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Abstract

Recently developed nonautonomous dynamical systems theory is applied to
quantify the effect of bottom topography variation on steady surface waves
governed by the Korteweg-de Vries (KdV) equation. Arbitrary (but small) non-
localised bottom topographies are amenable to this method. Two classes of
free surface solutions— hyperbolic and homoclinic solutions of the associated
augmented dynamical system—are characterised. The first of these corresponds
to near-uniform free-surface flows for which explicit formulæ are developed for
a range of topographies. The second corresponds to solitary waves on the free
surface, and a method for determining their number is developed. Formulæ
for the shape of these solitary waves are also obtained. Theoretical free-surface
profiles are verified using numerical KdV solutions, and excellent agreement is
obtained.
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1. Introduction

The Korteweg-de Vries (KdV) equation is an archetypical evolution equation
representing the balance of dispersion and weak nonlinearity in physical systems
that generate waves. The physical motivation behind the original derivation of
Korteweg and de Vries [1] was to describe long waves propagating in a rectan-
gular channel, but there are also applications in ion acoustic waves in a plasma,
acoustic waves on a crystal lattice, and coupled oscillators [2, 3, 4, 5, 6]. The
richness of the behaviour of solutions is such that there continues to be ongoing
numerical and analytical studies to the KdV equation [7, 8, 9, 10, 11, 12, 13,
cf.].

The form we examine in this article is the steady forced KdV equation
represented in the dimensionless form [4, 5, 14, 15, 16, 17, 11, 18]

ηxxx + 9ηηx − 6 (F − 1) ηx = −3px . (1)

The equation approximates the elevation η(x) of the interface between the wa-
ter and air (free-surface) in a two-dimensional (x, y) gravity affected channel
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flow. The flow can be characterised with the dimensionless Froude number
F = U/

√
gH, where U and H are the uniform flow speed and depth in the far

field, and g is the acceleration due to gravity. We focus here specifically on the
role of the forcing term p(x), which represents either bottom topography, or an
external surface pressure on the free-surface. The existence of a solitary wave
solution is well-established for p ≡ 0 [1, 19]; in this article, we find analytical
approximations for solitary waves and allied solutions when p 6= 0, but is small.

When there is no forcing (i.e., with p ≡ 0), (1) is autonomous, and is well-
understood in terms of the autonomous (η, ηx) phase plane (Fig. 1(b)). An
analysis for determining free-surface solutions can be performed in the same
autonomous phase plane when p takes on very specific forms. In the case of
Dirac delta forcing (corresponding to a localised forcing or bump in bottom
topography), solutions can be rationalised as jumping from one solution trajec-
tory to another in the autonomous phase space [5, 16, 17, 20]. A jump also
results from the presence of an inclined plane on the surface [21]. If p represents
a vertical step at the bottom, solutions can be formed through the intersec-
tion of solution trajectories belonging to two different autonomous phase spaces
[22, 23]. Combinations of these three types of forcing (bump, plate and step)
have also been studied in a similar way for hybrid flows with multiple distur-
bances [23, 24, 25, 26], with an obvious limitation to a more general type of
nonlocalised forcing.

A specific class of nonlocalised p has received some attention in the litera-
ture: sinusoidal functions. When the amplitude of the sinusoid is small, several
studies have established the presence of chaos in the KdV and similar equa-
tions [27, 28, 29, 30, 31]. The main tool used in these analyses is the Melnikov
function from dynamical systems theory [32, 33, 34], whose zeroes correspond
to intersections between stable and unstable manifolds, and hence chaos via
the Smale-Birkhoff theorem [33]. These studies do not focus on obtaining free-
surface profiles theoretically, since the classical Melnikov function does not by
itself relate to such profiles. However, recent theoretical developments [35, 36]
building on the Melnikov approach provide the proper framework for determin-
ing free-surface profiles for general p(x), under the sole condition that p is small;
indeed, Dirac delta forms are also permissible [37]. The key tool developed by
Balasuriya [35] quantifies the normal and tangential motion of a stable and/or
unstable manifold due to the presence of a nonautonomous perturbation. In this
article, we adapt this theory to enable quantification of the free-surface profile
for the KdV equation for any small p.

In obtaining the free-surface profiles for general p, we need to view the KdV
system not in the (η, ηx)-phase space as is standard for autonomous or “jumping
between autonomous” situations [5, 20, 16, 17, 21, 22, 23, 24, 25, 26], but in
the genuinely nonautonomous (η, ηx, x) phase space. This standard approach
from dynamical systems is apparently not present in the KdV literature, and is
described in Section 2. This framework enables us to develop two classes of free-
surface solutions which we classify according to dynamical systems terminology
as hyperbolic trajectories and homoclinic solutions. These solution classes corre-
spond respectively to near-uniform and near-solitary wave solutions of the KdV
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equation, analogous to the perturbation of a uniform stream and perturbation
of a solitary wave classification of Vanden-Broeck [38]. In Section 3 we establish
an analytical formula which approximates the hyperbolic (near-uniform) solu-
tion, proving moreover that for general p there is a unique hyperbolic solution.
Physically, this means that there is one and only one near-uniform free-surface
configuration for the steady forced KdV equation for small bottom topography.
In Section 4 we establish a criterion for determining the number of homolinic
(near-solitary) solutions for a given forcing function; here ‘homoclinic’ means
that the solution lies on both the stable and the unstable manifold associated
with the hyperbolic trajectory. This supplements theoretical results by Choi
et al. [18] which characterises this number for compactly supported even p;
here, we establish a tool which works for general p. We then adapt the theory
of Balasuriya [35] to formulate an analytical formula which approximates each of
these near-solitary waves. In Section 5, we demonstrate the excellent agreement
between our theoretical formulæ and numerical solutions to the KdV equation,
finding along the way several unusual looking steady solitary waves. Our abil-
ity to provide explicit analytical formulæ for the free-surface gives excellent
initial guesses for our numerical KdV schemes. These can also be utilised as ini-
tial guesses in nonlinear free-surface computations beyond the weakly nonlinear
(KdV) approximation [16, 17, 21, 22, 24, 25].

