusive counterpart is of size �n for finite times, in
congruence with the rigorous result (Balasuriya, 1997) available for n ¼ 1 for generic
solutions to (3).

Though the emphasis in the remainder of this study is on the Eulerian characteristics
of the solution (4), a brief paragraph on the Lagrangian implications is in order.
A deterministic Eulerian velocity field (such as that corresponding to (4)) does not
automatically engender regular Lagrangian particle trajectories, as has been shown in
many examples (Knobloch and Weiss, 1987; Weiss and Knobloch, 1989;
Pierrehumbert, 1991; Samelson, 1992; del Castillo-Negrete and Morrision, 1993;
Meyers, 1994; Weiss, 1994; Pratt et al., 1995). However, studies (Balasuriya et al.,
1998; Sandstede et al., 2000; Balasuriya and Jones, 2001) suggest that some form of
flow regularity exists for small �n when n ¼ 1 (the asymptotic steadiness in a moving
frame contributes to this). Nevertheless, since ‘steadiness’ is never in reality achieved,
there is evidence (Balasuriya et al., 1998; Sandstede et al., 2000) that for n ¼ 1 transient
chaos – shift dynamics on a set of arbitrarily long symbols (Wiggins, 1988) – results.

In preparation for examining the Eulerian implications of the model, define the
zonally translating variable

x0 ¼ xþ
�t

k2 þ l2
:

Then, the PV qðx, y, tÞ for this solution is given by

qðx; y; tÞ ¼ �A k2 þ l2
� �

exp ��n k2 þ l2
� �n

t
h i

sinðkx0Þ sinðlyÞ þ f þ �y ð5Þ

by applying (1). Now, in nearly PV-conserving flows, it is traditional to use
PV-contours to define regions of flow behaviour. This is not to say that particles exactly
follow the PV-contours, yet when the diffusivity is small, the dominant motion is along
such contours. Based on this, a Eulerian definition of an eddy at each time t shall be a
region in which the PV-contours are closed (topologically circular). Therefore, there

42 S. BALASURIYA



must exist a local extremum of the PV-field at a point within this closed contour struc-
ture.

The evolution of the contours of qðx, y, tÞ is shown in Fig. 1. Since (5) is periodic in x,
it is only necessary to sketch the contours for ��=k � x < �=k. In this figure, the values
A ¼ 1, k ¼ 1, l ¼ 0:5, f ¼ 0, � ¼ 0:103 and �n ¼ 0:1 are used, and the contours of q are
plotted for: (a) t ¼ 0; (b) t ¼ 5; (c) t ¼ 9 and (d) t ¼ 15. Notice the presence of elliptic
eddies in (a), (b) and (c), and their eventual disappearance by (d). As the contours evolve
from t ¼ 0 to t ¼ 5, the basic structure persists, though the dissipation of PV is appar-
ent (there are fewer contours surrounding the eddy regions in (b) than in (a)). The dis-
sipation is more pronounced by t ¼ 9 (in (c)), and indeed an asymmetry of the eddies is
to be seen. Notice also a meridional drift in the eddies. By t ¼ 15, the eddies have com-
pletely vanished, and an effectively shear flow structure is apparent in (d). There is
apparently an intermediate time at which the eddies vanish.
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FIGURE 1 Potential vorticity contours at (a) t ¼ 0, (b) t ¼ 5, (c) t ¼ 9 and (d) t ¼ 15. The values A ¼ 1,
�n ¼ 0:1, f ¼ 0, � ¼ 0:103, n ¼ 2, k ¼ 1 and l ¼ 0:5 are used in this figure.
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A principal goal of this study is to analyse the motion, size decay and disappearance
time of these vortices, and relate them to the parameters in the problem (eddy size,
shape and strength, Coriolis effect, diffusivity). Now, at each time t, the eddy centres
are located at local maxima or minima of the PV-field. Also important in the vortex
structure are saddle points of the PV; as addressed variously in Balasuriya and Jones
(2001), Haller and Poje (1997) and Weiss (1994), saddles and centres are both necessary
for the topological structure of an eddy to be localised in a complex flow. As an
example, imagine placing a vortex of initial infinite influence in a non-trivial back-
ground flow. In this case, at least one saddle point will be created, along a ‘boundary’
which distinguishes between regions of purely closed PV-contours, and something
anomalous. See for example Figures 3–8 in Williams and Yamagata (1984), in which
a Gaussian vortex is superimposed on a zonal flow, and the contours demonstrate
the importance of an associated saddle point in demarcating the eddy. One might
argue that the boundary saddle points reflect the interaction between the eddy and
the surrounding flow; closed PV-contours are modified through adjacent effects to
create such saddle points.

Both centres and saddles correspond to critical points of the PV-field, and hence it
is necessary to locate points at which the PV-gradient vanishes. Using (5), we have

Jq ¼
�Ak k2 þ l2

� �
exp ��n k2 þ l2

� �n
t

� �
cos kx0 sin ly

�Al k2 þ l2
� �

exp ��n k2 þ l2
� �n

t
� �

sin kx0 cos lyþ �

" #
: ð6Þ

Note that the parameter f does not appear in the PV-gradient. The presence (or absence)
of this uniform rotation does not affect the topological structure of the PV-field, since
it is a mere additive constant. In all that follows, the constant background rotation f
will play no role.

