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Abstract. Melnikov theory provides a powerful tool for analysing time-dependent perturbations
of autonomous vector fields that exhibit heteroclinic orbits. The standard theory requires that the
perturbed vector field be defined, and bounded, for all times. In this paper, Melnikov theory is
adapted so that it is applicable to vector fields that are defined over sufficiently large, but finite,
time intervals. Such an extension is desirable when investigating Lagrangian trajectories in fluid
flows under the effect of viscous perturbations; the resulting velocity field can only be guaranteed
to be close to the unperturbed velocity field, corresponding to the inviscid limit, for finite times.
Applications to transport in the viscous barotropic vorticity equation are given.
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1. Introduction

Melnikov theory has been developed to predict the splitting of homoclinic or heteroclinic orbits
under non-autonomous perturbations. In particular, it can be used to establish the existence,
or non-existence, of transverse homoclinic orbits in dynamical systems upon adding small
non-autonomous terms to the governing vector field. Transverse homoclinic orbits, in turn,
imply the existence of horseshoes, and therefore of chaotic dynamics. These results as well
as more background and further references can be found, for instance, in the textbooks [3, 5].
Standard Melnikov theory is applicable to equations of the form

u̇ = f (u) + εh(t, u; ε) u ∈ R
n (1.1)

where ε is small and h(t, u; ε) is a nonlinearity that is defined for all times t ∈ R. If ū(t)
denotes a homoclinic orbit of (1.1) to a certain hyperbolic equilibrium A0, then the associated
Melnikov integral that measures the splitting distance between stable and unstable manifolds
of A0 near the point ū(0) upon varying ε is given by

d(τ, ε) = ε

∫ ∞

−∞
〈ϕ(t), h(t + τ, ū(t); 0)〉 dt + O(ε2). (1.2)

Here, τ is the initial time for which we start solving (1.1), and ϕ(t) is a certain non-zero
bounded solution to

v̇ = −Df (ū(t))∗v.
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If the homoclinic orbit ū(t), the bounded solution ϕ(t) and the perturbation h(t, u; ε) are
known, we can compute the splitting distance up to terms of higher order and can then
investigate the persistence of the homoclinic orbit ū(t).

In order for Melnikov theory to work, it seems necessary that the perturbation be defined
for all times t ; otherwise, we cannot define the perturbed stable and unstable manifolds of the
equilibrium A0, and therefore cannot compute their distance upon varying ε. Indeed, stable
and unstable manifolds are comprised, by their very definition, of solutions with a prescribed
asymptotic behaviour as time tends to ±∞. The issue addressed in this paper is to give meaning
to the concept of splitting distances for perturbations that are not defined for all times but are
only given over sufficiently large, but finite, intervals.

Before we outline our approach, we comment on why such an extension might be desirable.
Our motivation derived from an effort to understand the effect of viscous dissipation on two-
dimensional vorticity-conserving flows in the oceanic context. The potential vorticityq(x, y, t)
of the fluid satisfies the partial differential equation (PDE)

∂q

∂t
+ {ψ, q} = ε [�q + f (x, y, t)] (1.3)

where

{u, v} = ∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
� = ∂2

∂x2
+
∂2

∂y2
.

The stream function ψ of the fluid is related to the potential vorticity q by

q = �ψ + βy.

The term involving β accounts for the Coriolis force. The dynamics of interest come from
integrating these PDEs in a relevant domain (to avoid the complication of boundary effects, we
usually think of the domain as being the plane with doubly periodic boundary conditions). The
streamfunction gives the Lagrangian dynamics, i.e. particle trajectories, through the ordinary
differential equation (ODE)(

ẋ

ẏ

)
= J∇ψ(x, y, t) (1.4)

where

J =
(

0 −1
1 0

)
(1.5)

and ∇ is the gradient acting on the spatial variables (x, y). The position of a fluid particle is
thus given as (x(t), y(t)) by further solving (1.4) with appropriate initial conditions. Due to the
presence of the small positive parameter ε governing viscosity and forcing, the streamfunction,
and hence the vector field, depends on that parameter.

In the limit ε = 0, vorticity is conserved in the PDE (1.3). This has significant implications
for the ODE (1.4). In fact, it can then, in a sense, be viewed as integrable, see [2], and it follows
that stable and unstable manifolds cannot intersect transversely—they either do not intersect
or have branches coinciding. Consequently, the dynamical system (1.4) behaves as if it were
autonomous. If it exhibits homoclinic loops or heteroclinic cycles, then these trajectories
separate regions inside the fluid from the ambient fluid and prevent transport of fluid particles
across these separatrices. If viscosity is taken into account, so that ε is positive, then these
loops have the potential to break up and to form transverse intersections. This would imply
that the formerly separated regions inside and outside of the loops can exchange fluid particles,
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and transport occurs (see [8]). Whether or not such (chaotic) transport occurs depends upon
whether or not the loops intersect transversely upon adding the perturbation; this can be checked
by calculating the associated Melnikov integral that appears in (1.2).

There are two issues that we need to address in order to compute the Melnikov integral.
First, we need to know the perturbation h(t, u; ε) to evaluate (1.2). This perturbation, however,
is given by the velocity field that is only implicitly defined as a solution to the perturbed
PDE (1.3). In [1], we showed that the Melnikov integral can nevertheless be calculated
explicitly from information that pertains to the ε = 0 limit of (1.1). A particularly interesting
consequence of the results in [1] is that, under a number of realistic circumstances, the manifolds
split and do not intersect at all. This effect creates a channel through which fluid can flow from
one region to another (but not vice versa) and precludes chaotic effects.

The Melnikov analysis in [1], however, requires that the perturbed velocity field be defined
for all times and that it always remains close to the unperturbed velocity field. More realistically,
however, we can only guarantee that the flows remain close over finite time periods. For
instance, the PDE (1.3) is parabolic for positive ε so that we cannot expect that the solution
exists for negative times. Thus, we are naturally led to investigate the breaking of separatrices
under non-autonomous perturbations that are given only over a finite time interval.