In this work we restrict our analysis to supercritical flow with F > 1. The
technical reason for this restriction is that in this case, the physically relevant
near-uniform free-surface configuration which corresponds to (η, ηx) = (0, 0), is
a saddle point in the phase plane of Fig. 1(b). Such points—or more precisely
their nonautonomous analogues— are structurally stable. Thus, when p is small
but nonzero, a similar near-uniform solution persists; this is our hyperbolic
trajectory. Moreover, the stable and unstable manifolds persist, allowing for the
possibility of them intersecting to create a homoclinic solution which asymptotes
to the hyperbolic solution as x → ±∞. If we considered subcritical flow in which
F < 1, the phase-portrait of Fig. 1(b) changes somewhat; a centre (elliptic) point
now lies at the uniform free-surface location (η, ηx) = (0, 0) [16]. Such an entity
is not structurally stable, and thus its persistence cannot be guaranteed for p
small but nonzero. Thus, our analysis for determining near-uniform or near-
solitary solutions breaks down for F < 1. The critical case of F = 1, addressed
in [39], is also not amenable to the present analysis since once again structural
stability of the near-uniform solution is not assured.

2. Nonautonomous viewpoint

As our governing equation, we consider the integrated version of (1) given
by

ηxx +
9

2
η2 − 6 (F − 1) η = −3p(x) (2)

in the supercritical regime F > 1, where following many authors [1, 23, 28, 40]
we have set the integration constant to zero to deal with a class of bounded
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Figure 1: Unforced solitary wave, with y = η + 1, p(x) ≡ 0 and F = 1.2. (a) Free-surface
profile. (b) Autonomous phase space ζ = ηx = η′ versus η.

solutions of (1). We remark that an equation equivalent to (2) would also result
if considering travelling wave solutions to the unsteady KdV equation in which
there were a surface forcing which also travels with the wave [12, 28, 30, 40];
our analysis is also applicable for determining travelling wave profiles in that
instance. We impose the smallness condition

|p(x)| ≤ |ε| ≪ F − 1 (3)

for all x ∈ R on the forcing function p. Upon defining the variable ζ = η′(x),
(2) can be written as

η′ = ζ

ζ′ = −9

2
η2 + 6(F − 1)η − 3p(x)

}

, (4)

which is nonautonomous because p depends explicitly on the independent vari-
able x. Thus, (4) may be best viewed in the (η, ζ, x) appended (or augmented)
space as

η′ = ζ

ζ′ = −9

2
η2 + 6(F − 1)η − 3p(x)

x′ = 1











. (5)

In this section, we describe the well-known situation p ≡ 0 within the setting
of (5), to enable us to investigate p 6= 0 subsequently. When p ≡ 0, there are
two well-known special solutions to (4), of which the first is the trivial solution
(η, ζ) = (0, 0), corresponding to a flat surface with no additional features. We
shall also refer to this as the uniform stream solution. The linearised matrix of
(4) around this zero solution has eigenvalues ±

√

6(F − 1), implying (0, 0) is a
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Figure 2: A local picture of the hyperbolic trajectory E (heavy arrow) given by (6) in the
augmented phase space, with its attached stable and unstable manifolds also shown.

saddle fixed point possessing one-dimensional stable and unstable manifolds, in
the autonomous phase portrait as shown in Fig. 1(b). Now, this zero solution
when viewed in the augmented phase space (η, ζ, x) of (5) is

E(x) =





η
ζ
x



 (x) =





0
0
x



 , (6)

which forms a trajectory along the x-axis. This trajectory is hyperbolic since
it possesses both a two-dimensional stable manifold and a two-dimensional un-
stable manifold, corresponding to the one-dimensional entities associated with
viewing this solution in the autonomous phase space (4). These manifolds are
foliated with trajectories which forwards or backwards asymptote to the hyper-
bolic trajectory (6), as shown in Fig. 2.

The second special solution to (4) when p ≡ 0 is the one-parameter family
of solutions (η, ζ) = (η̄α(x), η̄

′
α(x)) where

η̄α(x) = 2 (F − 1) sech 2

(
√

3(F − 1)

2
[x− α]

)

, (7)

with α being an arbitrary parameter. The profile (7) is the familiar solitary
wave [1] as shown in Fig.1(a), which is a solution for any α since the solitary
wave can be centred at any location. In terms of the fundamental solitary wave
solution

η̄(x) = 2 (F − 1) sech 2

(
√

3(F − 1)

2
x

)

, (8)

the family (7) can be represented as shifts defined by η̄α(x) = η̄(x − α). Each
η̄α corresponds to a connection from the saddle point to itself, represented by
the bold curve in Fig. 1(b). By choosing any point on this segment as an initial
condition, the solution will forward asymptote to the fixed point at the origin,
and will backwards asymptote to the same fixed point. Thus, this solution
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corresponds to a homoclinic trajectory of the fixed point (0, 0), since it is si-
multaneously part of its stable and unstable manifold. The freedom to choose
any point as an initial condition is exactly the freedom of choosing α in (7); if
for example (η, ζ) = (2(F − 1), 0) were chosen, this corresponds to choosing the
symmetric solution α = 0 in (7), i.e., to choosing (8).