At each fixed t, (6) indicates that saddles and centres are given by the solutions of

cos kx0 sin ly ¼ 0; ð7Þ

sin kx0 cos ly ¼
�

A l k2 þ l2ð Þ
exp �n k2 þ l2

� �n
t

h i
: ð8Þ

As t increases, the right-hand side of (8) will eventually surpass unity, and thereafter
no solutions would exist. Saddles and centres can be present only if

�

Al k2 þ l2ð Þ
exp �n k2 þ l2

� �n
t

h i
� 1,

i.e., only if t is less than a critical lifetime T given by

T ¼
1

�n k2 þ l2ð Þ
n ln

A l k2 þ l2
� �
�

:

It is shown in Section 4 that several different types of solutions to (7) and (8) exist for
t � T . These solutions correspond to centres and saddles, and the motion of these
Eulerian entities will be exactly quantified. It turns out that all these critical points
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will simultaneously vanish at t ¼ T , and therefore T is the lifetime of each and every
one of the eddies in the flow. For reasons of notation, the analysis of eddy
motion for t < T will be postponed to Section 4, whereas the next section will focus
on the critical lifetime.

Before the lifetime is analysed in detail, a possible viewpoint through which to
examine this model is suggested. While the model which has been developed has
specified values of the wavenumbers ðk, lÞ, the fact that it corresponds to an exact
solution to (3) may render it more useful than to merely model a spatially periodic
flow. Consider a flow comprising many different eddies of different length-scales,
embedded in a complex background flow. Pick one eddy, and suppose that it possesses
dominant wavenumbers ðk, lÞ. If so, (4) could be used as a first approximation for this
eddy, in a localised region near it. In other words, (4) may be thought of as the
first term in a Taylor-type expansion for the kinematical structure of the eddy, which
retains dynamical consistency through obeying (3). As long as this eddy structure is
retained, its behaviour could therefore be expected to be close to that of the elementary
model (4). It should be noted that the vortice’s structure is not independent of any
adjacent eddies or background flow; those have dynamically conspired to create
the local extremum, and attendant saddle point(s), which define this eddy (see
Figures 3–8 in Williams and Yamagata (1984) to see how a Gaussian eddy is modified
similarly by a shear flow).

Aberrations to this particular eddy could be caused through, for example, the effects
of imposing a Rankine core in the eddy, deviations from ellipticity, interaction
terms with other eddies and/or wavenumbers (this would contribute through non-
linear coupling terms in (3)), baroclinicity, wind or other forcing. Given that (4) is
exactly dynamically consistent, it has the potential of remaining robust to such small
perturbations. The expressions that are to be derived, related to an eddy’s lifetime, tra-
jectory and size, could therefore be expected to remain grossly accurate.

3. EDDY LIFETIME ANALYSIS

It was shown that the eddies can only live until t reaches the eddy lifetime T given by

Tðk; lÞ ¼
1

�n k2 þ l2ð Þ
n ln

A l k2 þ l2
� �
�

: ð9Þ

In the � ¼ 0 or the non-diffusive (�n ¼ 0) limits, this lifetime is infinity, and thus the
eddy destruction process addressed here is based on a combination of the Coriolis
and diffusive effects. Notice also that the lifetime is increasing with vortex strength
A, consistent with common sense and also experiments (see Figure 11 in Stegner and
Zeitlin (1998)). The wavenumbers ðk, lÞ include information on the eccentricity and
size of the eddy; hence (9) provides information on which types of eddies persist longer.

It helps to represent (9) with respect to polar coordinates ðK , �Þ in ðk, lÞ space. Since
k, l > 0, the condition 0 < � < �=2 applies. Then

TðK; �Þ ¼
1

�nK2n
ln
AK3 sin �

�
: ð10Þ
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In the Rayleigh friction case n ¼ 0, the lifetime is proportional to lnK , and therefore
will not have a well-defined maximum. The fact that smaller eddies live longer is
counter-intuitive, and is a reflection of the fact that for Rayleigh friction, the ‘diffusive’
time-scale in (4) is independent of the length-scale. The remainder of this section exam-
ines n � 1 diffusivity, in which the lifetime has a non-monotonic variation with the
wavenumber magnitude K .

