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I. INTRODUCTION

The potential to trap micro/nanoparticles and/or single cells within droplets1–3 has led

to an explosion of recent interest in using continuous-flow droplet-based microfluidics4–7

for synthesis and analysis at the micron or submicron level2,8–20. A common method for

generating microdoplets is to inject two or more reagent phases into a main channel carrying

an immisible fluid (or equivalently, have them enter from side-channels); the reagents coalesce

to form microdroplets2,6,11–13,16–19,21–23 which are carried along by the carrier fluid. The

generated microdroplet often has a two-cell structure as schematically shown in Fig. 1, with

the upper and lower cells containing two injected fluids2,3,21,22,24–27. The usual intention is

to get the two fluids to mix across the centre interface to promote a chemical/biological

reaction. However, this interface is usually robust7, and transport only occurs very slowly

via diffusion2,22,24.

Since channel bends can induce transport even in laminar flows28, many researchers

have studied the effect of channel disturbances or bends to promote transport within

droplets6,18,21,22,24. A recurring theme is attempting to determine boundaries which op-

timise transport21,22,24,29–32. However, comparison between experimental devices fabri-

cated by different laboratories is difficult owing to the diverse methods used to quantify

transport3,22,26,27,29,31,33,34. Coupled with the expense of fabricating microfluidic devices,

experimentally determining optimal channel designs is therefore tricky.

An alternative is to use numerical simulations, which have been used for both micro-

droplets and plugs (‘slugs’) in which the microdroplet fills out the entire width of the

microchannel22,24,32–35. The governing equations are usually taken to be the Stokes equa-

tions, since the flow is at low Reynolds number at these tiny dimensions. In computing

solutions using direct numerical simulation (DNS), boundary conditions need to be imposed

at the surface of the microdroplet36–38—at which the interior fluid and the immiscible outer

carrier fluid come in contact—and on the outer carrier fluid at the channel boundaries. Im-

plementing these conditions depends on the particular channel geometry, a fact which is

exacerbated by the unsteadiness of these conditions since the microdroplet is experiencing

different nearby boundaries as it traverses the channel. This formidable difficulty has only

been overcome in some simplified geometries in which the boundary specifications become

tractable and/or when considering plugs as opposed to droplets33,35,39,40. One DNS which is

2



Transport in microdroplets via channel bends

H-a,0L Ha,0L

FIG. 1. Flow in droplet’s frame of reference in a straight channel. The flow in the channel is from

left to right in the laboratory frame, and the droplet size is exaggerated to elucidate its interior

two-cell structure.

particularly related to the present article is that performed by Muradoglu and Stone31 in a

two-dimensional serpentine channel, using a finite-volume/front-tracking method (a similar

computation for plugs was later developed32). Given the difficulty in obtaining this particu-

lar computation, a systematic way of obtaining the velocities within microdroplets resulting

from a range of channel boundaries is impractical.

Even after the velocity field within the droplet has been determined using PIV mea-

surements in an experiment or a DNS, a comparison of transport characteristics requires

the step of quantifying mixing. A standard approach is to seed many particles, follow La-

grangian trajectories or else advect passive scalars using an advection-diffusion scheme. A

norm—usually related to a variance of a concentration or intensity3,22,26,29,31,33,34—is then

used to quantify mixing, but the fact that the norms vary between studies hinders compari-

son. Given this range of difficulties, using DNS to help decide what forms of channel bends

are best is prohibitive.

In recognition of this, there have been many transport analyses which use simplified or-

dinary differential equations models intending to capture the essence of the physics25,30,41–43.

Many build on the Hadamard-Rybczynski (HR) solution36,37 for a spherical droplet trav-

elling in a uniform flow field, which has symmetry about its axis; this axis consists of a

heteroclinic trajectory connecting together two fixed points on the surface of the sphere. A

disturbance to an HR flow, caused by an imposed time-periodic forcing41,43, swirl30,44, trans-
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lational velocity30, external strain42 or thermocapillary effects25, is then introduced. The

velocity of the fluid—due to both the undisturbed and the disturbance physics—is thereby

specified analytically, doing away with the need for DNS. Lagrangian particle paths still need

to be computed for a range of trajectories. The generic expectation for the geometry as in

Fig. 1 is that the heteroclinic trajectory which forms the interior flow interface, will split

as a result of the velocity disturbance and lead to chaotic transport45. Not surprisingly, all

these studies exhibit complicated transport25,30,41–43.

The extension of these ideas in quantifying the role of channel boundaries specifically as a

velocity perturbation was pursued by Stone and Stone29. In a specific channel comprising of

a curve, a straight segment, a curve in the opposite direction, and a final straight channel,

the effect of the channel curvature was modelled as an external shear flow acting on a

droplet29, a modelling hypothesis since taken up by other studies34. Particle trajectory

simulations revealed complicated transport within the droplet, which was further analysed

using a mixing norm. Detailed numerical investigations on the role of the lengths of the

curved and straight segments for this specific channel configuration was performed at a few

different values of shear flow strengths (a proxy for curvature) and viscosity ratios.

The goal of the present article is to develop a quick method for assessing transport due to

channel geometry which is easily adaptable for general boundary curvature. In the spirit of

similar approaches25,29–31,41–43 this will be via a simplified model which inevitably does not

capture all the physics, but which is designed specifically to elucidate the role of channel

boundaries. The focus is on characterising how the transport occurs between the upper and

lower cells of the two-cell microdroplet, as this is the instigating process for mixing between

the upper and lower fluids. This shall be quantified as a time-varying function, utilising

recently developed nonautonomous dynamical systems theory46,47 (standard time-periodic

analyses48–55 are not applicable for generally varying channel boundaries).

The types of channel configurations examined in this article are illustrated in Fig. 2.

Here, (a) and (b) are schematics for developing the method to curved segments and straight

segments respectively; the microdroplet is shown at various points in the channel indicating

that its axis is reorienting as it progresses. In (c) and (d), specific examples of curved

and straight-segment serpentine channels are shown, which were chosen to conform with

existing studies18,21,22,24,26,29,31–34. The impact of one circular bend, Fig. 2(a), is examined

in Section IV, and extended to many such circular bends, Fig. 2(c), in Section V. The
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FIG. 2. Examples of channel configurations examined: (a) curved segment, (b) a curved serpentine

example, (c) combinations of straight segments, and (d) serpentine channel with straight segments.

general, Fig. 2(b), and specific, Fig. 2(d), situation of connected straight channel segments

is addressed in Section VI. In building up the process for determining transport in these

channels, preliminary background on the HR solution for straight channels is developed in

Section II, and details on how to quantify time-varying lobe-intrusion driven transport in

Section III.