With respect to the augmented phase space (η, ζ, x), this family of solutions
(7) take the form

Nα(x) =





η̄α(x)
η̄′α(x)
x



 . (9)

Since η̄α(x) asymptotes to zero in both the limits x → ±∞, each Nα(x) lies on
both the stable and the unstable manifold of the hyperbolic trajectory E(x) as
given in (6), in the augmented phase space. Thus the solutions Nα(x) all lie on
the homoclinic manifold of E, and shall be called homoclinic solutions. These
exhibit the behaviour

lim
x→±∞

|Nα(x) −E(x)| = 0 ,

for all α ∈ R, implying that when p = 0 in (5), there are infinitely many
homoclinic solutions. From the perspective of Fig. 2, a branch of each of the
stable and unstable manifolds shown in the local picture near the hyperbolic
trajectoryE in Fig. 2 connect up; this is the augmented phase space visualisation
of the closed homoclinic manifold shown in Fig. 1. The geometric structure of
this homoclinic manifold in the augmented phase space is shown in Fig. 3.
The manifold is foliated with trajectories Nα(x) which backwards and forwards
asymptote to E. The parameter α represents which particular trajectory on
the manifold is chosen. The ability to “slide” the solitary wave to any location
(centred at x = α) when thinking of η as a function of x, corresponds exactly
to choosing a particular trajectory selected by α.

Now when the imposed forcing p(x) is included, (4) becomes genuinely
nonautonomous, and here the augmented phase space representation (5), along
with the geometry we have described, becomes invaluable. We will show that
the hyperbolic solution perturbs to a nearby solution, while the family of ho-
moclinic solutions may perturb to nearby solutions based on a criterion which
we identify. Moreover, we will determine explicit analytical expressions for all
these solutions for any general p(x).

3. Hyperbolic solutions

In this section, we consider the associated perturbation to the hyperbolic
solution E as given in (6). Only the smallness of p as expressed in (3) is needed
for our analysis; we do not require restrictions such as p being localised or
compactly supported [5, 20, 16, 17, 18, 41, e.g.], going to zero in the limits
x → ±∞ [5, 20, 16, 17, 21, 22, 23, 24, 25, 26, e.g.], being spatially periodic
[27, 28, 29, 30, 31, e.g.], or being smoothly differentiable. For small enough
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Figure 3: The homoclinic manifold of E in the augmented phase space, which is foliated by
the the homoclinic solutions Nα (two of which are shown) as given in (9).

|ε|, there are theoretical results [42, 43, 44] which ensure that there exists a
trajectory

Eε(x) =





ηε(x)
ζε(x)
x



 =





ηε(x)

(ηε)
′
(x)

x



 (10)

of (5) such that |Eε(x)−E(x)| ≤ C |ε| for some constant C independent of
x, and moreover Eε(x) is hyperbolic. Defining hyperbolicity in this nonau-
tonomous context requires an understanding of exponential dichotomies [42, 45,
46] but the basic intuition is easily stated: the exponential decay rates associ-
ated with the stable and unstable manifolds of E are preserved to leading-order
in ε for a trajectory nearby E. This trajectory, given in (10), thus itself possesses
two-dimensional stable and unstable manifolds (which are associated with the
exponential decay rates), rendering the behaviour near Eε topologically identi-
cal to that near E. In other words, the new picture for p 6= 0 is simply a wobbled
version of Fig. 2. The closeness to E means that the free surface flow remains
O(ε)-close to a flat surface, and so (10) is a “near-uniform flow” solution. We
remark that in making this argument, we needed to have the uniform solution
(0, 0) to be hyperbolic, which is the reason for our restricting our attention to
F > 1. If F < 1, the point (0, 0) is elliptic (a centre) [16], and its nearby
structure cannot be guaranteed to persist under perturbations.

Determining a leading-order expression for the hyperbolic trajectory (10),
and thus the small amplitude wave on the surface, can be done using a the-
oretical development valid in this nonautonomous case, using the approach of
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Balasuriya [35]. The formula for the η-term in Eε turns out to be

ηε(x) =
3

2
√

6(F − 1)

∫ ∞

0

[p(x− τ) + p(x+ τ)] e−
√

6(F−1)τ dτ +O(ε2) . (11)

The derivation of this surprisingly simple formula is given in Appendix A, along
with the proof of the existence and uniqueness of this particular trajectory which
is O(ε)-close to the uniform stream (i.e., flat free surface). In other words, the
nonautonomous technique that we use establishes that there is one and only
one free surface configuration for a given O(ε) form of p, which has size O(ε)
uniformly for all x ∈ R. Thus, it is a pointless exercise to seek additional
such solutions numerically or otherwise. In Section 5, we shall provide explicit
near-uniform free-surface profiles using (11).

An interesting point regarding (11) is that a quick method for attempting
to derive it would be to neglect the nonlinear term (9/2)η2 in (2), and then use
variation of parameters on the linear system. The leading-order term in (11)
does indeed take the form of such a variation of parameters solution, providing
an additional check on the solution (11). However, such a variation of parame-
ters approach by itself fails in identifying the hyperbolic trajectory (11), since
there is no a priori way to know what particular “initial” conditions to apply
at x = 0. Conditions at ±∞ are also not available, since p need not decay
in these limits. Moreover, a variation of parameters approach would not guar-
antee hyperbolicity, or rigorously ensure that the remaining terms in (11) are
O(ε2). Thus the approach of Appendix A—which deals with all these issues—is
necessary in deriving the hyperbolic solution.

4. Homoclinic solutions

Since the persistent trajectory Eε is hyperbolic in the sense of exponential di-
chotomies, in the augmented phase space it continues to possess two-dimensional
stable and unstable manifolds. When p was zero, a branch of each of these co-
incided to form the homoclinic manifold foliated by the solitary wave solutions
Nα as shown in Fig. 3. However, when p 6= 0, these two branches of manifolds
are not guaranteed to coincide. But if they do intersect, such points would lie on
both the stable and unstable manifolds of Eε, and thereby be associated with a
homoclinic solution.