The non-negative contours of the lifetime T in wavenumber space are shown as
solid curves in Fig. 2, for the choice of constants A ¼ 1, �n ¼ 0:1, � ¼ 0:103 and
n ¼ 2. The global maximum of T is located at around ðk, lÞ ¼ ð0, 0:75Þ, and there is a
sharp gradient associated with the region where T passes through 0. In fact, this is
an important transition, since if the eddy is to exist at time zero, one needs T � 0.
This is fulfilled if

K �
�

A sin �

� �1=3

: ð11Þ

The parameters chosen in Fig. 1 conform to this. Notice that the Coriolis effect �
and the eddy strength parameter A compete in determining allowable wavenumbers.
The region corresponding to this condition in ðk, lÞ wavenumber space is illustrated
in Fig. 3. The three different curves which asymptote to the k axis correspond to
different values of �=A; from the uppermost to the lowermost, these correspond to
�=A ¼ 2, 1 and 0:103, respectively. In each case, the condition (11) consists of
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FIGURE 2 Contours of Tðk, lÞ (solid curves) in wavenumber space, with A ¼ 1, �n ¼ 0:1, � ¼ 0:103 and
n ¼ 2. The dashed curves are contours of K ¼
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the region above the curve. As � increases, fewer wavenumbers become available. This
can be interpreted as the flow becoming more ordered for large �, consistent with obser-
vations (Rhines, 1975). On the other hand, any value of K is possible if A is sufficiently
large. Since A represents the strength of the vortex, if the initial vortex is ‘too large’
but has sufficient energy, it can survive despite the Coriolis effect. The competition
between � and A has been recognised in many other studies. For example, Llewellyn
Smith (1997) and Reznik and Dewar (1994) effectively use �=A as a perturbation
parameter in obtaining asymptotic axisymmetric eddy solutions.

Also illustrated in Fig. 3 is the dashed unit circle K ¼ 1 in wavenumber space. If
larger eddies are to be seen, it is clear from the figure that one needs � sufficiently
small. For example, the only eddies of size K < 1 that can be present in a geophysical
flow with �=A ¼ 0:103, must have wavenumbers below the dashed curve but above
the �=A ¼ 0:103 curve of Fig. 3. Thus, the competition between planetary and non-
linear effects produces a length-scale parameter, which has been argued to separate
the quasi-geostrophic, intermediate-geostrophic and planetary-geostrophic scales
(Williams and Yamagata, 1984).

The elliptic eddies described here could be defined to have an anisotropy (or eccen-
tricity) parameter obtained by dividing their y-extent by their x-extent. This takes
the value k=l ¼ cot �, and therefore � represents the eccentricity of the eddy. A circular
(axisymmetric, isotropic) eddy, for example, has � ¼ �=4. For a fixed eccentricity �, the
longest-lived eddy’s K value can be determined by

@T

@K
¼

1

�nK2nþ1
3� 2n ln

AK3 sin �

�

� �
,

which is zero (and corresponds to a maximum of T) when

K ¼ Km :¼ e1=ð2nÞ
�

A sin �

� �1=3

: ð12Þ
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FIGURE 3 Allowable wavenumbers for different values of �=A: from uppermost to lowermost curves,
�=A ¼ 2, 1 and 0:103. The region above each curve is allowable. The dashed line is the curve K ¼ 1.
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The longest-lived eddies are larger as one proceeds away from the equator; a result
consistent with atmospheric observations that in higher latitudes, energy spectra are
predominantly in the low wavenumber region (Kao and Wendell, 1970). Moreover,
the longest lived eddy is larger under higher-order diffusivities.

The maximum lifetime corresponding to the longest-lived eddy of fixed eccentricity is

T Km; �ð Þ ¼
3

2en�n

A sin �

�

� �2n=3

: ð13Þ

This again has many implications (for example, this lifetime depends on the Coriolis
parameter in the form ��2n=3). As � decreases (as one proceeds further from the
equator), this maximum lifetime increases. Thus coherence (both in terms of size and
lifetime) of eddies improves further away from the equator.

Define an eddy’s length-scale by L ¼ 1=K . One may represent T as a function of L as

TðLÞ ¼
L2n

�n
ln
A sin �

�L3
:

A plot of T as a function of the eddy length-scale L is shown in Fig. 4. The values
A ¼ 1, �n ¼ 0:1, � ¼ 0:103, � ¼ �=4 and n ¼ 2 have been used in this figure. The
length-scale corresponding to the maximum lifetime is, from (12),

Lm ¼
1

Km
¼ e�1=ð2nÞ A sin �

�

� �1=3

:

The observation by Rhines (1975) that increasing � decreases the spatial scale
(see his Figure 6) is borne out by this equation. Indeed, since T � 0 is required,
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FIGURE 4 Lifetime versus length-scale: A ¼ 1, �n ¼ 0:1, � ¼ 0:103, � ¼ �=4 and n ¼ 2.
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L � A sin �=�ð Þ
1=3 gives the range of permitted sizes of eddies. Moreover, T decreases to

zero as L ! 0; the smaller the eddy, the quicker it disappears.
As � reduces, the eddy’s lifetime diminishes. That is, an elliptic eddy with a larger

meridional extent (in comparison with its zonal extent), has virtually no chance of
survival. Eddies with the reverse geometry, on the other hand, are longer-lived.

Figure 2 also provides intuition into atmospheric observations that, for small
wavenumbers, energy resides mainly in the zonal velocities, whereas for high wavenum-
bers, zonal and meridional modes have approximately the same energy (Eliasen, 1958;
Kenyon, 1967; Kao and Wendell, 1970; Baer, 1972). The dashed lines show K ¼

constant contours in the wavenumber space. Observe that for smaller values of K ,
travelling along such a contour in the direction of increasing � would mean that the life-
time contours are being sharply intersected, and thereby the lifetime is increasing. In
contrast, the K-contours for larger values of K tend to align better with the T-contours;
the lifetime is increasing much more slowly. It is reasonable to expect observed eddies to
be the ones which have a larger lifetime; hence for small K , larger values of � are to be
expected, in contrast to large K , where changing � has much less effect on the lifetime.