Having commented on what motivated us to study Melnikov theory for finite-time
perturbations, we shall outline our approach. Suppose then that the perturbation h(t, u; ε)
is given only over a certain finite but large time interval: what we will need is that the time
interval contains at least the interval (−C| ln ε|, C| ln ε|) as ε tends to zero for some positive
constant C. In the first step, we investigate the persistence of stable and unstable manifolds
under perturbation. Our strategy is to artificially extend the vector field outside of its time range
of definition. There is no canonical way of carrying out this extension; we simply require that
the extended vector field is O(εν)-close to the unperturbed vector field for all times, where
ν ∈ ( 1

2 , 1) is fixed. Standard theory then provides us with invariant manifolds for the perturbed
equation. These manifolds, however, depend upon the way in which we have extended the
vector field outside its original domain of definition. We prove that any such extension leads
to the same manifolds except for an error that is of the order O(ε2ν) = o(ε). In fact, the larger
the time range of definition of the original vector field, the closer are the invariant manifolds
for different extensions: if, for instance, the length of the interval is polynomial in ε, then
the manifolds are exponentially close to each other. We therefore refer to any such invariant
manifolds as ‘the’ stable and unstable manifolds, keeping in mind that they are unique only
up to terms of order o(ε). In the second step, we calculate the distance between the stable and
unstable manifolds. We establish that the Melnikov integral, computed over the time range
of definition, gives the O(ε) separation distance up to errors that are of order o(ε); note that
this result is meaningful as the ambiguity in the construction of stable and unstable manifolds
contributes only terms of order o(ε). In particular, we can discuss the nature of intersections of
the invariant manifolds upon varying ε and investigate the existence of transverse intersections.
It should be possible, for instance, to prove the existence of sets on which the flow behaves
essentially as a shift on two symbols for a large but finite number of iterations, provided the
intersections are transverse.

Related results have also recently been obtained, independently, by Haller and Poje [6] on
invariant manifolds in finite-time vector fields. Their approach, in contrast to ours, is tailored
to situations where the time dependence is relatively weak. In particular, their goal has been
to compare the dynamics of the non-autonomous vector field with that of the frozen equations
where the explicit time dependence of the vector field is neglected. In contrast, we allow a
strong time dependence but assume that the finite-time vector field is close to one that is defined
for all time.
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The paper is organized as follows. We begin in section 2 by proving the existence of
appropriate stable and unstable manifolds for finite-time perturbations, while section 3 is
concerned with the calculation of their splitting distances using Melnikov integrals. In section 4
it is shown that the Melnikov integral can be calculated in the context of the viscous barotropic
vorticity equation. Finally, in section 5, we apply the results to an explicit Rossby-wave
solution of the viscous barotropic vorticity equation.

2. Persistence of invariant manifolds under finite-time perturbations

We formulate the problem by considering an unperturbed ODE for u ∈ R
n of the form

u̇ = f (u) u ∈ R
n (2.1)

where f : R
n → R

n is Ck for some k � 2. The velocity field is denoted by f .
We assume that (2.1) has a solution ū(t) that is bounded for t ∈ R. The linearization

v̇ = Df (ū(t))v (2.2)

of (2.1) about the bounded trajectory ū(t) then describes the behaviour of (2.1) near ū(t).
The evolution of (2.2) is denoted by �(t, s). Equation (2.2) is said to have an exponential
dichotomy for t ∈ R

+ if the following is true: there are constants K � 1 and θ > 0, and a
continuous family P s(t) of projections, defined for t ∈ R

+, such that

|�(t, s)P s(s)| � Ke−θ |t−s| for t � s � 0

|�(t, s)(id − P s(s))| � Ke−θ |t−s| for s � t � 0
(2.3)

and

�(t, s)P s(s) = P s(t)�(t, s) for t, s � 0. (2.4)

In other words, solutions associated with initial values in R(P s(s)) decay exponentially in
forward time, i.e. as t increases with t > s, while solutions belonging to initial values in
R(id − P s(s)) decay exponentially in backward time, i.e. as t decreases with s > t > 0. We
set P u(t) = id − P s(t).

Hypothesis 1. The linearization (2.2) of (2.1) about ū(t) has an exponential dichotomy on R
+.

It is then a well known consequence that there exists a unique local stable manifold
W s

0(ū) ∈ R
n such that any solution u(t) to (2.1) with u(0) close to ū(0) and u(0) ∈ W s

0 decays
towards ū(t) as t → ∞ and satisfies u(t) ∈ W s

0 for all t � 0.
The issue addressed in this section is the behaviour of the stable manifold under

perturbations. Of course, for small and smooth perturbations it is well known that the stable
manifold persists. Here, the emphasis is on perturbations that are only given on large, but
finite, time intervals. Stable manifolds, however, are defined by the behaviour of solutions as
time tends to infinity.

The perturbations considered here are of the following form.

Hypothesis 2. Let h(t, u; ε) be a function defined for every ε ∈ [0, ε0) so that there are
functions τ±(ε) and constants C > 0 and ν ∈ ( 1

2 , 1] such that

• h(·, ·; ε) : [τ−(ε)− 2ν
θ

| ln ε|, τ+(ε) + 2ν
θ

| ln ε|] × R
n → R

n is Ck in (t, u) for every fixed
ε ∈ [0, ε0), and

• |h(t + τ, u; ε)| + |Duh(t + τ, u; ε)| � Cεν for τ ∈ [τ−(ε), τ+(ε)], |t | � 2ν
θ

| ln ε| and
u ∈ R

n.
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As mentioned above, stable manifolds are meaningful only for vector fields that are defined
for all positive times. We then choose a function h1(t, u; ε) such that the following conditions
are met:

(a) h1 : R × R
n × [0, ε0) → R

n, (t, u, ε) �→ h1(t, u; ε) is Ck in (t, u) for every fixed ε

(b) |h1(t, u; ε)| + |Duh1(t, u; ε)| � Cεν for (t, u) ∈ R × R
n

(c) h1(t + τ, u; ε) = h(t + τ, u; ε) for τ ∈ [τ−(ε), τ+(ε)], |t | � 2ν

θ
| ln ε| and u ∈ R

n.