In all cases, explicit expressions for the transport between the cells are obtained as a

function of time, which can be easily evaluated for given choices of the parameters in the

system: the droplet radius, the curvature of the channel, the viscosity ratio between the

droplet’s interior and exterior (carrier) fluids, and the ambient flow speed along the channel.

These expressions explicitly give information on the geometry and the time-variation of lobes

intruding from one side to the other. Our approach allows for the quantification of transport

both as an instantaneous time-dependent flux and as a cumulative volume transfer between
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the cells, providing an alternative insight into the transport process from studies which

mostly study the evolution of a global mixing/scattering measure3,18,21,22,24,26,27,29–34,42,43.

As an example of the types of results which are developed, Fig. 3 shows (a) the time-varying

flux from the lower to the upper cell, and (b) the accumulated volume flux by the time the

droplet has gone through the bend, for the one circular bend situation of Fig. 2(a). During

times of positivity of the flux function in (a), fluid from the lower cells fills out a lobe in

the upper cell, and when negative the opposite happens. So one lobe of fluid from each side

intrudes into the other side by the end of the process, and the areas of these lobes is shown in

(b). This is the first step in achieving good mixing between the fluids; the lobes stretch and

fold due to hyperbolicity and confinement, eventually filamenting to suitably small widths

to allow for diffusive mixing. The variation with the curvature 1/R is easily assessed, and as

expected, both ways of thinking about the flux decrease with R. As another example of the

method, the time-varying flux for the square-serpentine configuration of Fig. 2(d) is shown

in Fig. 4; this time, the role of different time-lags T is shown. In this and in other examples,

the intra-droplet flux increases with time-lag in a highly sensitive fashion. This highlights

the necessity of having to carefully assess this effect in any modelling; most models impose

instantaneous realignment25,29,34,43,56.

Calculations such as those in Figs. 3 and 4 are easily performed using this method for

any channel configuration involving connections between straight and circular channels,

allowing for the ability to test for flux dependence on channel lengths and curvature, the

relative viscosities of the droplet and carrier fluid, the droplet radius, and the flow rate. This

therefore provides a quick method for assessing good mixing configurations, which can help

choose promising designs for subsequent (more costly) analysis using experiments or DNS.

II. STEADY DROPLET IN AN ETCHED STRAIGHT CHANNEL

The simplest kinematical velocity distribution along the separating line which would give

the behaviour shown in Fig. 1 is of the form

ẋ = k
(

a2 − x2
)

, −a ≤ x ≤ a (1)

for some constant k > 0 which incorporates the dynamical properties of the system. While

this encapsulates the geometry, a dynamically consistent description is necessary. Consider
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FIG. 3. (a) The approximate flux for the channel configuration in Fig. 2(a), with the choices R = 8

(solid), R = 13 (dashed), R = 20 (dotted) and R = 40 (dot-dashed). (b) The total volume flux

from lower to upper cell (top dots) and from upper to lower cell (bottom dots) as it varies with R.

the microdroplet in Fig. 1 formed by injecting two equal volumes of fluid into a channel

with straight sides in which there is a steady flow of speed U towards the right. Suppose the

viscosity of the fluid within the droplet is λ times the viscosity of the exterior carrier fluid.

Here, the channel is considered etched on to a thin device, and thus the flow exhibits thin-film

like motion which is dominantly two-dimensional. It is assumed that this two-cell droplet

of radius a will flow at speed U in the channel while maintaining its basic structure; such

is to be expected when the surface tension effects on the boundary between the two fluids

counterbalances diffusion29,36,56. Under the assumptions of steady, low-Reynolds number

flow within a uniform flow flowing to the right (in the x-direction in this case) at speed U ,

the velocity field in the reference frame moving with the microdropet could be modelled by

ẋ =
∂H0

∂y
, ẏ = −

∂H0

∂x
, (2)

for some streamfunction H0(x, y) which satisfies the biharmonic equation for Stokes flow.

The separating line between the top and bottom cells of the droplet is a heteroclinic trajec-

tory of (2). In this two-dimensional setting (in contrast with the classical three-dimensional

HR solution29,36,37 in which the ‘separating line’ is surrounded by nested torii) this separator

precludes transport between the upper and lower cells. Now, the heteroclinic trajectory is

a solution (x̄(t), 0) of (2), in which x̄(t) → −a and x̄(t) → a as t → −∞ and t → ∞
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FIG. 4. The flux function (32) for the square serpentine channel configuration of Fig. 2(d) with

time-lags T = 0 (solid—along the t-axis), 0.2 (dashed), 0.4 (dotted) and 0.6 (dot-dashed).

respectively. Choose x̄(0) = 0. The plan is to determine such intra-cellular flux across this

separator due to the influence of the channel boundary. Our approach will be Lagrangian

in nature, that is, it will not simply compute a flux across some fixed curve in space, which

would correspond to an Eulerian flux which only needs the instantaneous velocity. The

Lagrangian approach will take into account the motion of fluid particles, and where they

come from, implicitly using information on their full trajectories.

Now, a two-dimensional realisation of the three-dimensional Hadamard-Rybczynski

solution29,36,37,56,57 would take the form

ẋ =
U

2a2 (1 + λ)

(

a2 − x2 − 3y2
)

, ẏ =
U

a2 (1 + λ)
xy , (3)

which corresponds to a biharmonic streamfunction

H0(x, y) =
U

2a2 (1 + λ)

(

a2 − x2 − y2
)

y . (4)

This is consistent with the kinematic solution (1) on the interface y = 0, with the choice

k = U/]2a2(1 + λ)]. Hence, the x-coordinate variation along the separating interface is

x̄(τ) = a tanh
Uτ

2a (1 + λ)
, (5)
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with τ being used for time. Since the above expression is easily inverted, either time τ or

position x̄ can be used to parametrise the heteroclinic. At a general location x̄ (equivalently,

general parametrisation τ) on the separating line, the horizontal velocity can be written as

u(x̄) =
U

2a2 (1 + λ)

(

a2 − x̄2
)

=
U

2 (1 + λ)
sech2 Uτ

2a (1 + λ)
(6)

using (3) and the fact that dx̄/dτ = u. The preliminary information from the steady flow

within a droplet in a straight channel flow is now complete, and shall be the basis of com-

puting transport between the cells when boundary curving perturbs this flow.