Figure 5 explores this in greater detail. The variation of the lifetime with � is pre-
sented for three different K values. As K increases the curves move towards the left,
enabling more � values to become admissible. The larger vortices corresponding
to K ¼ 0:6 are about fifty times longer-lived than the smaller K ¼ 2:0 vortices.
Moreover, as K increases, the curves become less steep, and indeed by K ¼ 2:0, have
become so flat that there appears hardly any bias towards any of the permitted
values of �. In a flow containing only large wavenumbers K , since no particular �
is favoured to persist longer, a large spectrum of � values would be observed. On the
other hand, if a flow contained only small wavenumbers K, vortices corresponding
to an anisotropy in which k is small but l is large (i.e., eddies with a larger zonal
extent) should be seen more. Since an energy computation at some given time would
be more likely to capture the longer-lived vortices, this model gives a plausible view
on the observed dichotomy between small and large wavenumbers in the atmosphere.
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FIGURE 5 Variation of TðK, �Þ with � for fixed K: K ¼ 0:6 (short dashes), K ¼ 0:8 (long dashes) and
K ¼ 2:0 (solid). In all cases, A ¼ 1, �n ¼ 0:1, � ¼ 0:103 and n ¼ 2.
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4. EDDY MOTION

This section returns to the motion of the vortices, until the time of their disappearance.
To examine more closely the eddy behaviour in Fig. 1, a large-scale portrait is
presented in Fig. 6. This pertains to exactly the same parameter values as Fig. 1,
while focusing on a smaller region adjacent to a pair of eddies. The times at which
the contours are displayed are (a) t ¼ 10, (b) t ¼ 11:2 and (c) t ¼ 11:7. In Fig. 6(a),
there are two adjacent eddies (the upper one stronger, and of opposite sign, than the
lower), characterised as usual by closed PV-contours. There are local extrema (centres)
within these contours. There are also two saddle points, around the locations
ð�3:1, � 6:5Þ and ð�1:7, � 6:5Þ, which one can assume from this picture. As time
proceeds to t ¼ 11:2, the eddies have shrunk in size (there are in fact still two eddies
present, though the lower one is much weaker than the upper, and hence is not visible
in Fig. 6(b)). Notice that the upper centre has moved southwards, and an extrapolation
of the visible contours suggests that the lower centre has moved northwards. Therefore,
in addition to westward motion at the Rossby wave speed, a meridional drift is present.
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FIGURE 6 A closer look at eddy disappearance: (a) t ¼ 10, (b) t ¼ 11:2 and (c) t ¼ 11:7. The values A ¼ 1,
�n ¼ 0:1, f ¼ 0, � ¼ 0:103, n ¼ 2, k ¼ 1 and l ¼ 0:5 are used in this figure.
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By t ¼ 11:7, in Fig. 6(c), the centres and saddles have both disappeared, and as a conse-
quence, there are no more Eulerian eddies in the flow.

To analyse this behaviour, return to the analytical expressions of Section 2. For
t � T , the Eqs. (7) and (8), corresponding to points of vanishing PV-gradient, have
two types of solutions. One corresponds to the first term in (7) being zero, and the
other to the second term vanishing. Given q’s periodicity in x, in determining these sol-
utions, attention will be restricted to ��=k � x < �=k. Indeed, one may identify the
line x ¼ ��=k with x ¼ �=k, and thus effectively examine motion on a cylinder.
The nature of the critical points is governed by the sign of the Hessian H ¼ qxxqyy�
ðqxyÞ

2, which has a general value

H ¼ A2K8 cos � sin � exp �2�nK
2nt

� �
sin2 kx0 sin2 ly� cos2 kx0 cos2 ly
� �

;

where ðK , �Þ are the polar coordinates of the wavenumbers ðk, lÞ as outlined in Section 3.
If sin ly ¼ 0, then y ¼ p�=l, where p is any integer. Then from (8), we have

sin kx0 ¼
ð�1Þp� exp �n k2 þ l2

� �n
t

� �
Al k2 þ l2ð Þ

:

If p is even, the solutions x0 are positive and symmetric about �=ð2kÞ, whereas for
odd p, they are negative and symmetric about ��=ð2kÞ. We define

�ðtÞ � cos�1 � exp �n k2 þ l2
� �n

t
� �
Al k2 þ l2ð Þ

( )
¼ cos�1 � exp �nK

2nt
� �

AK3 sin �

� �
; ð14Þ

where 0 � �ðtÞ < �=2. Notice that � is monotonically decreasing with time t, and
that � ! 0 as t ! T . Then, the even and odd p solutions are given respectively by

x0 ¼
�

2k
�
�ðtÞ

k
and x0 ¼ �

�

2k
�
�ðtÞ

k
:

Since sin ly ¼ 0 at these points, H is clearly negative, and therefore all these points
are saddle points of q. These saddle points have a fixed y coordinate, but x0 changes
with time.