(2.5)

Such a choice is clearly possible by using smooth cut-off functions. We consider the vector
field

u̇ = f (u) + h1(t + τ, u; ε) (2.6)

for τ ∈ [τ−(ε), τ+(ε)]. We have introduced the parameter τ to account for the fact that the
perturbation is non-autonomous. Note that the perturbation h1 is defined for ε small and any
positive t . Standard perturbation theory implies that the bounded solution ū(t) persists as does
its stable manifold W s

0(ū). Indeed, all solutions u(t) that stay near ū(t) for all positive times
are captured by the following approach. Let

u(t) = ū(t) + v(t)

then u(t) satisfies (2.6) and is close to ū(t) for all positive times if and only if v(t) satisfies the
integral equation

v(t) = �(t, 0)v0 +
∫ t

0
�(t, s)P s(s)G1(s, v(s); ε) ds +

∫ t

∞
�(t, s)P u(s)G1(s, v(s); ε) ds

(2.7)

for some v0 ∈ R(P s(0)), where the nonlinearity G1 is given by

G1(t, v; ε) = h1(t + τ, ū(t) + v; ε) + f (ū(t) + v)− f (ū(t))− Df (ū(t))v = O(εν + |v|2).
We suppress the dependence of G1 on τ . Using the last estimate and an analogous estimate
for the derivative DvG1 of G1, it is straightforward to solve the integral equation (2.7) for any
given v0 ∈ R(P s(0)) with |v0| small by employing Banach’s fixed-point theorem.

As a result, we obtain an invariant stable manifold W s
1(τ ) near ū(t) for (2.6). Originally,

however, we were interested in the equation

u̇ = f (u) + h(t + τ, u; ε). (2.8)

Since h(t + τ, u; ε) and h1(t + τ, u; ε) coincide for 0 � t � 2ν
θ

| ln ε|, we see that the manifold
W s

1(τ ) is invariant under the flow of (2.8) as long as 0 � t � 2ν
θ

| ln ε|. We may therefore
regard W s

1(τ ) as a ‘stable’ manifold for equation (2.8).
The interesting question, and indeed one of the main issues addressed in this paper, is the

dependence of the stable manifold W s
1(τ ) on the choice of the extension h1(t, u; ε). Thus,

we shall derive estimates for the difference of two such manifolds W s
1(τ ) and W s

2(τ ) for two
different extensions h1 and h2. We assume that both functions h1 and h2 satisfy the conditions
(2.5) (a)–(c).

We decompose two solutions uj (t), j = 1, 2, to

u̇j = f (uj ) + hj (t + τ, uj ; ε)
as

uj (t) = ū(t) + vj (t).
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If uj (t) stays close to ū(t) for all positive times, then vj (t) satisfies the integral equation

vj (t) = �(t, 0)v0 +
∫ t

0
�(t, s)P s(s)Gj (s, vj (s); ε) ds +

∫ t

∞
�(t, s)P u(s)Gj (s, vj (s); ε) ds

(2.9)

for some v0 ∈ R(P s(0)). The nonlinearities Gj are given by

Gj(t, v; ε) = hj (t + τ, ū(t) + v; ε) + f (ū(t) + v)− f (ū(t))− Df (ū(t))v = O(εν + |v|2).

As before, we obtain two invariant manifolds W s
1(τ ) and W s

2(τ ) formed by solutions to (2.9)
for varying v0 ∈ R(P s(0)).

We remark that the solutions vj (t) satisfy the estimate

|vj (t)| � C(|v0| + εν) (2.10)

uniformly in t � 0. Here, and in the following, various different constants that are independent
of ε, t and τ are denoted by C.

The distance between the manifoldsW s
1(τ ) andW s

2(τ ) is measured at t = 0 in the direction
of the complement R(P u(0)). Assuming that v1(t) and v2(t) satisfy (2.9) for j = 1, 2 for the
same value of v0, we define

w(t) = v1(t)− v2(t).

The difference w(t) then satisfies the equation

w(t) =
∫ t

0
�(t, s)P s(s)(G1(s, v1(s); ε)−G2(s, v2(s); ε)) ds

+
∫ t

∞
�(t, s)P u(s)(G1(s, v1(s); ε)−G2(s, v2(s); ε)) ds. (2.11)

We next estimate the difference G1(s, v1; ε)−G2(s, v2; ε). We obtain

|f (ū(t) + v1)− f (ū(t) + v2)− Df (ū(t))(v1 − v2)|

=
∣∣∣∣
∫ 1

0
(Df (ū(t) + v2 + s(v1 − v2))− Df (ū(t))) ds (v1 − v2)

∣∣∣∣
� C(|v1| + |v2|)|v1 − v2|
� C(|v0| + εν)|w|

since |v1| + |v2| � C(|v0| + εν). Furthermore, if we restrict to 0 � t � 2ν
θ

| ln ε| and
τ ∈ [τ−(ε), τ+(ε)], then the functions h1 and h2 coincide, and we obtain

|h1(t + τ, ū(t) + v1; ε)− h2(t + τ, ū(t) + v2; ε)|
= |h(t + τ, ū(t) + v1; ε)− h(t + τ, ū(t) + v2; ε)| � Cεν |w|

for 0 � t � 2ν
θ

| ln ε| and τ ∈ [τ−(ε), τ+(ε)]. In summary, we have

|G1(s, v1; ε)−G2(s, v2; ε)| �
{
C(εν + |v0|)|w| for 0 � t � 2ν

θ
| ln ε|

C(εν + |v0| |w|) for t � 2ν
θ

| ln ε| (2.12)
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uniformly in τ ∈ [τ−(ε), τ+(ε)]. After these preliminary calculations, we return to (2.11) and
estimate this equation as follows:

|w(t)| �
∣∣∣∣
∫ t

0
�(t, s)P s(s)(G1(s, v1(s); ε)−G2(s, v2(s); ε)) ds

∣∣∣∣
+

∣∣∣∣
∫ t

∞
�(t, s)P u(s)(G1(s, v1(s); ε)−G2(s, v2(s); ε)) ds

∣∣∣∣
� K

∫ t

0
e−θ(t−s)|G1(s, v1(s); ε)−G2(s, v2(s); ε)| ds

+ K
∫ t

∞
e−θ(s−t)|G1(s, v1(s); ε)−G2(s, v2(s); ε)| ds.