Generically, two-dimensional surfaces will intersect along curves. Any point
on an intersection curve, since it is on the stable manifold of Eε, must backwards
asymptote to Eε under the flow of (5). At the same time, since it is also on
the unstable manifold of Eε, it must also forward asymptote to Eε. In doing
so, it must pass through points which continue to lie on both manifolds; this
trajectory of (5) is therefore the intersection curve we seek, and corresponds
to a homoclinic trajectory of Eε. There may be zero, one, finitely many, or
even infinitely many such intersection curves, comprising the set of homoclinic
solutions.
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Figure 4: The perturbed stable and unstable manifolds in the spatial slice x̄, in which they
intersect along the normal line N to the original homoclinic.

Since visualising this geometry in three dimensions is difficult, we will explain
these intersections in terms of x-slices of the augmented phase space. We define

M(x) :=

∫ ∞

−∞

sech 2

(
√

3(F − 1)

2
τ

)

tanh

(
√

3(F − 1)

2
τ

)

p(x+ τ) dτ . (12)

The function M(x) represents the leading-order scaled displacement in the spa-
tial slice x, between the stable and unstable manifolds when measured along the
normal line N to the original homoclinic drawn at the point (η̄(0), η̄′(0)), which
is the point (2(F − 1), 0). This interpretation justifies us calling M a Melnikov
function [33, 34, 47]. An illustration of this is shown in Figs. 4 and 5. In Fig. 4
the manifolds intersect along N , and thus at this special x-value, which we shall
call x̄, M(x̄) = 0. A general x-value is shown in Fig. 5, and in this case M(x)
is nonzero. This description of M as quantifying intersections along N can be
theoretically justified [33, 35]; Appendix B shows that if there exists a x̄ ∈ R

satisfying
M(x̄) = 0 and M(x̄) crosses zero at x̄ , (13)

then there exists a homoclinic solution which is O(ε)-close to an autonomous
homoclinic trajectory. Conversely, if M has no zeroes, then for small enough |ε|
there are no O(ε)-close homoclinic trajectories. Thus, (13) provides an easily
checkable condition for the checking the existence of solitary waves which are
O(ε)-close to an Nα.

If (13) is satisfied, there exists an intersection of stable and unstable man-
ifolds at an x-value which is O(ε)-close to x̄, since M(x) represents only the
leading-order distance as shown in Fig. 5. A homoclinic solution can then be
determined by matching together trajectories lying on the stable and unstable
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manifolds at x = x̄. As explained in detail in Appendix B, the theoretical de-
velopment by Balasuriya [35] can be adapted to obtain that the corresponding
homoclinic solution has the form

ηεx̄(x) = η̄(x− x̄) + [ηεn(x) + ηεt (x)] +O(ε2) (14)

in which η̄ is the fundamental solitary wave solution (8), and ηεn and ηεt are
respectively the normal and tangential O(ε)-corrections to the wave, given by

ηεn(x) =



















3η̄′′(x − x̄)

η̄′(x− x̄)2 + η̄′′(x− x̄)2

∫ x−x̄

−∞

η̄′(τ)p(τ + x̄) dτ if x ≤ x̄

− 3η̄′′(x− x̄)

η̄′(x− x̄)2 + η̄′′(x− x̄)2

∫ ∞

x−x̄

η̄′(τ)p(τ + x̄) dτ if x > x̄

, (15)

and

ηεt (x)

−3η̄′(x−x̄)
=



























∫
x−x̄

0

η̄′′(τ)p(τ+x̄)+Ω(τ)
∫

x−x̄

−∞̄

η′(λ)p (λ+τ−x+2x̄) dλ
η̄′(τ)2 + η̄′′(τ)2

dτ if x ≤ x̄

∫
x−x̄

0

η̄′′(τ)p(τ+x̄)−Ω(τ)
∫

∞

x−x̄̄

η′(λ)p (λ+τ−x+2x̄) dλ
η̄′(τ)2 + η̄′′(τ)2

dτ if x > x̄

(16)
where

Ω(τ) :=
[6F − 9η̄(τ)− 5]

[

η̄′(τ)2 − η̄′′(τ)2
]

η̄′(τ)2 + η̄′′(τ)2
. (17)

The reason for this terminology is based on phase space geometry, as we
shall explain. In the spatial slice x̄, the intersection between the stable and the
unstable manifold lies on the normal N drawn to the unperturbed homoclinic
at (η̄(0), η̄′(0)) as shown in Fig. 4. Since we now want its location in a general
spatial slice x, the corresponding unperturbed homoclinic trajectory we must
consider is η̄(x− x̄), since this when evaluated at x = x̄ gives η̄(0), the location
at which the N was drawn. Any existing nearby homoclinic connection thus
must remain close to η̄(x− x̄), as indicated in (14).