The second case one needs to consider from (7) is when cos kx0 ¼ 0. This corresponds
to x0 ¼ ��=ð2kÞ. The positivity of the Hessian implies these are eddy centres.
Equation (8) then gives cos ly ¼ � cos �ðtÞ, from which

y ¼
2p�

l
�
�ðtÞ

l
or y ¼

ð2pþ 1Þ�

l
�
�ðtÞ

l

are the solutions for the positive and negative sign choices respectively, for any integer
p. The next step is to determine the directions of rotations of these eddies. Since the
�-plane approximation is best used close to y ¼ 0, this shall be done only for the
eddies near this meridion. Choosing p ¼ 0 in each of the above expressions gives
four such eddies, one in each of the quadrants in ðx0, yÞ space. Now, the motion of
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particles is governed by

_xx ¼ � y ¼ �Al exp ��n k2 þ l2
� �n

t
� �

sin kx0 cos ly;

_yy ¼  x ¼ Ak exp ��n k2 þ l2
� �n

t
� �

cos kx0 sin ly:
ð15Þ

The directions of motion along the x0 ¼ 0, x0 ¼ �=ð2kÞ and y ¼ 0 axes are displayed in
Fig. 7. The eddy located in the first quadrant thus clearly has a clockwise rotation, at a
given instance in time t.

Performing this analysis on the centres C and saddles S near the meridion y ¼ 0
enables the exact positions of these entities in ðx, yÞ space to be determined:

S1 : �
�t

ðk2 þ l2Þ
þ
�

2k
�
�ðtÞ

k
; 0

� �
;

S2 : �
�t

ðk2 þ l2Þ
þ
�

2k
þ
�ðtÞ

k
; 0

� �
;

S3 : �
�t

ðk2 þ l2Þ
�
�

2k
�
�ðtÞ

k
;
�

l

� �
;

S4 : �
�t

ðk2 þ l2Þ
�
�

2k
þ
�ðtÞ

k
;
�

l

� �
;
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�t
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þ
�

2k
;
�ðtÞ

l

� �
;
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�t
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�
�

2k
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�

l
�
�ðtÞ

l

� �
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FIGURE 7 Particle trajectory directions based on (15), which are used to determine the direction of
rotation of the eddy in the first quadrant.
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These centres and saddles are displayed in Fig. 8, with the rotational directions of the
centres also specified. This sketch is in the ðx, yÞ frame, and in converting from x0 to x, it
must be noted that all entities must translate westward at the Rossby wave speed
�=ðk2 þ l2Þ. These motions are indicated in the figure with arrows with solid heads.
The additional motion caused through the presence of �ðtÞ is indicated with arrows
with open heads. The velocity directions are determined by using the derivatives of
the above positions, and bearing in mind that _��ðtÞ < 0.

The saddle S2 is travelling westward faster than S1, and will eventually catch up
with it. Meanwhile, the eddy centres C1 and C4 are approaching the meridion y ¼ 0.
Indeed, if one examines the limit t ! T for all of these four entities, they approach
the identical location
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FIGURE 8 Schematic of the motion of eddy centres and saddles near y ¼ 0. The solid arrows give the
easterly Rossby wave drift, and the open arrows are the additional velocities as described in the text.
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Two saddles and two eddy centres simultaneously coalesce and disappear at this loca-
tion at t ¼ T . This same sort of behaviour occurs in the disappearance of the other
eddies and saddles, as the lifetime (9) is approached. The eddies of this model therefore
are dipoles, whose counter-rotating parts fuse upon reading the eddy lifetime.

The exact trajectories of the eddy centre C1 in ðx, yÞ space are shown in Fig. 9 for the
choice of parameters vn ¼ 0:01, A ¼ 1, � ¼ �=4, r ¼ 2, � ¼ 0:103 and n ¼ 2. Beginning
at a certain meridional value, the eddy initially moves mainly westward, but the
meridional drift amplifies as time progresses, and the eddy approaches y ¼ 0 tangential
to the northward direction. This qualitative form of barotropic vortex motion has been
presented in many other analytical and numerical studies; see Figure 1 in Reznik (1992),
Figure 4 in Sutyrin et al. (1994), or the curve labelled ‘‘model’’ in Figure 1 in Reznik
and Dewar (1994). There are other studies which show somewhat different vortex tra-
jectories: Llewellyn Smith (1997)’s Figure 2, and Carnevale et al. (1991)’s Figure 2,
appear to have the opposite behaviour of levelling out as time progresses, and linear
trajectories result from other approximations (Smith and Ulrich, 1990; Korotaev and
Fedotov, 1994; Reznik and Dewar, 1994).