III. TRANSPORT QUANTIFICATION

Before considering the specific effect of channel geometry, the theory for quantifying the

transport across the separating curve due to a general perturbation v(x, y, t), is outlined.

No requirement on v being time-periodic or even smooth in time will be necessary, but v

does need to be small. More details on the nonautonomous theory leading to the transport

quantification outlined in this section are available elsewhere46,47.

When v = 0, the separating line y = 0, −a ≤ x ≤ a in Fig. 1 separates the flow between

the upper and lower cells, as pictured again in Fig. 5(a). The separating interface is a branch

of the unstable manifold of the stagnation point (−a, 0), and simultaneously a branch of the

stable manifold of the stagnation point (a, 0). Now if v 6= 0 but is small, the stagnation point

(−a, 0) perturbs to a nearby time-varying entity which is called a hyperbolic trajectory, which

continues to retain its unstable manifold, which is itself time-varying58–60. In Fig. 5(b), a

possible situation is pictured at an instance in time. Similarly, the stable manifold of (a, 0)

also perturbs to a nearby entity, which is also shown in the figure. Under general v, these

stable and unstable manifold segments need no longer coincide. They may indeed intersect

in complicated ways—at a finite or infinite number of locations—or not at all. To quantify

the resulting transport at this instance in time, consider a fixed gate-surface46,47,61,62 shown

in gray in Fig. 5, which is a perpendicular line segment to the original separating line at the

middle location x = 0. There is no genuine separating curve between the upper and lower

cells under general splitting of the stable and unstable manifolds, which makes quantifying

transport between them difficult. The solution is to define a [time-varying] pseudoseparatrix

consisting of the unstable manifold of the perturbed version of (−a, 0) until it hits the gate-

surface, the stable manifold of the perturbed version of (a, 0) until it hits the gate-surface,
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FIG. 5. (a) Stable (dashed) and unstable (solid) manifolds coincide when there is no boundary

curvature. (b,c,d) Instantaneous pictures of the pertubed manifolds along with the gate-surface

(gray) at times at which the flux is (b) positive, (c) zero, and (d) negative.

and the gate-surface itself. The transport across this time-varying entity is the transport

occurring across the gate-surface itself, since there is no transport across the stable and

unstable manifolds. In the situation pictured in Fig. 5(b), the transport across the gate-

surface is from left to right. When thinking of the pseudoseparatrix as separating the upper

from the lower cell, in this instance the transport is from the lower cell to the upper cell.

The convention that shall be followed is that transport in the direction from the right to the

left of the original flow separator (when travelling along the flow separator in the direction

of the velocity) is positive. Thus transport from the lower to the upper cell is deemed positive

in everything that follows.

Therefore, when the stable and unstable manifolds are as shown in Fig. 5(b), there is
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positive transport at that instance in time. This results in fluid from the lower cell entering

the upper cell as a thin filament (or elongated lobe), which elongates further due to the

influence of the nearby stable manifold which attracts towards (a, 0). Eventually suppose

that Fig. 5(c) occurs; at this instance there is zero transport, since the stable and the

unstable manifolds intersect on the gate-surface. The elongated lobe closes off. If the

manifolds continuously evolve to the situation of Fig. 5(d), then there is instantaneously a

negative transport. This gradually fills up an intruding lobe of fluid from the upper to the

lower cell. Whenever an interchanging of relative positions along the gate-surface occurs,

an elongated lobe of fluid is spat into the cell which has the other type of fluid. During

this process, incompressibility forces the outer boundaries of the droplet to deform to adjust

for the fluid volumes being exchanged within the droplet. Since the lobes are confined

(the outer boundaries of the microdroplet, consisting themselves of stable and unstable

manifolds, are impermeable since the outer carrier fluid is immiscible), they elongate and

fold around, influenced by the exponential stretching of the manifolds. Eventually, they

become sufficiently thin to be influenced by diffusion; thus, this initial transport across the

pseudoseparatrix is the essential first step in achieving good mixing between the fluids of

the two cells.

Quantitatively, the instantaneous transport from the lower to the upper cell, at a time t,

to leading-order in the smallness of the perturbing unsteady velocity v, can be represented

by46,47

M(t) =

∫

∞

−∞

v⊥ (x̄(τ), 0, t+ τ) |u(τ)| dτ . (7)

Here, v⊥ is the component of the perturbing velocity field v which locally is perpendicular

to the separating line in the direction of transport positivity (i.e, in the +y-direction), and

u(τ) is the unperturbed velocity along the separating line at the point x̄(τ). The function M

is a Melnikov function which unlike in the classical interpretation49,50,63 is valid for general

aperiodic v. The theory related to the Melnikov function has been used previously in

situations in which flux is to be maximised in time-periodic flows52–55,64. Unlike in previous

applications47,52–55,64, the Melnikov function need not be multiplied by a small parameter

since this smallness is encoded in v. Thus, M(t) can be thought of as the flux function,

directly quantifying the area of fluid per unit time being transported from the lower to the
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upper cell instantaneously at a general time t, with error O(|v|2). Since dx̄/dt = u,

M(t) =

∫

∞

τ=−∞

v⊥ (x̄, 0, t+ τ) dx̄ , (8)

a mixed form representation which will be useful in what follows.

It must be emphasised that the Melnikov function derivation utilises the Lagrangian par-

ticle trajectories, and thereby the flux as defined in (7) is not an Eulerian flux computation.

This distinction is important in unsteady flows. For example, an Eulerian computation

might compute the instantaneous flux across a fixed curve in space, which will not take into

account the fact that the curve itself would be moving as a material entity. The Lagrangian

approach leading to the derivation of (7) does take this into account, while utilising the spe-

cial properties of stable and unstable manifolds as important demarcators between coherent

structures.