We now restrict to 0 � t � 2ν
θ

| ln ε|. Using (2.12), we obtain

|w(t)| � C(|v0| + εν)

( ∫ t

0
e−θ(t−s)|w(s)| ds +

∫ t

2ν
θ

| ln ε|
e−θ(s−t)|w(s)| ds

)

+ C
∫ 2ν

θ
| ln ε|

∞
e−θ(s−t)(εν + |v0| |w(s)|) ds

� C(|v0| + εν)

( ∫ t

0
e−θ(t−s)|w(s)| ds +

∫ t

2ν
θ

| ln ε|
e−θ(s−t)|w(s)| ds

)

+ C(εν + |v0|(|v0| + εν))ε2νeθt . (2.13)

To obtain an optimal estimate, we introduce a weighted norm. Choose some number θ̃ with
0 < θ̃ < θ . Set

δ(ε) = 2ν

θ
| ln ε|.

We then define

‖w(t)‖ := eθ̃ (δ(ε)−t)|w(t)|.
Multiplying (2.13) by exp[θ̃ (δ(ε) − t)] and taking the norm on both sides, we obtain for
0 � t � δ(ε):

eθ̃ (δ(ε)−t)|w(t)| � Ceθ̃ (δ(ε)−t)
[
(|v0| + εν)

( ∫ t

0
e−θ(t−s)|w(s)| ds +

∫ t

δ(ε)

e−θ(s−t)|w(s)| ds

)]

+ C(εν + |v0|(|v0| + εν)) e(θ−θ̃ )(t−δ(ε))

� Ceθ̃ (δ(ε)−t)(|v0| + εν) sup
0�s�δ(ε)

‖w(s)‖

×
( ∫ t

0
e−θ(t−s)e−θ̃ (δ(ε)−s) ds +

∫ t

δ(ε)

e−θ(s−t)e−θ̃ (δ(ε)−s) ds

)
+ C(εν + |v0|2)

� C(|v0| + εν) sup
0�s�δ(ε)

‖w(s)‖ eθ̃ (δ(ε)−t)

× (
e−θ̃ (δ(ε)−t) + e−θte−θ̃ δ(ε) + e−θ̃ (δ(ε)−t) + e−θ(δ(ε)−t)) + C(εν + |v0|2)

� C(εν + |v0|2) + C(|v0| + εν) sup
0�s�δ(ε)

‖w(s)‖.
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Hence, we can conclude that

sup
0�t� 2ν

θ
| ln ε|

‖w(t)‖ � C(εν + |v0|2)

and therefore

|w(t)| � C(εν + |v0|2) e−θ̃ ( 2ν
θ

| ln ε|−t) = C(εν + |v0|2)ε 2νθ̃
θ eθ̃ t (2.14)

for 0 � t � 2ν
θ

| ln ε|. Note that the solution ū(t) was quite arbitrary: parametrizing along
a different solution in W s

0(ū), if necessary, we may assume that v0 = 0. Thus, the distance
between solutions in W s

1(τ ) and W s
2(τ ) measured orthogonally to the tangent space of W s

0 can
be estimated by

|w(t)| � Cενε
2νθ̃
θ eθ̃ t (2.15)

for 0 � t � 2ν
θ

| ln ε|. In summary, we have proved the following theorem.

Theorem 1. Assume that hypotheses 1 and 2 are met. For any two functions h1 and h2 that
satisfy (2.5), we have the following results: take any two solutions u1(t) in W s

1(τ ) and u2(t)

in W s
2(τ ) close to ū(t) such that u1(0)− u2(0) is contained in R(P u(0)). Their difference can

then be estimated by

|u1(0)− u2(0)| � Cε2ν

uniformly for τ ∈ [τ−(ε), τ+(ε)].

Proof. If u1(0)−u2(0) is contained in R(P u(0)), there exists a unique element ũ0 in the stable
manifold W s

0 such that uj (0) = ũ0 + vu
j for certain elements vu

j ∈ R(P u(0)) with j = 1, 2.
By the roughness theorem for exponential dichotomies [4], the linearization of (2.2) about
ũ(t) also has an exponential dichotomy with the same null space R(P u(0)) at t = 0 (see [4]).
Therefore, the arguments given above apply with v0 = 0, and the theorem follows from (2.15)
upon choosing θ̃ so that 1

2θ � θ̃ � θ . �

In other words, any two choices of h1 and h2 lead to invariant stable manifolds whose
distance, at t = 0, is less than Cε2ν uniformly in τ ∈ [τ−(ε), τ+(ε)].

3. Splitting of separatrices

We apply the results obtained in the last section to the splitting of separatrices in autonomous
vector fields under finite-time perturbations. Consider the equation

u̇ = f (u) u ∈ R
n (3.1)

where f (u) is Ck for some k � 2.
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Hypothesis 3. Equation (3.1) has hyperbolic equilibriaA0 and B0, and there is a heteroclinic
trajectory ū(t) which connects A0 to B0. Furthermore, we assume that

Tū(0)W
u(A0) ∩ Tū(0)W

s(B0) = span{ ˙̄u(0)} dimW u(A0) + dimW s(B0) = n.

Since the equilibria are hyperbolic, the linearization of (3.1) about ū(t) satisfies
hypothesis 1 for positive and negative times. We are then interested in the fate of the heteroclinic
orbit ū(t) upon perturbing the equation to

u̇ = f (u) + h1(t + τ, u; ε) u ∈ R
n (3.2)

for some function h1 that satisfies (2.5).
We can now employ theorem 1 and conclude that there are stable and unstable manifolds

W s(τ ;B0) and W u(τ ;A0) of (3.2) for any small ε and τ ∈ [τ−(ε), τ+(ε)]. The distance
between any two stable (or unstable) manifolds obtained for different functions h1 is less than
Cε2ν outside a small neighbourhood of the equilibria. We are interested in the distance between
the stable and unstable manifolds, which we would like to measure by a Melnikov integral.

Before stating the result, we need one more piece of information. As a consequence of
hypothesis 3, the adjoint variational equation

v̇ = −Df (ū(t))∗v (3.3)

along the heteroclinic trajectory ū(t) has a unique, up to constant multiples, non-zero bounded
solution ϕ(t), and this solution satisfies

|ϕ(t)| � C|ϕ(0)| e−θ |t |

for t ∈ R (see, for instance, [9]). We then have the following result.