In a general slice x, the intersection point evolves to a location which is
O(ε)-close to (η̄(x− x̄), η̄′(x− x̄)), as shown in Fig. 5. (We note that the sta-
ble/unstable manifolds are in general different entities than in Fig. 4, reflecting
their nonautonomous nature.) The intersection point corresponds to the homo-
clinic trajectory, since it is the x-evolved location of the intersection point which
was located on the normal line in the spatial slice x̄ as shown in Fig. 4. This point
need not lie on the normal Nx drawn at the point (η̄(x− x̄), η̄′(x− x̄)). The
vector v drawn from (η̄(x − x̄), η̄′(x− x̄)) to this intersection point (pictured
by the small arrow in Fig. 5) can be split into a vector normal to the original
homoclinic (that is, to a vector pointing along Nx) which shall be called vn, plus
a vector tangential to the unperturbed homoclinic called vt. The relevance of
such a tangential component vt has only recently been recognised, and charac-
terised to leading-order [35]; classical Melnikov approaches [33, 34] are limited
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Figure 5: The positioning of the perturbed stable and unstable manifolds in a general spatial
slice x, illustrating the intuitive meaning of M(x) in (12), and the representation of the
homoclinic point vectorially from the point (η̄(x− x̄), η̄′(x− x̄)).

to quantifying the normal separation, which is also relevant to quantifying and
optimising transport [48, 37, 49, 50, 51, 52]. As we shall show numerically, ignor-
ing the tangential component leads to results which are substantially incorrect
in this particular situation, highlighting the importance of the development by
Balasuriya [35]. Now, in determining the homoclinic solution, we are princi-
pally interested only in the η-component (the ζ = η′ component is simply the
x-derivative of this), and thus we only need the η-component of each of vn and
vt. The η-component of vn, since it is associated with the normal correction,
is what is called ηεn in (14). Similarly, the η-component of vt, being related to
the tangential correction, is called ηεt .

The homoclinic solution (14) is O(ε)-close (for all x ∈ R) to an unperturbed
homoclinic solution Nx̄, i.e., its leading-order term corresponds to choosing
α = x̄ in (7). Moreover, (14) is a nonautonomous solitary wave since its front
end (x → ∞) need not decay to a constant, but will remain O(ε)-close to 0.
The same is true in the limit x → −∞. Since the solution (14) lies on both the
stable and unstable manifold of Eε, it obeys

lim
x→±∞

|ηεx̄(x)− ηε(x)| = 0 (18)

for all ηεx̄ satisfying (14) and ηε satisfying (11). Physically, this means that all
solitary wave solutions must approach the unique near-uniform solution in the
far field.

It must be emphasised that for every x̄ satisfying (13), there is a correspond-
ing solitary wave solution which has the behaviour described above. Thus, if
(13) is satisfied for at least one x̄, there will exist nonunique solutions which
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Figure 6: The Melnikov function M(x) as given in (12), for (a) Gaussian topography (20)
with b = 1 and F = 1.1, and (b) jagged topography (20) with F = 1.2.

have the same decay characteristics as x → ±∞; one solution which is the hy-
perbolic trajectory Eε, and another which is a homoclinic solution expressed
by (14). Such nonuniqueness when F = 1 was explored numerically by Binder
et al. [39]. Of course, there may be one, several, or even infinitely many, ho-
moclinic solutions achievable depending on the number of solutions x̄ to (13).
It is also possible that there are no solutions to (13), in which case there will
be no solitary wave solutions for small ε despite there being uncountably many
when ε = 0. We remark that under evenness and sufficiently rapid decay at
±∞ for p, it is known that there is exactly one solution which satisfies evenness
and exponential decay [53], but in general the number of near-solitary wave so-
lutions depends on the nature of p, and can be determined using our approach
of examining zeroes of M(x) in (12).

5. Results

We benchmark our theory by considering Gaussian bottom topography [12,
15, 24, 54]

p(x) =
εb√
π
e−b2x2

(19)

for some parameter b. Since p is even, M(x) in (12) has a zero at x̄ = 0. A
plot of the Melnikov function for b = 1 and F = 1.1 is shown in Fig. 6(a),
indicating there are no other zeroes. Using (11) and (14), we can compute the
theoretical hyperbolic (I) and homoclinic (II) solutions, and show them when
F = 1.1, b = 1 and ε = 0.02 as the dashed curves in Fig. 7(a). The solid curves
are solitary wave trajectories computed numerically from the KdV equation (2)
using (19), indicating excellent agreement, with the maximum errors occurring
near the centre point, at the point of greatest height of the waves. In Fig. 7(b),
we investigate the maximum part of the error’s dependence on ε, by plotting
the height of the solitary waves obtained numerically (solid curve), along with
the heights of the hyperbolic and homoclinic solutions computed theoretically
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Figure 7: Comparison between theoretical (dashed) and numerical (solid) solutions for a
Gaussian topography (19) with F = 1.1 and b = 1. (a) Free-surface profiles with ε = 0.02.
(b) Plot of the free-surface elevation η(0) = η0 versus ε. with the solutions in (a) indicated
with arrows.

(bottom and upper almost straight dashed lines). The hyperbolic and homo-
clinic solutions presented in Fig. 7 are respectively the perturbation of a uniform
stream, and perturbation of a solitary wave, solutions of Vanden-Broeck [38],
providing a further check on our analysis.

As a second example, we consider

p(x) = ε
{

sechx tanhx−5 [tanh (100(x−2))− tanh (100(x−3))] (x−2) (x−3)

+0.4 [tanh (100(x+ 6))− tanh (100(x+ 4))] (x+ 4)
}

. (20)

This function has non-compact support, and has fairly jagged topography vari-
ations. In order to determine the number of solitary waves possible, we compute
the Melnikov function M in (12), and show it in Fig. 6(b) for F = 1.2. The
two zero crossings correspond to x̄ = −5.2410 and 2.3446; there are exactly two
homoclinic solutions for small ε. The hyperbolic trajectory computed using (11)
is shown in Fig. 8(a), and the two homoclinic solutions computed using (14) are
shown in Figs. 8(b) and (c). Thus, there are at least three free-surface solu-
tions associated with (20) for small ε; one near-uniform free-surface, and two
solitary wave configurations. We contrast the theoretical homoclinic solutions
with Fig. 8(d), in which we perform the computation of the two homoclinic
trajectories incorrectly by neglecting the tangential term ηtx̄ in (14). Unlike
the correct solutions in Figs. 8(b) and (c), the incorrectly computed solitary
waves in Fig. 8(d) do not decay quickly towards the free-surface solution. This
demonstrates the importance of the recently developed tangential correction
[35]; without incorporating this correctly, false results are obtained.