Suppose there is a range of time [t1, t2] during which the flux M(t) is positive, with the

situation of Fig. 5(b) being present. This fills out a lobe of (lower) fluid which enters into

the upper cell. The eventual area of this lobe, by the time it pinches off into the upper cell

at t = t2, is

V =

∫ t2

t1

M(t) dt . (9)

If M switches sign in between t1 and t2, one can compute the corresponding lobe-area

transported within each time subinterval by breaking up [t1, t2] into subintervals within

which M is sign-definite ; if positive, it is from the lower to the upper cell, and if negative,

it is in the opposite direction. The expression (9) generalises the lobe area interpretation as

the integral of the absolute Melnikov function for time-periodic flows48,51.

IV. ONE CIRCULAR BEND

Modelling transport in channels with circularly curving boundaries is fundamental to

understanding more complicated boundaries35. Previous experimental and analytic work29,56

indicates that the droplet realigns to make its axis locally parallel to the channel sides. Stone

and Stone29 model such a channel curvature as an added shear flow on the Hadamard-

Rybczynski solution, and use numerical simulations to show that transport occurs within

the droplet29. Here, a quantitative measure of transport which can be explicitly represented
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as a function of time is sought, by utilising analytical methods which are able to quantify

Lagrangian fluid transport from information on the Eulerian velocity field46,47.

Consider Fig. 2(a), where the channel is straight except for one region which goes through

a circular arc of radius R occurring over an angle θ. If the droplet enters the circular region

at time t1, and exits at time t2, then t2 − t1 = Rθ/U . It will be assumed that

ε :=
1

2(1 + λ)

a

R

is a small (but not necessarily tiny) parameter. Since a < R would be needed physically for

the droplet to remain inside the channel, ε is automatically less than 1/(2 + 2λ), which is

guaranteed to be less than 1/2. Every modelling approach so far assumes that the droplet

instantaneously realigns so that its axis is parallel with the channel boundaries. However,

the fact that the boundary has experienced curvature will transmit itself to the middle

of the channel only after a lagged time, and hence a reasonable modification would be to

assume that the droplet’s orientation at some instance in time would be governed by the

channel curvature at some lagged instance in time. Assume this lagged time is T . Based

on experimental results which indicate that the droplet aligns relatively quickly to the local

channel curvature, it is assumed that the time lag is short in comparison to the time within

the curved channel, that is, UT/R ≪ 1.

The assumption now is that the velocity in the centre of the channel remains parallel to

the local channel walls. This is a caused by boundary shear29, but only information at the

center of the channel is needed for computing the leading-order flux across the interface

within the microdroplet. An alternative way of stating this is that the velocity vector in

this central region is perpendicular to the vector drawn to the local centre of curvature, as

indicated by the thick arrow at the location x̄ in Fig. 6. This figure shows the time-instance

t in a rotated reference frame drawn so the droplet is directly below the centre of curvature.

The fact that there is a time-lag for realignment makes its (unperturbed) separating interface

line (running from −a to a) to be at an angle β to the horizontal; this orientation is parallel

to the boundary near where the droplet was at the time-instance t − T . The centre-line

velocity assumption in a curved geometry means that the velocity across the interface is

different at each location x̄.

The required v⊥ for using (8) is the velocity component in the direction of the dashed

arrow in Fig. 6, given by v⊥ (x̄, 0, t) = u(x̄) sin (α+ β) within the appropriate time interval.
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FIG. 6. Computing velocity perturbation on heteroclinic due to circular undulation with lagged

realignment represented by a lagged rotation angle β.

Using elementary trigonometry,

sin (α + β) =
R sin β + x̄

√

R2 + (x̄)2 + 2x̄R sin β
,

and therefore using (6),

v⊥ (x̄, 0, t) =
U (a2 − x̄2)

2a2 (1 + λ)

R sin β + x̄
√

R2 + x̄2 + 2x̄R sin β
. (10)

Now, the first factor on the right-hand side above is less than U/(2(1 + λ)). If β = 0,

the second term is less than a/R, which means that v⊥ is less than εU , and hence can be

considered a perturbation. On the other hand, ignoring the x̄ terms leads to this second term

being less than sin β ≈ β ≈ UT/R. Thus, v⊥ is small in terms of both small parameters.

The t-dependence in (10) is encoded in the value of β, the determination of which requires

time to be divided into three segments in which there is nontrivial transport:

(i) t1 ≤ t < t1 + T : the droplet maintains the orientation it had in the straight channel,

while it is moving in the curved channel. In other words, the droplet does not realign.

(ii) t1 + T ≤ t < t2: the droplet is in the curved channel, and its orientation is based on

its position in the curved channel a time T previously.
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(iii) t2 ≤ t < t2 + T : now, the droplet has left the curved channel and is in the straight

channel once again, but its orientation is based on its position in the curved channel

a time T before that.

For t < t1 and t ≥ t2 + T , the droplet is exactly oriented with the straight channel, and so

no transport results.

In case (i), the droplet is within the curved channel, but its orientation is the same as it

was in the straight channel since it had not as yet had sufficient time to adjust. Since the

droplet has travelled a time t − t1 within the curved channel by this point, its orientation

has changed by an angle U(t − t1)/R. Thus, the formula (10) is valid for t ∈ [t1, t1 + T )

with the replacement β = U(t − t1)/R. Now consider case (ii), in which t ∈ [t1 + T, t2).

Here, the droplet would have been in the curved channel for the entire duration of the past

T time units, and thus β = UT/R, which is a constant. Finally, for case (iii) in which

t ∈ [t2, t2+T ), the droplet has left the curved channel and entered the straight channel, but

its orientation is governed by its presence within the curved channel at a time T previously.

During this past T time units, it would have travelled within the curved channel for a time

t2 − (t− T ), and thus β = U (t2 − t + T ) /R. Applying (10) and then replacing t with t+ τ

as required for (8) leads to

Mcirc(t) =
U

2a2 (1 + λ)
[Ii(t) + Iii(t) + Iiii(t)] , (11)

where cases (i), (ii) and (iii) are encoded respectively in the expressions

Ii(t) :=

∫ t1−t+T

τ=t1−t

(

R sin U(t+τ−t1)
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin U(t+τ−t1)
R

dx̄ , (12)

Iii(t) :=

∫ t2−t

τ=t1−t+T

(

R sin UT
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin UT
R

dx̄ , (13)

Iiii(t) :=

∫ t2−t+T

τ=t2−t

(

R sin U(t2−t−τ+T )
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin U(t2−t−τ+T )
R

dx̄ . (14)

Now since

(

a2 − x̄2(τ)
)

dx̄ =
(

a2 − x̄2(τ)
) dx̄

dτ
dτ =

a2U

2(1 + λ)
sech4 Uτ

2a(1 + λ)
dτ (15)

by utilising (6), all integrals can be expressed properly in terms of τ . This connection will be

used in equations in later sections as well. Fig. 7 shows the full flux in (a); this is composed

of the three contributions from Ii (b), Iii (c) and Iiii (d).
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FIG. 7. (a) The flux function (11) for circular arcs with lagged droplet alignment with lags T = 0

(solid), 0.2 (dashed), 0.4 (dotted) and 0.6 (dot-dashed), with the parameter values U = 1, a = 1,

R = 10, λ = 0.5, θ = π/2, t1 = 0 (and thus t2 = 5π/2); in (b,c,d) the components resulting from

cases (i), (ii) and (iii) respectively are separately plotted.