Lemma 1. Suppose that hypotheses 2 and 3 are true. The stable and unstable manifolds
W s(τ ;B0) and W u(τ ;A0) of (3.2) with τ ∈ [τ−(ε), τ+(ε)] have an intersection near ū(0) if
and only if

d(τ, ε) =
∫ 2ν

θ
| ln ε|

− 2ν
θ

| ln ε|
〈ϕ(t), h(t + τ, ū(t); ε)〉 dt + O(ε2ν) = 0. (3.4)

Moreover, the intersection is transverse if, and only if, ∂
∂τ
d(τ, ε) �= 0.

The distance function d(τ, ε) in the above lemma is not normalized: a different choice of
the function ϕ(t) results in a different distance function. To make the distance function d(τ, ε)
unique, we could either normalize ϕ(t) so that |ϕ(0)| = 1 or else divide the expression on the
right-hand side of (3.4) by |ϕ(0)|. For simplicity, we refrain from normalizing the distance
function in this fashion as we would only introduce a constant factor in front of the right-hand
side of (3.4).

Proof. If n = 2 (i.e. for a two-dimensional phase space R
2), it then follows from [1, theorem 1]

and its proof that the distance function d(τ, ε) that describes the intersections of the stable and
unstable manifolds is of the form

d(τ, ε) =
∫ ∞

−∞
〈ϕ(t),G1(t + τ, v1(t); ε)〉 dt (3.5)

where v1 = v1(τ, ε) satisfies

sup
t∈R

|v1(τ, ε)(t)| � Cεν. (3.6)
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Recall that G1 is given by

G1(t, v; ε) = h1(t, ū(t) + v; ε) + f (ū(t) + v)− f (ū(t))− Df (ū(t))v.

If n > 2, expression (3.5) for the distance function and the estimate (3.6) for v1 are a
consequence of [11, theorem 4] and its proof: it is straightforward to verify that the proof of
[11, theorem 4] also works in the case where the perturbation h1 satisfies (2.5). In particular,
in the notation of [11], the O(µ)-estimates for the perturbation µH and the solution w(t, µ)
can be replaced by O(µν) estimates.

It remains to simplify (3.5). Exploiting (2.5) (b) and the estimate (3.6) for v1, we obtain

d(τ, ε) =
∫ ∞

−∞
〈ϕ(t), h1(t + τ, ū(t); ε)〉 dt + O(ε2ν).

Finally, we truncate the interval of integration to (− 2ν
θ

| ln ε|, 2ν
θ

| ln ε|); the resulting error is
of order O(ε2ν) since ϕ(t) decays exponentially. Note that the functions h and h1 coincide on
the interval (− 2ν

θ
| ln ε|, 2ν

θ
| ln ε|); see (2.5) (c). �

Theorem 1 and lemma 1 show that the splitting of separatrices is well defined even for
finite-time perturbations. Indeed, any two stable and unstable manifolds differ by at most
O(ε2ν). On the other hand, the splitting distance is given by

d(τ, ε) =
∫ 2ν

θ
| ln ε|

− 2ν
θ

| ln ε|
〈ϕ(t), h(t + τ, ū(t); ε)〉 dt + O(ε2ν).

Since ν > 1
2 , the error term is of the form O(ε1+γ ) for some γ > 0. Even if the integral itself

is of the order ε, the error term would be of higher order. Hence, if∣∣∣∣∣
∫ 2ν

θ
| ln ε|

− 2ν
θ

| ln ε|
〈ϕ(t), h(t + τ, ū(t); ε)〉 dt

∣∣∣∣∣ � aε

for some constant a > 0 that is independent of ε and τ , then the stable and unstable manifolds
cannot intersect however we choose the extension h1.

4. An application to the breaking of vorticity conservation by viscous dissipation

We return to the issue of transport in the viscous barotropic vorticity equation in two spatial
dimensions (see section 1). Thus, assume that ψ(x, y, t; ε) is a solution to

∂q

∂t
+ {ψ, q} = ε [�q + f (x, y, t)] (4.1)

where

q = �ψ + βy {ψ, q} = ∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
.

We restrict our attention to travelling-wave solutions to this equation. It has been shown in
[1, lemma 6] that such waves always travel in the x-direction. Therefore, we assume that, for
ε = 0, the solution ψ(x, y, t; 0) is given by

ψ(x, y, t; 0) = .0(x − ct, y)
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for an appropriate function .0(ξ, η) and a certain wave speed c. For ε = 0, the Lagrangian
dynamics in the moving frame (ξ, η) = (x − ct, y) is then governed by the equation(

ξ̇

η̇

)
= J∇(.0(ξ, η) + cη) (4.2)

which is a Hamiltonian with energy .0(ξ, η) + cη. The skew-symmetric matrix J has been
defined in (1.5). We assume that (4.2) satisfies the following assumption.

Hypothesis 4. Equation (4.2) has a homoclinic trajectory ū(t) = (ξ̄ , η̄)(t) that connects the
hyperbolic equilibrium (ξA, ηA) to itself.

For ε > 0, we write

.(ξ, η, t; ε) := ψ(ξ + ct, η, t; ε).
We shall then investigate the Lagrangian dynamics(

ξ̇

η̇

)
= J∇(.(ξ, η, t; ε) + cη). (4.3)

Note that, for ε > 0, the PDE (4.1) is parabolic so that, in general, the streamfunction
.(ξ, η, t; ε) exists only for t � 0. We are therefore forced to consider finite-time perturbations
of (4.2). We assume that the perturbation satisfies hypothesis 2.

Hypothesis 5. The perturbation

h(t, ξ, η; ε) := J∇(.(ξ, η, t; ε)−.0(ξ, η))

is defined for every ε ∈ [0, ε0) so that, for some κ > 0,

• h(·, ·; ε) : [0, 2ε−κ ] × R
2 → R

2 is Ck in (t, ξ, η) for every fixed ε ∈ [0, ε0), and
• there exist constants C > 0 and ν ∈ ( 1

2 , 1] so that |h(t, ξ, η; ε)| + |D(ξ,η)h(t, ξ, η; ε)| �
Cεν for 0 � t � 2ε−κ and (ξ, η) ∈ R

2.

Before we state the theorem, we define

Q0(ξ, η) := �(.0(ξ, η) + cη) + βη F(ξ, η, t) := f (ξ + ct, η, t).

The following modification of [1, theorem 1] holds.