The fact that cyclonic eddies drift polewards, and anti-cyclonic ones towards the
equator, can be obtained from this model. If in the northern hemisphere, the anti-clock-
wise vortices C2 and C4 of Fig. 8 are cyclonic, and C1 and C3 are anti-cyclonic. The
cyclonic vortices, through the effect produced through �ðtÞ, move poleward, whereas
the anti-cyclonic ones move towards the equator. On the other hand, if in the southern
hemisphere, the vortices have the reverse cyclonicity. Nevertheless, the rule for pole-
ward drift for cyclonic vortices is seen to be still valid. This is true for all vortices (pic-
tured in Fig. 8 or not) emerging from this model. It is moreover possible to exactly
characterise the speed of meridional drift, which is the same for all vortices of this
model:

_yyðtÞ


 

 ¼ �

_��ðtÞ

l
¼

��nK
2n�1

sin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2K6 sin2 � expð�2�nK2ntÞ � �2

q : ð16Þ
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FIGURE 9 The trajectory of the vortex C1 as time progresses (it is travelling in the southwest direction).
The values �n ¼ 0:01, A ¼ 1, � ¼ �=4, K ¼ 2, � ¼ 0:103 and n ¼ 2 have been used.
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It should be noted that this is not the standard meridional Rossby wavespeed (which
would be � cot �=K2), but rather the meridional speed of the PV-centres. The mono-
tonic increase with t of the meridional speed has been seen in other studies
(McWilliams and Flierl, 1979; Reznik, 1992; Reznik and Dewar, 1994; Sutyrin et al.,
1994). The speed moreover becomes infinite at precisely the vortex lifetime (9), and
so this singularity is associated with the disappearance of the vortex. Within the
times of existence, (16) is also an increasing function of the parameter �=A. Strong
eddies (large A in comparison to �) resist meridional drift. This idea works well with
the experiments of Stegner and Zeitlin (1998), who in their Figure 12 essentially
show this effect. They use a larger volume of injection to create stronger vortices,
and hence this paper’s A is related to their abscissa in Figure 12.

Eddies which are created with a large meridional extent (� � 0) will translate very
rapidly in the meridional direction, but have a very short life expectancy, as described
in Section 3. Also notice that smaller magnitudes of diffusivity cause lesser drift
(indeed, if �n ¼ 0, (4) is a simple travelling Rossby wave with only zonal motion).
Hyper-diffusion is therefore a mechanism in this model which contributes towards
drift. While many other studies exhibiting meridional drift are based on non-diffusive
models (Rossby, 1948; Adem, 1956; Korotaev and Fedotov, 1994; Reznik, 1992;
Reznik and Dewar, 1994; Llewellyn Smith, 1997; Sutyrin et al., 1994; Smith and
Ulrich, 1990), the present phenomenon presumably adds to the nonlinear drift effects
discussed therein. Numerical diffusivity may also play a role in the numerical studies.

The variation of the drift speed (16) with respect to vortex size is less obvious,
and apparently has a strong dependence on the order of diffusivity n. Plotting
this dependence for different values of n needs care, since the scale in (16) changes
substantially for different n, and also since the conditions (11) and t � T must both
be satisfied for the parameters chosen. Examining (16), one would expect the speed
to increase with K for large enough n, and decrease with K for small n. Figure 10
demonstrates this behaviour. Each panel shows the variation of the speed with the reci-
procal length-scale K , for a fixed value of n. Since higher values of n (n ¼ 3, 4, . . .) turn
out to have qualitatively similar behaviour to n ¼ 2, some fractional values of n are also
included in this figure (such n would represent fractional-order Laplacian derivatives
in the dynamical equation (3); the model solution is generalisable to such values).
In any case, the observation is that higher orders of diffusivity typically translate
smaller vortices faster, whereas lower orders of diffusivity are more effective in causing
meridional motion of larger vortices.

The meridional motion vanishes in the limit � ¼ 0, which is the uniform background
rotational limit since f in (1) may be non-zero. Since �ðtÞ is identically zero, saddles
and centres simply translate westwards at the classical Rossby wave speed. No eddy
disappearance occurs. Indeed, the solution (4) is then an exponentially damped station-
ary wave.

5. DECAY IN VORTEX SIZE

While the dependence of an eddy’s lifetime on the parameters in the problem has been
analysed in Section 3, the rate of the eddy’s diffusive decay during its lifetime was not
presented. The arguments of Section 4 enable a quick investigation of this.
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During its lifetime, an eddy’s size diminishes in the sense that the distance between
the eddy centre and one of the associated saddle points decreases to zero. For the
eddy C1, if choosing S1 as the saddle point towards which C1 converges, the relevant
distance at a general time t is

sðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðtÞ

k

� �2

þ
�ðtÞ

l

� �2
s

¼
2�ðtÞ

K sin 2�
; ð17Þ

where �ðtÞ is defined in (14). As t ! T , sðtÞ ! 0. Since the eddy disappears through a
coalition between the centre (enclosed by closed PV-contours) and the saddle (reflecting
external effects), the above expression demonstrates how the competition between the
vortex and its surroundings unfolds.
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FIGURE 10 The variation of the meridional drift speed at fixed time with reciprocal length-scale K . The
other parameters chosen are A ¼ 1, �n ¼ 0:01, � ¼ �=4 and t ¼ 0:08. The panels correspond to different
orders of diffusivity: (a) n ¼ 2, (b) n ¼ 1:5, (c) n ¼ 1 and (d) n ¼ 0:5.
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The distance between the eddy centre and a saddle point (which lies on the eddy
boundary) is a plausible expression to use as a measure of the size of an eddy. This
is particularly valuable since its variation with time is explicitly available in (17).
The size variation sðtÞ depends on the various parameters in a non-trivial way, as is
illustrated in Fig. 11. In all panels, the solid curves correspond to the parameter
values � ¼ 0:103, A ¼ 1, K ¼ 2, � ¼ �=8, n ¼ 2 and �n ¼ 0:01. All eddies have a
comparatively slow decay initially, with rapid size depreciation towards the end of
their lifetime. Indeed, the curves in Fig. 11 show that half of an eddy’s size is lost
during roughly the final 8% of its life. Figure 11(a) displays the result of varying �n;
the dotted curve is �n ¼ 0:05 and the dashed curve �n ¼ 0:03, with all other parameters
fixed at the base values. Larger Péclet numbers cause the eddy to decay slower.

The effect of varying the initial reciprocal length-scale K is shown in Fig. 11(b), where
K ¼ 4 is the dotted curve, K ¼ 3 the dashed, and K ¼ 2 the solid. Figure 11(c) illus-
trates the effect of varying the eccentricity �: the dotted and dashed curves are
� ¼ �=16 and �=4, respectively. The monotonic effect of � on the lifetime T (as reflected
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FIGURE 11 The size variation sðtÞ of an eddy with time. The ‘base’ parameter values, corresponding to the
solid curves in each panel, are � ¼ 0:103, A ¼ 1, K ¼ 2, � ¼ �=8, n ¼ 2 and �n ¼ 0:01. (a) �n ¼ 0:05 (dotted)
and �n ¼ 0:03 (dashed); (b) K ¼ 4 (dotted) and K ¼ 3 (dashed); (c) � ¼ �=16 (dotted) and � ¼ �=4 (dashed);
(d) n ¼ 1 (dotted) and n ¼ 3 (dashed).
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in (10) and also as the intersection coordinate of the abscissa in Fig. 11), is apparent.
The dashed curve corresponding to small � decays before the others, in spite of a con-
siderable initial advantage in size. The final panel, Fig 11(d), demonstrates the eddy’s
size variation dependence on the order of diffusivity n. Here, the solid curve is n ¼ 2,
the dotted standard diffusivity (n ¼ 1), and the dashed a higher-order hyper-diffusivity
(n ¼ 3). Observe that lower-order diffusivity causes a much flatter decay curve (and, as
known from Section 3, a much larger lifetime).

The influence of � and A on sðtÞ has not been pictured in Fig. 11. Their effect
is straightforward, since �ðtÞ varies monotonically with the ratio �=A. Increasing
this ratio makes sðtÞ smaller at any value of t. Therefore, a larger Coriolis effect, or
equivalently a weaker vortex, will cause quicker reduction in vortex size. While none
of the results of this section are surprising, it is nonetheless useful to possess a model
(17) which characterises the size variation in a hyper-diffusively decaying eddy.

6. ENERGETICS

The energy associated with the vortices can be assessed directly. Given  ’s periodicity
in both x and y, it suffices to compute the kinetic energy within the unit cell
��=k,�=k½ � � ��=l,�=l½ �, which is

E ¼

Z �=l

��=l

Z �=k

��=k

1
2
J 


 

 dx dy:

Upon evaluation for  as given in (4), this yields

EðL; t; �Þ ¼
�2A2

sin 2�
exp �

2�nt

L2n

� �
; ð18Þ

where the length-scale L is as defined in Section 3. The minimum E achieves with
respect to � is when � ¼ �=4; this model quickly gives the result that exactly circular
(i.e., axisymmetric) vortices correspond to a minimum energy configuration. Thus,
they are stable in the sense of variations in �. Experiments have confirmed
this (McWilliams, 1984; McWilliams, 1990; Hopfinger and van Heijst, 1993). Thus,
though large values of � apparently correspond to longer lifetimes where diffusivity
and Coriolis effect are concerned (see Section 3), they are less stable towards fluctua-
tions than axisymmetric vortices.

The energy density (energy per unit area), eðL, tÞ, is obtained by dividing (18) by the
area of the unit cell, resulting in

eðL; tÞ ¼
A2

8L2
exp �

2�nt

L2n

� �
: ð19Þ

Large vortices have a smaller decay rate constant (except for Rayleigh friction, where
both E and e have decay constants independent of the length-scale). For small vortices
(L < 1), the energy decay rate increases with increasing n. On the other hand, for large
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vortices (L > 1), the decay rate is smaller for higher-order diffusivity. A transition in the
dependence on n occurs at L ¼ 1, which is the length-scale associated with the non-
dimensionalising used to arrive at (3) (e.g., L ¼ 1 may correspond to the Rossby defor-
mation radius (Pedlosky, 1979), or the Rhines critical meanders scale (Rhines, 1975;
Cushman-Roisin, 1994)). The observed minimum size of persistent coherent vortices
may be related to this transitional length-scale.