Fig. 7 indicates that the transition effects occurring in cases (i) and (iii) clearly have the

most impact at respectively when the droplet is entering and exiting the curved channel,

whereas the main structure of the flux function is governed by case (ii). As T increases the

misalignment associated with mainly case (i) (as the droplet is initially entering the curved

segment) becomes significant. The solid curves in Fig. 7, corresponding to instantaneous

realignment, are comparable to models such as that of Stone and Stone29, in which an

immediate switching of the direction of the shear stress was used to model travelling in
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differently-curved segments of channel. Fig. 7 indicates that for such a situation of no lag

time, there is first a flux upwards, and then downwards, in the microdroplet, which enhances

the mixing by sloshing an elongated lobe in either direction. On the other hand, when a lag

time is introduced—a situation apparently not modelled in the literature—this symmetry

gradually disappears, and indeed by T = 0.6 the transport is essentially only in the upwards

direction, and has a much larger amplitude. This amplitude indicates that more fluid is

being transported at each time, while the fact that positive transport occurs over a large

interval of time tells us that this results in a long lobe. Hence, increasing the lag time

has the effect of increasing transport in one direction significantly, while diminishing the

exchange of fluid between the upper and lower segments of the droplet. When there is such

uni-directional flow, the enhancement of fluid exchange must be achieved by having a curve

in the channel in the opposite direction, and a repetition of these curves leads to a serpentine

channel, as investigated in the next section.

Viewing Fig. 7, the total flux (a) is seen to be approximately the same as in (c), which

only includes the transport associated with Iii(t). This is so for any reasonable time-lag

value. This is a happy circumstance, since Iii(t) in (13) turns out to be explicitly integrable

as

Iii(t) = R3

[

Φ

(

U (t2 − t)

2a (1 + λ)

)

− Φ

(

U (t1 − t + T )

2a (1 + λ)

)]

(16)

where the function Φ is defined by

Φ(ξ) :=
1

6

√

( a

R

)2

tanh2 ξ + 2
a

R
sin

UT

R
tanh ξ + 1

[

1 + 3 cos
2UT

R
+ 2

a

R
sin

UT

R
tanh ξ

−2
( a

R

)2

tanh2 ξ + 6
( a

R

)2
]

− sin
UT

R
cos2

UT

R
ln

(

a

R
tanh ξ + sin

UT

R
+

√

( a

R

)2

tanh2 ξ + 2
a

R
sin

UT

R
tanh ξ + 1

)

.(17)

An analytical approximation for the flux associated with a one-bend channel is therefore

Mcirc(t) ≈
UR3

2a2 (1 + λ)

[

Φ

(

U (t2 − t)

2a (1 + λ)

)

− Φ

(

U (t1 − t+ T )

2a (1 + λ)

)]

. (18)

A direct comparison between the full solution (11) and the approximate solution (18)

under the same conditions as Fig. 7 is shown in Fig. 8. In all the curves there is a zero of the

flux function (indicating the time at which the stable and unstable manifold intersect on the

gate-surface). However, when the time-lag increases, the time over which there is negative
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FIG. 8. A comparison between the one-circular-bend full solutions (11) (solid) and the approximate

solutions (18) (dashed) with the same parameters and the four different T values as in Fig. 7.

flux diminishes, and the positive flux quantity increases to quite large values. The parameter

range examined in Fig. 8 corresponds to UT/R going from zero to 0.06, and even in this range

there is a substantial change in the flux function’s behaviour. The amplitude (maximum

height) of the flux function has more than tripled, and the negative flux contribution has

diminished from being equal in size to the positive flux, to being about 5% of it. Thus, the

time-lag can have a significant effect on the resulting intra-droplet transport, and is an effect

which should not be ignored.

Noting that the effect of λ within the Φ functions simply represents a time-scaling, λ’s

presence in the premultiplicative factor in (18) governs the flux amplitude. Hence, smaller

values of λ give better mixing. This is entirely consistent with the observations of Stone and

Stone29 and Muradoglu and Stone31 that smaller λ improving mixing, which stemmed from

a numerical integration of particle trajectories coupled with a backtrace imaging procedure,

investigated at a few λ values. Our model which focusses specifically on transport across

the interface within the droplet captures this effect effortlessly.

In Fig. 3(a), the approximate flux function (18)’s variation with R where the length of
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the curved channel is kept fixed (the droplet enters it at t1 = 0 and leaves it at t2 = 20), is

shown. The other parameters are U = 1, a = 1, λ = 0.5 and T = 0.2. The amplitude of the

flux decreases with R. The volume of fluid transported may be a better quantifier of flux,

and this, by (9), is given by the area under the curve. In particular, the volume transported

from the lower to the upper cell during the duration of the process is the area under each

curve in Fig. 3(a) from −∞ to the point of intersection of the t-axis (all curves pictured

approximately cross at t = 18.96, this closeness is since the same time-lag is used for all

the curves). Similarly the volume transported in the opposite direction in the latter part

of the process is [negative] the integral from 18.96 to ∞. The variation of these quantities

with R, with all other parameters kept fixed, is shown in Fig. 3(b). There is rapid decay

with R as expected, but the decay is slower than exponential. In any case, larger R leads

to less transport in either direction. The asymmetry between the flux transported is much

larger for smaller R, that is for larger curvatures, an observation which consistent with the

asymmetry of the plugs observed in the DNS calculations by Che et al35.