In Fig. 9, we show direct numerical computations using the KdV equation
(2), such that (a), (b) and (c) correspond exactly to the scenarios of Fig. 8.
We used the theoretical solutions of Fig. 8 as initial values for our numerical
computations, and obtained rapid convergence to the solutions. The agreement
between the theoretical and numerical free-surface configurations is excellent.
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Figure 8: The free-surface waves corresponding to the bottom topography (20) with ε = 0.04
and F = 1.2: (a) hyperbolic solution (dashed curve), (b) first homoclinic solution computed
using (14), (c) second homoclinic solution computerd using (14), and (d) both homoclinic
solutions computed incorrectly by neglecting the tangential component ηεt .
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Figure 9: Numerically determined free-surface waves with bottom topography (20) with ε =
0.04 and F = 1.2: (a), (b) and (c) exactly correspond to the theoretical solutions of Fig. 8,
while (d) shows the double-humped solitary wave IV, whose presence was suggested by waves
II and III.

In Fig. 9(d), we show an additional solution we obtained numerically, inspired
by our theoretical results of Fig. 8. Since the solitary wave II comes back down
toward the hyperbolic trajectory around x = −1, while solitary wave III takes
off from the hyperbolic trajectory at around the same x-value, we hypothesised
the presence of a nearby wave which, having gone around the homoclinic man-
ifold once in forming a wave close to II, then goes around it again to form a
wave close to III. As an initial condition for numerical investigation of such a
“double-looped” solitary wave we used the sum of theoretical waves II and III,
and found the numerical solution IV as shown in Fig. 9(d). Thus, our theoret-
ical method, in addition to giving explicit approximations, provides a method
for making educated guesses at initial conditions for numerically discovering
additional nonautonomous solitary waves.

As further examples illustrating the utility of our method, we show in Fig. 10
hyperbolic trajectories in several instances of sharp bottom topography. In all
cases presented in Fig. 10, the explicit forms of the free surface expressions are
given in Appendix C; nonsmooth p is no hindrance. For the particular case of
Fig. 10(a) in which the bottom topography jumps from a height of 0 for x < a
to a height of ε for x ≥ a, we can make an additional analytical observation.
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Figure 10: Explicitly obtained free surface configurations using (11) for a variety of specified
bottom topographies, which are shown towards the bottom of each figure. (a) step using (C.3)
with F = 1.2, ε = 0.02 and F = 1.2, (b) rectangular box using (C.5) with F = 1.2, ε = −0.03
and a = 4.205 (parameters used in Binder et al. [55]), (c) triangular wedge using (C.7) with
F = 1.2, ε = 0.03, a = 1 and b = 2, (d) sharp exponentially decaying edge using (C.9) with
F = 1.2, ε = 0.05 and a = 1.

Using (12) we compute

M(x) =
ε

√

6(F − 1)
sech 2

(
√

3(F − 1)

2
[a− x]

)

which has no zero at any x value. The unstable manifold and the stable manifold
of the hyperbolic trajectory (C.3) split apart such that they do not intersect.
Thus, there is no near-solitary wave solution for this instance.

6. Concluding remarks

We have in this article used nonautonomous dynamical systems theory to
address steady free-surface waves which result from arbitrary bottom topogra-
phy. Our categorisation of hyperbolic and homoclinic solutions to the nonau-
tonomous dynamical system correspond respectively to near-uniform and near-
solitary wave solutions of the KdV equation. The advantages of our approach
are the ability to obtain explicit formulæ, and the lack of necessity of conditions
on p such as having compact support and being smooth. However, our method
is perturbative, and depends on p being small. While this article required a
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theoretical development in establishing the relevant formulæ, in a subsequent
article we will perform an extensive numerical investigation of solutions, and
indeed introduce several new types of solutions to the KdV equation prompted
via our theoretical approach.

In computing the nonautonomous solitary wave (14), the O(ε)-quantity
ηεn(x) + ηεt (x) will generically require numerical evaluation using the expres-
sions (15) and (16) for a given forcing p. However, we do know that in the far
field, the homoclinic solutions must approach the hyperbolic solution associated
with it. Thus, ηεn(x) + ηεt (x) → ηε(x) as x → ±∞, and so we can think of

ηεx̄(x) ≈ η̄(x − x̄) + ηε(x) ≈ 2 (F−1) sech 2

(
√

3(F−1)

2
[x−x̄]

)

+
3

2
√

6(F−1)

∫ ∞

0

[p(x−τ)+p(x+τ)] e−
√

6(F−1)τdτ . (21)

as being an approximate homoclinic solution whose integral—in contrast to those
for ηεn and ηεt—is usually explicitly computable. It should be noted that the
value(s) of x̄ in using (21) must be first found by setting M(x) in (12) to zero.
In determining solitary waves numerically at higher accuracies, we therefore
offer (21) as an excellent initial guess to choose for any numerical scheme.

As evidenced in the previous section, our method can also provide excel-
lent guesses for the presence of multi-looped near-solitary waves. If M has n
zero crossings, there will be n solitary-waves which are O(ε)-close to solitary
waves in the unperturbed problem. By choosing any linear combination of m
of these, we can make a guess at an initial condition for a solitary wave which
exhibits closeness to a linear combination of the unperturbed solitary waves.
That is, the corresponding solutions will loop around the homoclinic manifold
m times, each time shadowing a different unperturbed homoclinic trajectory.
The potential total number of solitary waves we can get from this procedure
is nC1 + nC2 + . . . + nCn = 2n − 1, by choosing m = 1, 2, · · · , n. While we
are not guaranteed to get exactly this number of solitary waves (since it is not
clear whether each loop around the homoclinic will manage to exactly connect
to another legitimate one), 2n − 1 provides an estimate for the total number of
multi-looped nonautonomous solitary waves present in the system. Our theory
has added impact since we can verify each of these possibilities by using a linear
combination of our single-loop solitary waves as an educated initial guess in a
numerical scheme.