Theorem 2. Under the assumptions given above, the separation function for equation (4.3)
has the form

d(τ, ε) = ε

∫ ∞

−∞
[�Q0(ξ̄ (t), η̄(t))−�Q0(ξA, ηA)] dt

+ε
∫ ∞

−∞
[F(ξ̄ (t), η̄(t), t + τ)− F(ξA, ηA, t + τ)] dt + O(ε2ν) (4.4)

uniformly in τ ∈ [
2ν
θ

| ln ε|, 2ε−κ − 2ν
θ

| ln ε|].
Note that, since ν > 1

2 by hypothesis 5, the error term in the above formula is of higher
order than ε.

Proof. It is convenient to shift time. Thus, instead of considering the interval (0, 2ε−κ),
we transform the interval to (−ε−κ , ε−κ). Then, τ varies in the interval τ ∈ [−ε−κ +
2ν
θ

| ln ε|, ε−κ − 2ν
θ

| ln ε|], and we assume that hypothesis 5 is met for t ∈ (−ε−κ , ε−κ) rather
than for t ∈ (0, 2ε−κ).
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We now apply lemma 1 to (4.3); this is possible due to our assumptions. The distance
function is then given by

d(τ, ε) =
∫ 2ν

θ
| ln ε|

− 2ν
θ

| ln ε|

〈
ϕ(t), J∇(.(ū(t), t + τ ; ε)−.0(ū(t)))

〉
dt + O(ε2ν)

where ϕ(t) is a non-zero bounded solution to the adjoint variational equation associated
with (4.2) about ū(t). It follows from [1, lemma 1 and theorem 1] that we can take
ϕ(t) = ∇Q0(ū(t)). Thus,

d(τ, ε) =
∫ 2ν

θ
| ln ε|

− 2ν
θ

| ln ε|

〈∇Q0(ū(t)), J∇(.(ū(t), t + τ ; ε)−.0(ū(t)))
〉
dt + O(ε2ν).

First, we transform into the original non-moving coordinates (x, y) = (ξ + ct, η). In the
original coordinates, the homoclinic solution ū(t) and the equilibrium (ξA, ηA) are given by

z̄(t; τ) = (ξ̄ (t − τ) + ct, η̄(t − τ)) A0(t) = (ξA + ct, ηA).

Define the functions ψ0 and ψ1 by

ψ0(x, y, t) := ψ(x, y, t; ε) εψ1(x, y, t; ε) := ψ(x, y, t; ε)− ψ0(x, y, t; 0)

and let q0 = �ψ0 + βy and q1 = �ψ1 so that q = q0 + εq1. On account of hypothesis 5, we
then have

|ψ1(x, y, t; ε)| + |∇ψ1(x, y, t; ε)| + |q1(x, y, t; ε)| � Cε−1+ν (4.5)

uniformly in (x, y, t) and ε. Writing the distance function in the original coordinates and
shifting time t �→ t − τ , we obtain

d(τ, ε) = ε

∫ τ+ 2ν
θ

| ln ε|

τ− 2ν
θ

| ln ε|
〈∇q0(z̄(t; τ), t), J∇ψ1(z̄(t; τ), t; ε)〉 dt + O(ε2ν)

= ε

∫ τ+ 2ν
θ

| ln ε|

τ− 2ν
θ

| ln ε|
{ψ1, q0}(z̄(t; τ), t; ε) dt + O(ε2ν)

see [1, equation (6.3)]. We write

d(τ, ε) = εM(τ) + O(ε2ν) (4.6)

where

M(τ) =
∫ τ+ 2ν

θ
| ln ε|

τ− 2ν
θ

| ln ε|
{ψ1, q0}(z̄(t; τ), t; ε) dt. (4.7)

Throughout the remaining part of the proof, we closely follow the arguments in [1, pp 64–5]
and refer to that paper for more details. The Melnikov integral in the above formula (4.7) can

be calculated by applying the operator
∫ τ+ 2ν

θ
| ln ε|

τ− 2ν
θ

| ln ε| dt to the equation [1, (6.7)],

{ψ1, q0}(z̄(t; τ), t) = [�q0(z̄(t; τ), t)−�q0(A0(t), t)] + [f (z̄(t; τ), t)− f (A0(t), t)]

+

[{
�q0 + f + ε

[
�q1 − {ψ1, q1}]} (A0(t), t)− dq1

dt
(z̄(t; τ), t)

]

+ε
[ (
�q1 − {ψ1, q1}) (z̄(t; τ), t)− (

�q1 − {ψ̃1, q1})(A0(t), t)
]
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that is satisfied on the finite interval (τ − 2ν
θ

| ln ε|, τ + 2ν
θ

| ln ε|). The computations on [1, p 64]
remain valid: the only difference is that the error term is of order O(ε−1+2ν) instead of O(ε):
this estimate follows as on [1, p 64] upon using the estimate (4.5). Furthermore, additional
terms of order O(ε−1+2ν) arise when the integral is evaluated at the finite limits τ ± 2ν

θ
| ln ε|.

In summary, we obtain the formula

M(τ) =
∫ τ+ 2ν

θ
| ln ε|

τ− 2ν
θ

| ln ε|
[�q0(z̄(t; τ))−�q0(A0(t))] dt

+
∫ τ+ 2ν

θ
| ln ε|

τ− 2ν
θ

| ln ε|
[f (z̄(t; τ), t)− f (A0(t), t)] dt + O(ε−1+2ν).

Switching back to the moving coordinates and shifting the time variable, t �→ t + τ , we finally
arrive at the expression

M(τ) =
∫ 2ν

θ
| ln ε|

− 2ν
θ

| ln ε|
[�Q0(ξ̄ (t), η̄(t))−�Q0(ξA, ηA)] dt

+
∫ 2ν

θ
| ln ε|

− 2ν
θ

| ln ε|
[F(ξ̄ (t), η̄(t), t + τ)− F(ξA, ηA, t + τ)] dt + O(ε−1+2ν)

=
∫ ∞

−∞
[�Q0(ξ̄ (t), η̄(t))−�Q0(ξA, ηA)] dt

+
∫ ∞

−∞
[F(ξ̄ (t), η̄(t), t + τ)− F(ξA, ηA, t + τ)] dt + O(ε−1+2ν).