V. SERPENTINE CHANNELS WITH CIRCULAR SEGMENTS

Serpentine channels18,21,22,24,26,29,31–34 such as those in Fig. 2(c) are a popular method

of instigating fluid transport in droplets by having curved channel boundaries. Suppose

there are n full (1800) loops, with two half (900) loops at the beginning and the end to

ensure the beginning and ending parts of the channel are coaxial and in the same direction.

In Fig. 2(c), n = 3, and it shall be assumed that n is odd to ensure that the beginning

and ending channels lie along a straight line. Let n = 2m − 1, enabling a labelling of the

undulating channel segments by 0, 1, 2, · · · , 2m, in which channels 0 and 2m have half loops

while the other channels have full loops. If the times at which the droplet enters and leaves

the ith channel are respectively ti and ti+1, then

ti = t0 + (2i− 1)
Rπ

2U
for i = 1, 2, 3, · · · , 2m and t2m+1 = t0 + 2m

Rπ

U
. (19)

An analysis akin to the previous section for each channel 0, 1, 2, · · ·2m is necessary. For

each curved segment there are two situations to consider (equivalent to cases (i) and (ii) in

the previous section), corresponding to quantifying the droplet’s orientation lag. Case (iii)

for one segment is effectively case (i) for the subsequent segment and thus need not be
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considered except for channel 2m. Because of qualitatively similar behaviours within and

at entry, analysis of the following channel groups is sufficient:

(a) Beginning segment of straight channel,

(b) Channel 0,

(c) Channels 1, 3, · · · , 2m− 1 (odd channels, of which there are m),

(d) Channels 2, 4, · · ·2m− 2 (even channels, of which there are m− 1),

(e) Channel 2m, and

(f) Ending segment of straight channel.

For (a), the droplet is oriented straight and there is no boundary curvature, and thus there is

no perpendicular velocity component for t < t0. For (b), case (iii) from the previous section

can be used, but a redrawing of Fig. 6 with the centre of curvature below rather than above

the heteroclinic is neccesary. Alternatively, the concavity of the channel boundary is now

negative rather than positive, and so modification of (10) is

v⊥ (x̄, 0, t) = −
U (a2 − x̄2)

2a2 (1 + λ)

R sin β + x̄
√

R2 + x̄2 + 2x̄R sin β
; (20)

the negative sign results from the fact that the normal direction to the heteroclinic continues

to be positive in the ‘vertically upwards’ direction, while the appropriate modification to

Fig. 6 is obtained by reflecting it about a horizontal line. In comparison with (12) and (13)

this leads to the integrals

Ibi (t) = −

∫ t0−t+T

τ=t0−t

(

R sin U(t+τ−t0)
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin U(t+τ−t0)
R

dx̄ , (21)

Ibii(t) = −

∫ t1−t

τ=t0−t+T

(

R sin UT
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin UT
R

dx̄ . (22)

Now turn to case (c). Consider an odd channel with beginning and ending times t2j−1 and t2j

respectively. During the first T time units within the odd channel, the droplet’s orientation

is influenced by its location in the previous even channel. The orientation difference between

the current position at time t and that position would be β = U(t − t2j−1)/R − U(t2j−1 −

(t − T ))/R, with the first term quantifying the orientation difference between the current

position at time t and the position of entering the current odd channel at time t2j−1, and

20



Transport in microdroplets via channel bends

the second term the difference between this position of entering the current channel and the

location at time t− T within the previous even channel. The negative sign results from the

rotation negating the misalignment. Thus, β = U(2t− 2t2j−1−T )/R, and in comparison to

the results above, but now with positive concavity,

Ic,ji (t) =

∫ t2j−1−t+T

τ=t2j−1−t

(

R sin
U(2t+2τ−2t2j−1−T )

R
+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin
U(2t+2τ−2t2j−1−T )

R

dx̄ , (23)

Ic,jii (t) =

∫ t2j−t

τ=t2j−1−t+T

(

R sin UT
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin UT
R

dx̄ . (24)

Next, consider an even channel, case (d), during the time [t2j , t2j+1]. Initially the orientation

is governed by the location in the previous odd channel, and this corresponds to choosing a

rotation angle β = U(t − t2j)/R − U(t2j − (t − T ))/R = U(2t − 2t2j − T )/R. Since these

channels have negative concavity, (20) gives

Id,ji (t) = −

∫ t2j−t+T

τ=t2j−t

(

R sin
U(2t+2τ−2t2j−T )

R
+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin
U(2t+2τ−2t2j−T )

R

dx̄ , (25)

Id,jii (t) = −

∫ t2j+1−t

τ=t2j−t+T

(

R sin UT
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin UT
R

dx̄ . (26)

Case (e), the final curved even channel, is equivalent to case (d) with the choice j = m.

Thus,

Iei (t) = −

∫ t2m−t+T

τ=t2m−t

(

R sin U(2t+2τ−2t2m−T )
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin U(2t+2τ−2t2m−T )
R

dx̄ , (27)

Ieii(t) = −

∫ t2m+1−t

τ=t2m−t+T

(

R sin UT
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin UT
R

dx̄ . (28)

Finally, when considering case (f), the droplet is now in the final straight segment of the

channel. Initially its orientation is given by that of the previous even channel, i.e., equa-

tion (14), but here the concavity is negative, and so

Ifiii(t) = −

∫ t2m+1−t+T

τ=t2m+1−t

(

R sin U(t2m+1−t−τ+T )
R

+ x̄
)

(a2 − x̄2)
√

R2 + x̄2 + 2Rx̄ sin U(t2m+1−t−τ+T )
R

dx̄ (29)

which contributes to the integral only for t + τ ∈ [t2m+1, t2m+1 + T ], and there is zero

contribution thereafter since the droplet would have oriented correctly to the final straight
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channel. Summing all these contributions together yields the full flux function

Mserp(t) =
U

2a2 (1 + λ)

[

(

Ibi (t) + Ibii(t)
)

+
m
∑

j=1

(

Ic,ji (t) + Ic,jii (t)
)

+

m−1
∑

j=1

(

Id,ji (t) + Id,jii (t)
)

+ (Iei (t) + Ieii(t)) + Ifiii(t)

]

, (30)

where the definitions for the Is are given in (21)–(29). Given that the principal contribution

to the flux comes from the ‘ii’ subscripted terms, an explicit approximation for (30) would

be

Mserp(t) ≈
UR3

2a2 (1 + λ)

[

Φ

(

U(t0 − t+ T )

2a(1 + λ)

)

− Φ

(

U(t1 − t)

2a(1 + λ)

)

+
m
∑

j=1

[

Φ

(

U(t2j − t)

2a(1 + λ)

)

− Φ

(

U(t2j−1 − t + T )

2a(1 + λ)

)]

+
m−1
∑

j=1

[

Φ

(

U(t2j − t+ T )

2a(1 + λ)

)

− Φ

(

U(t2j+1 − t)

2a(1 + λ)

)]

+Φ

(

U(t2m − t + T )

2a(1 + λ)

)

− Φ

(

U(t2m+1 − t)

2a(1 + λ)

)

]

(31)

in terms of Φ defined in (17). The approximation here is expected to be better than that

for the one bend scenario since the Ici and Idi terms here have a smaller effect; the transition

from a channel of one sign of curvature to the opposite sign means that the lag effect is

diminished.