Acknowledgements: SB acknowledges support from the Australian Re-
search Council through Future Fellowship grant FT130100484.

Appendix A. Derivation of hyperbolic trajectory location (11)

In this section, we will outline how the formula (11) is derived, using recently
developed techniques of nonautonomous dynamical systems. The principal the-
ory used for this derivation is from Balasuriya [35]; related results also exist
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⊥
s,u, and the shift in the hyperbolic trajectory

aε(x)− a (heavy line) in a general x-slice of the phase space of (A.2).

[36, 56]. We consider the general nonautonomous system

ẏ = f (y) + g (y, x) (A.1)

in which y, f and g are two-dimensional, and the dot denotes the derivative
with respect to the independent variable x. We assume that g is small, i.e.,
there exists a small ε such that |g (y, x)| ≤ ε for all y ∈ R

2 and x ∈ R. When
g ≡ 0, (A.1) is autonomous since the vector field of the dynamical system does
not depend on the independent variable x. We assume that in this situation
(A.1) possesses a hyperbolic (saddle) fixed point a. Thus f (a) = 0 since a
is a fixed point, and the Jacobian derivative Df (a) possesses real eigenvalues
λs and λu such that λs < 0 < λu. The fixed point a will possess a direction
of attraction associated with the eigenvalue λs, which is characterised by the
corresponding eigenvector vs of Df (a). We will choose vs to be a unit vector,
and to point in the direction of flow, which in this case is inwards towards a.
Similarly, a possesses a direction of repulsion associated with the eigenvalue λu,
with corresponding eigenvector vu which we shall again choose to be normalised
and point in the direction of flow. See Fig. A.11 for these quantities, which
are associated with (A.1) when g ≡ 0. The vectors vs and vu are tangential
to respectively the stable and unstable manifolds of a, which are each one-
dimensional entities, and shown by the curves in Fig. A.11.

The system (A.1) could alternatively be viewed in terms of the augmented
system

ẏ = f (y) + g (y, t)
ẋ = 1

}

. (A.2)

The saddle point a that exists for (A.1) when g ≡ 0 corresponds to a straight line
trajectory (a, x) in the augmented system (A.2). This is a hyperbolic trajectory;
it possesses stable and unstable manifolds which are each two-dimensional when
viewed in relation to the augmented system (A.2). This situation is exactly that
pictured in Fig. 2.
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When g 6= 0 but is small, the basic intuition is that this hyperbolic structure
persists as a “wobbled” entity (aε(x), x), retaining its stable and unstable mani-
folds. The condition required on g for this persistence is that both g and Dg are
O(ε) for (y, x) ∈ R

2 × R [35]. The technical difficulty in describing this persis-
tence in the nonautonomous equation (A.1) is defining the intuitive structural
characterisation of the perturbed trajectory as being a wobbled version of Fig. 2.
The ideas of fixed points and eigenvalues are no longer applicable. Instead, the
correct characterisation of the presence of both a stable and an unstable man-
ifold is the concept of exponential dichotomies [42, 45, 46], which underscores
two specialised directions in which exponential decay occurs in forwards and
backwards x. The autonomous (g ≡ 0) form of (A.1) possesses such an expo-
nential dichotomy, with the rates of decay being precisely the eigenvalues λs,u.
The fact that exponential dichotomies persist under perturbations (see Coppel
[42]’s roughness theorem, also Yi [43], Yagasaki [44]) is what ensures that the
hyperbolic trajectory persists when g is turned on in (A.1). We note that this
hyperbolic trajectory is special in that it is the only trajectory which remains
O(ε)-close to the unperturbed hyperbolic trajectory (a, x) in both the limits
x → ±∞, since the wobbled geometry of Fig. 2 will ensure any other nearby
trajectory will get pulled away in at least one of these limits. For example, if
on one of the branches of the stable manifold, the trajectory will approach the
hyperbolic trajectory in forwards x, but will go away from it in backwards x,
thereby not remaining O(ε)-close for all x ∈ R. The same argument in reversed
x is true if the trajectory is on one of the branches of the unstable manifold. If
one takes any point which is on one of the other sheets lying in between stable
and unstable manifold sheets, then its trajectory will in forwards x be pulled out
in the direction of the unstable manifold, and in backwards x will be pulled out
through the influence of the stable manifold. Thereby, any such trajectory can
never remain O(ε)-close for all x. Hence this nonautonomous viewpoint tells us
that the hyperbolic trajectory (aε(x), x) is the only trajectory of the perturbed
system (A.2) which remainsO(ε)-close to the unperturbed hyperbolic trajectory
(a, x).