Upon substituting this term into (4.6), we see that the assertions of the theorem are true. �

We have observed that the unperturbed and perturbed streamfunction will certainly not be
close whenever the length of the time interval is large compared with ε−κ (see [1]). Therefore,
we expect that the optimal result is closeness of the streamfunctions on intervals of length
O(ε−κ). Presumably, closeness will break down when going beyond that point. This is
supported by the following formal argument. We write (4.1) in terms ofψ using q = �ψ +βy.
Transforming into moving coordinates, we obtain the equation

∂

∂t
�. + {.,�.} + β.ξ − c�.ξ = ε

(
�2. + F

)
.

Formally, the linearization of this equation about a travelling wave . is given by

L.̃ = ε�.̃ + c.̃ξ −�−1({.̃,�.} + {.,�.̃} + β.̃ξ ).

For ε > 0, this operator generates an analytic semigroup on a suitable function space. If all
points in its spectrum had a real part less than ε, the estimate

‖eLt‖ � Mεe
εt

would hold. Assume that the constant Mε can, in fact, be chosen independently of ε. Then
the closeness of unperturbed and perturbed streamfunction could be concluded on intervals of
length O(ε−κ) using the variation-of-constants formula.

We also remark that, even if the unperturbed and perturbed streamfunction stay close for
all positive times, it might be necessary to use theorem 2 rather than [1, theorem 1], since the
perturbed streamfunction may not be well defined for negative times.
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5. An explicit Rossby wave

In this section, we compare the theoretical predictions of theorem 2 with numerical calculations
for an exact solution to the viscous barotropic vorticity equation on the β-plane.

5.1. A model for meandering jets

We write equation (1.3) for the potential vorticity q = �ψ +βy in terms of the streamfunction
ψ and obtain, with f (x, y, t) = 0,

∂t�ψ + {ψ,�ψ + βy} = ε�2ψ. (5.1)

From [10, 12] an exact solution to the inviscid equation, ε = 0, is given by

ψ0(x, y, t) = A sin(k(x − ct)) sin(ly) (5.2)

with the speed c satisfying

c = − β

k2 + l2
< 0.

In a frame moving with the wave, (ξ, η) = (x − ct, y), the velocity field is steady with
streamfunction

.0(ξ, η) := ψ0(ξ + ct, η, t) = A sin(kξ) sin(lη).

For ε > 0 in equation (5.1), an exact solution is given by

ψ(x, y, t; ε) = Aeγ t sin(k(x − ct)) sin(ly). (5.3)

The speed c is related to the wavenumbers k and l just as before, and the exponential decay
rate γ satisfies

γ = −ε (k2 + l2) = εβ

c
.

To investigate the dynamics of particles moving in the velocity fields satisfying (5.1), it is again
useful to switch to a reference frame moving with the travelling wave, (ξ, η) = (x − ct, y).
In this moving frame, the streamfunction is given by

.(ξ, η, t; ε) := ψ(ξ + ct, η, t; ε) = eγ t.0(ξ, η) = Aeγ t sin(kξ) sin(lη)

and the Lagrangian dynamics are governed by(
ξ̇

η̇

)
= J∇(.(ξ, η, t; ε) + cη) =

(−e(εβ/c) t Al sin(kξ) cos(lη)− c

e(εβ/c) t Ak cos(kξ) sin(lη)

)
. (5.4)

5.2. Theoretical predictions

First, consider the case ε = 0 where the velocity field is steady in the (ξ, η) reference frame:(
ξ̇

η̇

)
= J∇(.0(ξ, η) + cη).

The contours of.0(ξ, η) for this steady flow are shown in figure 1. The horizontal lines η = 0
and 1 are invariant under the flow for all ε � 0 and there are two distinct equilibrium points



Melnikov theory for finite-time vector fields 1371

Figure 1. Streamlines for the steady solution to (5.1) where the parameters are chosen as in (5.7).

at (ξ1, 0) and (ξ2, 0) satisfying Al sin(kξi) + c = 0. With −c,A, l > 0, it follows that the
equilibrium points at η = 0 exist provided

0 < − c

Al
< 1.

The heteroclinic orbit (ξ̄ , η̄)(t) connecting (ξ1, 0) with (ξ2, 0), together with the line ξ = 0,
form a closed recirculation gyre where the trajectories are closed orbits in the (ξ, η)-phase
space.

For ε > 0, equation (5.4) is given by(
ξ̇

η̇

)
= J∇(.(ξ, η, t; ε) + cη) = J∇(.0(ξ, η) + cη) + (e(εβ/c) t − 1)J∇.0(ξ, η).

For every ν ∈ ( 1
2 , 1), and with κ = 1 − ν < 1, the ε-dependent perturbation clearly satisfies

hypothesis 5 since

|e(εβ/c) t − 1| � C|εt | � Cεν

for 0 � t � 2ε−(1−ν) for some constant C that depends on β and c but not on t or ε.
Therefore, we can apply theorem 2 and conclude that the distance dtheory(τ, ε) between the

perturbed stable and unstable manifolds of (5.4) near the heteroclinic orbit (ξ̄ , η̄)(t) is given
by

dtheory(τ, ε) = ε(Mtheory + O(ε2ν−1)) (5.5)

where

Mtheory =
∫ ∞

−∞
�2.0(ξ̄ (t), η̄(t)) dt = −β2

c

∫ ∞

−∞
η̄(t) dt

= − 2β2

Akc

∫ η0

0

η√
sin2(lη)− (cη/A)2

dη. (5.6)
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Figure 2. Unstable and stable manifolds, W u
1 and W s

2 , as computed for the exact solution to the
barotropic potential vorticity equation in (5.1) with ε = 1×10−5, at times t = 0, 700, 1400, 2100.
The full outer curve is W u

1 and the broken curve is W s
2 .

Here, η0 is such that A sin(lη0) + cη0 = 0. The second identity in (5.6) is a consequence of
[1, lemma 7], while the last identity can be obtained upon exploiting the Hamiltonian nature
of (5.4). The expansion (5.5) is valid on the time interval

(b| ln ε|, ε−(1−ν)) = (b| ln ε|, ε−κ)

where b > 0 is a certain constant. Since c < 0 and β > 0, we have Mtheory > 0, and it follows
from (5.5) that dtheory(τ, ε) > 0 on the time interval given above.