Fig. 9 shows both the flux function (30) and the approximate flux function (31) com-

puted for the specific geometry of Fig. 2(c), i.e., with the choice m = 2. As in the one-bend

situation, the approximate flux function provides an excellent estimate for these parameter

values. As the time-lag increases, there is more transport towards the local centre of cur-

vature in each channel segment. However, as the droplet approaches the end of each curves

channel segment, there is a small amount of flux which occurs in the opposite direction.

When the time-lag is zero, this amount is exactly the same as the transport towards the

centre of curvature (see the solid curve in Fig. 9), but this value decreases sharply with

increasing time-lag. Unlike in classical time-periodic analyses of stable and unstable man-

ifold intersections48–50 the sloshing back and forth does not continue indefinitely, but only

happens over the time during which the droplet is travelling through the channel. Hence,
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FIG. 9. (a) The flux function (30) for the serpentine channel with U = 1, a = 1, R = 10, λ = 0.5

and m = 2, with lags T = 0 (solid), 0.2 (dashed), 0.4 (dotted) and 0.6 (dot-dashed). (b) The

approximate flux function (31) under the same conditions.

the flux curves in Fig. 9 only have a finite number of intersections with the abscissa. By sim-

ply tacking on more bent segments (i.e., increasing m), better transport is achievable. The

corresponding flux functions (not shown) are easily computable using (31) for any number

of bends, and turn out to be simple extensions of Fig. 9.

The flux is a function of time. One question that might be asked is whether it is possible

to come up with a specific measure of transport, which does not depend on time. An increase

in transport between the upper and lower cells can be achieved when

(1) The flux function has a large size, and

(2) When the flux function changes sign often.

If only (1) occurs, then the transport would be unidirectional, but large, resulting in a large

lobe intruding in one direction. If only (2) occurs but happens at small amplitude, there is

back-and-forth mixing but with small lobe volumes of each fluid within the other. Neither

factor by itself would lead to large ‘mixing’ across the flow interface. A specific measure of

transport from the flux function must incorporate both these effects. If fully time-periodic

and centred around zero, one can use the concept of an average flux which relates to the size

of a lobe of fluid transported across per unit time46,51–55,64. But in our case the flux function
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is not periodic, and indeed decays to zero as t → ±∞ since the bending part of the channel

has finite length. Such a measure is therefore not possible.

If only measuring the effect (1), one possibility would be to use an L1-norm on the flux

function, or something similar. If using an L1-norm globally in time, information on the

positive and negative aspects of the flux function disappear, and thus transport in either

direction would be treated equally, and simply added together. This will therefore not be

able to capture effect (2). A simple way of capturing only effect (2) would be to count the

number of zeroes of the flux function. This could have difficulties when there are infinitely-

many zeroes (which will not occur in this particular application), but more importantly fails

to capture the amount of fluid that is being transported. Given these issues, the flux function

as a function of time without attempting to give a time-independent measure of transport is

probably the best approach. By examining its behaviour as in Fig. 9, the relevance of both

effects (1) and (2) can be gleaned, retaining insight into how transport occurs with time.

VI. STRAIGHT CHANNEL SEGMENTS CONNECTED BY SHARP

CHANNEL BENDS

Rather than using curved channels, another approach that is sometimes used is to use

straight channel segments connected together by square or triangular bends18,22,26,65. Sup-

pose there are n+1 channel segments, labelled 0, 1, 2, · · · , n, and the transition from the jth

channel to the (j + 1)st channel occurs via an angle change of θj , as shown in Fig. 2(b). A

positive θj would indicate that the axis of the new channel is rotated by a counter-clockwise

direction from the axis of the previous channel, whereas a negative θj would mean clockwise

rotation. While in channel 0, the heteroclinic is exactly aligned with the channel sides, and

thus there is no perpendicular component of velocity. In the initial T time units while in

channel 1, the orientation is the same as in channel 0, and in this case there is a perpen-

dicular component of velocity, given by v⊥(x, 0, t) = u sin θ1 for t1 ≤ t < t1 + T which,

since there is no local boundary curvature, is the same value at all locations x along the

heteroclinic. While this is not small per se, its integral over time is small because T is

small (more formally, if L is a scale associated with channel lengths, the requirement is that

UT/L ≪ 1). Melnikov analyses have been established to be applicable for such instances;

an analysis associated with Dirac delta impulses in time, which indeed have an unbounded
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amplitude of the ‘perturbation,’ is available47. Thus, the flux function remains legitimate.

Now, for t1 + T ≤ t < t2, there is no perpendicular component, since the droplet has by

this stage aligned correctly. After entering channel 2, the droplet’s initial alignment would

be associated with channel 1, and thus v⊥(x, 0, t) = u sin θ2 for t2 ≤ t < t2 + T . Since in

Fig. 2(b), θ2 < 0, the above quantity is negative, which is the correct sign convention since

velocities going from the lower to the upper cells within the droplet are considered positive.