The behaviour of the energy density (19) as a function of the length-scale is shown
in Fig. 12 for different values of time. As time progresses the curve shifts down
(energy dissipates), but also shifts to the right. At each time there is a preferred
length-scale which maximises the energy density:

L ¼ �LL � 2�nntð Þ
1=ð2nÞ: ð20Þ

This shifts to the right as t increases, and indeed the root dependence in time is
qualitatively consistent with that obtained by Rhines (1975) using a heuristic argument
in his Figure 1. The value of �LL may represent the preferred size of coherent vortices
which are seen to emerge (Hopfinger and van Heijst, 1993; McWilliams, 1984;
Williams and Yamagata, 1984; van Heijst and Clercx, 1998); coherent eddies are,
after all, monochromatic to a gross approximation at this stage. Since �LL increases
with time, eddies may attempt to remain energetically favourable by also increasing
their size appropriately. If so, notice that the corresponding energy density

eð �LL, tÞ ¼
A2

8 2e�nntð Þ
1=n

dissipates with time, whereas the total energy within the eddy

Eð �LL, tÞ ¼
�2A2

e1=n sin 2�
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FIGURE 12 Energy density versus length-scale at different values of t: t ¼ 0:1 (solid line), t ¼ 1 (dashed
line), and t ¼ 4 (dotted line). Here, A ¼ 1, �n ¼ 0:1 and n ¼ 2.
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remains constant. While the coherent eddy gains energy through absorption of adjacent
areas to compensate for its diffusive dissipation, its energy density decreases because of
the addition of less energetic regions.

In the limit n ! 1 (arbitrarily high-order diffusivity), L’Hopital’s Rule can be used
on (20) to show that �LL approaches the limit 1, and the cascade stops. In dimensional
coordinates, this would be the scaling length-scale used to obtain the dynamical equa-
tion (3). Notice moreover that this is independent of time and the diffusivity parameter
�n. Under such ‘super-diffusivity’ an exactly preferred persistent length-scale for coher-
ent eddies, equivalent to the scaling length-scale, therefore emerges. Interestingly, this is
quite consistent with thinking of the Rhines scale as a scale at which the energy cascade
is suppressed (Rhines, 1975).

7. CONCLUSIONS

This article has used a nontraditional viewpoint in examining barotropic vortex motion,
lifetime and structure. The model was based on a generalised Rossby wave solution
to the dynamical equation with general nth-order diffusivity. For non-zero � and �n,
barotropic eddies were shown to translate exhibiting meridional drift, and then disap-
pear at a specified time, for which an explicit expression was obtained. An exact
formulation for the eddy’s trajectory, and meridional drift speed (which moreover
conformed with the poleward drift of cyclonic vortices), was obtained. Only eddies
of certain geometries were permitted to exist under these dynamics. Micro-eddies
survive only briefly. It was also seen that larger and longer-lived vortices were more
likely further away from the equator. Sufficiently large eddies were also shown to
have increased robustness under higher-order diffusivity. Zonal lengthening is favoured
in large eddies, in contrast to small eddies, which are more isotropic. Energetically
however, axisymmetric vortices are preferred. Moreover, the most energetic length-
scale increases with time.

Of the host of properties and consequences detailed, possibly the most important are
(i) the exact elementary solution (4), (ii) the lifetime expression (9), (iii) the vortex’s tra-
jectory, speed (16) and size (17), and (iv) the energy density variation (19) and conse-
quent preferred length-scale (20). These have the power of explicitly expressing
the dependence on the various parameters in the problem: the Coriolis parameter,
the order of diffusivity, the magnitude of diffusivity, the geometry of the vortex,
and the strength of the vortex. In different parameter regimes, appropriate expansions
of these expressions could be used to determine dominant characteristics.

Many properties of the model examined herein are simplistic in comparison with
experimental or some numerical data. For example, it is not possible to use specific
structure characteristics of a vortex core, since (4) specifies this. Indeed, the eddies
are dipolar, and it is not obvious whether they fall under the ‘isolated’ or ‘non-
isolated’ classifications commonly used. Effects of baroclinicity, stratification, forcing
and topography cannot be handled. Nevertheless, a possible rationalisation of the
model is that it could be considered a first term in the spatial expansion (subject to
dynamical consistency) of a locally isolated dipolar eddy’s kinematic structure. Albeit
with these idealisations, the model provides a wealth of formulas, and also quite
easily establishes less obvious tendencies (such as the dichotomy in isotropy between
large and small vortices). The model is also able to simultaneously handle all orders

60 S. BALASURIYA



of diffusivity, ranging from Rayleigh friction to super-diffusivity. There appears to be
no qualitative difference in choosing different orders of diffusivity (beyond n ¼ 1),
which seems to support the variety of values used by numerical modellers.

The explicit formulas derived in this article were based on an elementary exact sol-
ution to the non-linear PV-dissipating equation. In the event that perturbations
to this solution occur (say, through the creation of small eddies in the flow, or with
using a more common form for the vorticity distribution in the vortex core), the
basic geometrical structure of the eddy is expected to remain quite robust. Therefore,
the expressions for its lifetime, meridional drift, size and energy density would only
suffer perturbative changes. As such, the expressions and consequences derived in
this paper should model primarily monochromatic vortices very well.
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