5.3. Numerical simulations

For the numerical results to follow, the parameters are fixed at the values

β = 1.0 k = l = π A = 0.03. (5.7)

This yields a wave speed of c = −0.050 66 and the decay coefficient γ = −19.74 ε. In
dimensional values, selecting β = 2.0 × 10−11 m−1 s−1 (its value at about 30◦ latitude), and
a length scale of 100 km, the parameters in (5.7) correspond to the eddy diffusivity parameter
of the magnitude O(10−2) to O(101)m2 s−1, i.e. to ε of the magnitude O(10−3) to O(10−6);
see [13] for similar calculations.

For ε > 0, the plot in figure 1 still represents the instantaneous velocity field at the
initial time t = 0. As t increases the locations of the zeros in the velocity field at η = 0 are
determined by exp(εβt/c)Al sin(kξi) + c = 0. It follows that these zeros at ξ1(t) and ξ2(t)

move towards one another and coalesce at t = tc = κ/ε, where κ = c ln(−c/Al)/β. Using
the parameter values from (5.7) yields tc = 0.031 45/ε. For t � tc there is no longer any notion
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Figure 3. Computed manifolds, W u
1 and W s

2 , for ε = 1 × 10−4 at t = 0, 70, 140, 210.

of a recirculation gyre in the instantaneous velocity field. Note that this value of t is beyond
the range where our theoretical predictions are valid. For convenience we write ξ1(t) and ξ2(t)

to denote the time-dependent zeros of the velocity field (the coordinate η = 0 is implied).
We have shown that, over finite time intervals of length ε−κ with κ < 1, there are hyperbolic
trajectories γ1(t) and γ2(t) of (5.4) that are close to the zeros (ξ1(t), 0) and (ξ2(t), 0). The
objective here is to approximate these trajectories and their associated manifolds numerically
over a finite interval (see also [7]).

The parameter value ε = 1×10−4 is used to describe the procedures for approximating the
stable and unstable manifolds of γ1 and γ2, and computing the transport out of the recirculation
eddy. For this value of ε the zeros ξ1(t) and ξ2(t) exist up to the time tc = 314. To approximate
the unstable manifold of γ1, denoted byW u

1 , a short line segment of initial conditions is evolved
forward in time starting at t0 = −30 and ending at t = 300. The initial line segment extends
from (ξ1(−30), 0) to (ξ1(−30), 0.02). Similarly, the stable manifold at γ2, denoted by W s

2 , is
computed by evolving backward in time a segment of initial conditions starting at tf = 310 and
ending at t = 0. This initial line segment extends from (ξ2(310), 0) to (ξ2(310), 0.02). Though
the exact location of the distinguished trajectory is determined by our choice of initial data,
the differences in the computed manifolds should be negligible for initial data chosen near the
curves ξ1(t) and ξ2(t). The approximation of W u

1 and W s
2 is the same for the other parameter

cases though the exact time scale depends on ε. Figures 2 and 3 include representative plots
of the stable and unstable manifolds for ε = 1 × 10−5 and 1 × 10−4.

The distance, dnum(τ, ε), between the two manifolds is measured at ξ = 0.5, where the
tangent lines to the two manifolds are horizontal. The transport or mass flux is approximated
by the product U(τ) dnum(τ, ε), where U is the horizontal component of the velocity at the
point midway between the two manifolds (at η = 0.5). Some details are summarized in table 1.
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Figure 4. The top figure shows the computed distance betweenW u
1 andW s

2 for ε = 1×10−6. This
distance is measured at the ‘top’ of the recirculation gyre at ξ = 0.5 (see figure 2, for example).
The broken line indicates the theoretical value of the distance as computed using (5.5)–(5.7). The
bottom figure shows the calculated mass transport out of the gyre. This transport is computed as
the horizontal velocity at the midpoint of the gap multiplied by the length of the gap.

Table 1. The initialization times tf for the stable manifolds, the distances between W u and W s,
and the associated transport at time τ = 0 are shown for various values of ε. The parameter values
are β = 1.0, k = l = π and A = 0.03.

ε tf Distance at τ = 0 Transport at τ = 0

1 × 10−6 62 000 1.10 × 10−4 8.02 × 10−6

5 × 10−6 6 200 5.72 × 10−4 4.16 × 10−5

1 × 10−5 3 100 1.14 × 10−3 8.32 × 10−5

5 × 10−5 620 5.71 × 10−3 4.16 × 10−4

1 × 10−4 310 1.14 × 10−2 8.32 × 10−4

2 × 10−4 155 2.30 × 10−2 1.67 × 10−3

5 × 10−4 62 6.00 × 10−2 4.29 × 10−3

Finally, we compare the theoretical prediction with the numerical simulations. As shown
in the table above, the separation distance between the stable and unstable manifolds, measured
at τ = 0, and the phase space transport both scale linearly with ε, with

dnum(τ, ε) ≈ 120ε.

On the other hand, evaluating the expression (5.6) for the Melnikov integral numerically, with
parameters given by (5.7), we obtain

dtheory(τ, ε) ≈ 160ε.

The difference can be explained as follows. As outlined above, we calculated the stable
manifold by evolving backward in time a short line segment of initial conditions starting at



Melnikov theory for finite-time vector fields 1375

Figure 5. Distance between W u
1 and W s

2 and the calculated transport for ε = 1 × 10−5. The
theoretical value of the distance is plotted as a broken line.

Figure 6. Distance between W u
1 and W s

2 and the calculated transport for ε = 5 × 10−5. The
theoretical value of the distance is plotted as a broken line.
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Figure 7. Distance between W u
1 and W s

2 and the calculated transport for ε = 1 × 10−4. The
theoretical value of the distance is plotted as a broken line.

time tf . The time tf is, however, of the order of ε−1 and not of the order of ε−1/2 (see the above
table). Thus, the perturbation of the differential equation is large compared with ε1/2 and our
results do not necessarily apply at τ = 0.

Figures 4–7 contain plots of the separation distance and transport as a function of t for
the cases ε = 1 × 10−6, 1 × 10−5, 5 × 10−5 and 1 × 10−4, respectively. The theoretical
value of the distance as given in (5.5) is plotted as a broken line. Note that it appears as if the
plots in figures 4–7 scale linearly in ε. We believe that this is due to the special form of the
non-autonomous perturbation in (5.4): the argument of the non-autonomous term is εt .
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