By continuing this process,

v⊥(x, 0, t) = u sin θj (tj ≤ t < tj + T , j = 1, 2, · · ·n) ,

with v⊥ = 0 at all other times. In effect, it is only the previously subscripted ‘i’ terms which

contribute; the dominant ‘ii’ terms obtained previously because of boundary curvature are

not applicable in this situation. An immediate conclusion is straight channel boundaries

offer smaller flux contributions than curved ones. Now using (8),

Mstraight(t) =

n
∑

j=1

∫ tj−t+T

τ=tj−t

u(x̄)) sin θj dx̄

=
U

2a2(1 + λ)

n
∑

j=1

sin θj

∫ tj−t+T

τ=tj−t

(

a2 − x̄2
)

dx̄

=
U

2a2(1 + λ)

n
∑

j=1

[

a2x̄(tj − t+ T )−
x̄(tj − t + T )3

3
− a2x̄(tj − t) +

x̄(tj − t)3

3

]

sin θj

+
1

3

(

tanh3 U(tj − t+ T )

2a(1 + λ)
− tanh3 U(tj − t)

2a(1 + λ)

)

]

sin θj . (32)

The flux depends approximately linearly on the droplet radius a, whereas in the circular

case it depended reciprocally on a2 (since influenced by the curvature parameter R which is

absent here).

The flux function (32) is now explicitly evaluated for a configuration inspired by Fig. 2

in Tung et al26, which shows a planar serpentine micromixer with square bends fabricated

using a micro-lithographic process. While this is serpentine-like as in Fig. 2(c), rather than

having circular arcs, each rotation is achieved by using ‘three sides of a rectangle.’ This is

shown in Fig. 2(d), with each of the shorter straight channel segments having length L, and

here n = 12. Since θ1 = π/2, θ2 = −π/2, θ3 = −π/2, etc, sin θj = 1 for j = 1, 4, 5, 8, 9, 12

and sin θj = −1 for j = 2, 3, 6, 7, 10, 11. Moreover, tj+1 = tj + L/U , and time will be set

up such that the droplet goes through the first bend at t = L/U , and thus tj = Lj/U .
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Fig. 4 shows the flux function (32), with the choice of parameters U = 1, a = 1, L = 10,

λ = 0.5 and n = 12. When T = 0 there is zero flux for all time, and the flux amplitude

increases with T . For this choice of parameters, it is helpful to note that the channel bends

occur at t = 10, 20, 30, · · · , 120. So there is initially flux going from the lower to the upper

cell, which reverses direction while the droplet is in the middle of channel 1. The flux is

at a maximum absolute value at the instance when the droplet enters channel 2, but this

amplitude decreases as it traverses channel 2. However, this amplitude increases again after

the droplet passes the middle of channel 2, reaching a maximum once again at the instance

of entering channel 3. Had the amplitude decrease continued, the flux would have crossed

zero at an earlier instance, which would have enhanced mixing. Basically, the double-peak

behaviour observed in Fig. 4 may be argued to be somewhat useless from the flux perspective;

a single peak would have sufficed. The reason for the double-peak is that at t2 and t3, the

channel bends are in the same direction. The insight is that had the bend at t3 been in

the opposite direction to what it is now, the flux function would exhibit behaviour which is

more desired. From the perspective of channel design, this provides insight that a zig-zag

pattern, which each bend being in the opposite direction to the previous one, is more likely

to enhance intra-droplet transport.

VII. CONCLUDING REMARKS

This article has developed a quick way for assessing transport between the cells of a

microdroplet as a result of channel curvature. Unlike in experimental or DNS approaches to

this problem, careful fabrication or prodigious computational costs are not required for each

geometry; diverse channel configurations can be analysed with no difficulty. The approach

is also much quicker than those which compute mixing for specified velocity fields, since it is

not necessary to integrate thousands of Lagrangian particle trajectories. These considerable

simplifications are achieved by focussing directly on the instantaneous transport occurring

across the separating curve between the upper and the lower cell of the microdroplet, and

utilising recent developments which enable this quantification as a time-varying quantity in

systems with general time-dependence46,47. The effect of lag-time for the droplet to realign

itself to prevailing flow conditions can also be incorporated into the development, unlike in

all previous approaches. The advantage of the present simplified model is that it is able to
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provide quick analyses over a range of channel configurations, and provide insight into how

best to design the channels.

Transport within a four-cell microdroplet25,30,42,44, or other similar configurations, can be

analysed analogously to what has been presented in this article, with no difficulty. Thus the

method is easily adaptable.

The flux functions calculated do not directly include the effects of diffusive mixing, which

of course has a significant effect in any realistic situation. Given the typically low diffusion

in microfluidic devices, our approach is to generate advective flow rates which (in addition

to contributing to fluid transport directly) also enhance diffusive mixing through elongating

the interface region between the fluids. This is accomplished by having the stable and

unstable manifolds intermingle as much as possible, which is topologically identical to the

graph of the flux function intersecting the t-axis. A realistic device with diffusion would

see transport characteristics evolving in the undulating fashion of Fig. 9, superposed on the

resulting diffusive mixing occurring as a result of the generated intermingling of particles.

This is well illustrated in the studies by Stone and Stone29 (with two straight and two

circularly curved channels) and Muradoglu and Stones31 (with three sinusoidal loops in

their channel). In both cases, a mixing measure which quantifies how fluids from the lower

and upper cells have intermingled with one another throughout the droplet is used. While

a continual improvement of mixing is shown in their computed mixing measures (which

inevitably includes numerical diffusion), the undulating signature of the channels is clearly

present (see Fig. 7 in Stone and Stone29 and Figures 5, 8, 11 and 14 in Muradoglu and

Stone31). The current article analyses how one can promote the first step in this mixing—

interchange of elongated lobes between the two cells—due to channel geometry. Numerical or

physical diffusion will act on these lobes, leading to eventual mixing, but this is not something

which can be controlled easily by modifying channel boundaries. Thus, this study obtains a

quick way of quantifying the role of channel boundaries in causing convective transport which

enhances mixing within microdroplets. Immediate insights (e.g., zig-zag configurations work

better than the square bends of Fig. 2(d)) are available.

While this article focusses on straight or circular channels, transport due to arbitrarily

curving channel boundaries is being assessed in ongoing work. A particularly interesting fu-

ture topic would be whether it is possible to determine channel boundary geometries which

optimise transport; previous experience in optimising fluid flux via active strategies52–55 is
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being brought to bear on this problem. Rather than having smooth transitions between

channel segments, an alternative would be to have protruberances or grooves which seem

intuitively at least to lead to better mixing. This too could be modelled using the present ap-

proach as impulsive velocity perturbations in the middle of the channel, which are amenable

to a flux analysis using the integral equations approach developed by Balasuriya47. Optimis-

ing transport within the microdroplet may also be studied using an active strategy which

controls the locations of un/stable manifolds and hyperbolic trajectories66–69 demarcating

the microdroplet, a topic of future study.
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