Recent work [35] enables characterising the location of the perturbed hy-
perbolic trajectory to leading-order. Let v⊥

s,u be the corresponding normalised
eigenvectors rotated by +π/2 in the anti-clockwise direction, and

αs(x) := −
∫ ∞

0

g (a, x+ τ) · v⊥
s e−λuτ dτ , (A.3)

αu(x) :=

∫ ∞

0

g (a, x− τ) · v⊥
u eλsτ dτ . (A.4)

If the perturbed hyperbolic trajectory is represented by (aε(x), x), Theorem 2.10
by Balasuriya [35] states that

aε(x)− a =

[

αu(x)v
⊥
u − αu(x) (vs · vu)− αs(x)

vs ∧ vu

vu

]

(A.5)

to leading-order in ε, where the wedge product for vectors F = (F1, F2) and
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G = (G1, G2) in R
2 is defined by

F ∧G = F1G2 − F2G1 . (A.6)

One way to think of (A.5) is to imagine taking a specific x-slice in the augmented
phase space of (A.2). Then, aε(x)−a represents the movement of the perturbed
hyperbolic trajectory relative to the unperturbed one, as shown by the thick line
in Fig. A.11. This quantity is represented in (A.5) in an orthogonal coordinate
system comprising the unit vectors vu and v⊥

u .
We now apply this general result to the KdV system (4). In correspondence

with (A.1), we set

y(x) :=

(

η(x)
ζ(x)

)

, f :=

(

ζ
− 9

2η
2 + 6(F − 1)η

)

and g :=

(

0
−3p(x)

)

.

The fixed point when g ≡ 0 is a = (0, 0), and when examining the eigensystem
of Df (a) we get

λs = −
√

6(F − 1) , vs =
1√

6F − 5

( −1
√

6(F − 1)

)

and

λu =
√

6(F − 1) , vu =
1√

6F − 5

(

1
√

6(F − 1)

)

.

Thus

v⊥
s =

1√
6F − 5

(

−
√

6(F − 1)
1

)

and v⊥
u =

1√
6F − 5

(

−
√

6(F − 1)
1

)

.

Substituting into (A.3) and (A.4) gives

αs(x) = − 3√
6F − 5

∫ ∞

0

p(x+ τ)e−
√

6(F−1)τ dτ

and

αu(x) = − 3√
6F − 5

∫ ∞

0

p(x− τ)e−
√

6(F−1)τ dτ .

We also have

vs · vu =
6F − 7

6F − 5
and vs ∧ vu =

2
√

6(F − 1)

6F − 5
.

Now, since aε = (ηε, ζε), it is only the first component of (A.5) that is of
interest. Substituting everything into (A.5) and taking only the first component
gives us (11), as desired. Additionally, we remark that the above argument on
the fact that for the general system (A.2) (aε(x), x) is the only trajectory that
remains within O(ε) of the unperturbed hyperbolic trajectory, ensures that for
our system (4) the only free surface configuration that is uniformly O(ε)-close to
the flat free surface (i.e., the hyperbolic trajectory of the unperturbed system)
is that given by ηε(x) in (11).
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Figure B.12: The perturbed unstable manifold of (A.2) in an x-slice (solid curve) in relation
to the unperturbed unstable manifold (dashed curve).

Appendix B. Derivation of homoclinic trajectory location (14)

Here, we outline the theoretical development of the homoclinic solutions (14),
while establishing the condition (13) for a persistent homoclinic connection. We
first describe the necessary theory, developed principally by Balasuriya [35] and
extended to the present scenario, in the general setting of (A.1), which we repeat
here:

ẏ = f (y) + g (y, x) .

We first simplify the theory of Balasuriya [35] by setting TrDf = 0, which
is valid in our KdV context. Suppose a is a saddle fixed point of (A.1) with
g ≡ 0, which moreover has a homoclinic connection. This means that a branch
of its one-dimensional unstable manifold coincides with a branch of its one-
dimensional stable manifold, to form a trajectory which backwards and forwards
asymptotes to a. An example of this is exactly what is pictured as the heavy
curve in Fig. 1, in which a = 0 for this situation.

Now, if both g and Dg remain O(ε), the theory of exponential dichotomies
[42, 46, 43, 44] has already been quoted in Appendix A to argue that the sad-
dle point perturbs to a nearby hyperbolic trajectory (aε(x), x) when (A.1) is
expressed in the augmented form (A.2). The implication is that this hyperbolic
trajectory locally retains both its stable and its unstable manifolds, which are
two-dimensional entities in the augmented phase space (A.2). It is not neces-
sary to have g be periodic in x [33, 47, 34, 48, cf.] for these manifolds to persist
[37, 36, 35, 57]. However, unlike in the unperturbed system in which g ≡ 0,
there is no necessity for these manifolds to coincide.

Let us first focus on the unstable manifold. Suppose the unperturbed un-
stable manifold is expressible as yu(x), in which x ∈ [−∞, P ] for any finite P .
In other words, yu(x) is a solution to (A.1) with g ≡ 0, such that yu(x) → a
as x → −∞, since yu(x) is the unstable manifold of a. As in Appendix A, we
use the notation F⊥ to be the two-dimensional vector F rotated by +π/2 in the
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anti-clockwise direction. Suppose moreover that a “hat” on a vector indicates
that it has been normalised (divided by its length). With this in mind, we refer
the reader to Fig. B.12, which shows a picture of the unstable manifold of (A.2)
in a general x-slice. The dashed curve is the unperturbed unstable manifold yu,
and we use ℓ as a parameter here to represent the location along the unstable
manifold in this x-slice. At a particular location yu(ℓ) along this unperturbed
unstable manifold, we have shown an orthonormal basis consisting of f̂ and f̂⊥.
The first of these is tangential to the unperturbed manifold since it represents
the direction of flow when g ≡ 0, while the second of these is normal to the
unperturbed manifold.

The solid curve in Fig. B.12 is the intersection of the perturbed two-dimensional
unstable manifold with the x-slice. This curve will be different in different x-
slices, but we do know that the foot of this curve is at aε(x), since this is the
location of the hyperbolic trajectory to which the unstable manifold is attached.
Now, there is a point (yε

u(ℓ, x), x) on this manifold which is O(ε)-close to the
point yu(ℓ), such that this closeness persists when both points are iterated
backwards in x. The location of yε

u(ℓ, x) as ℓ and x therefore characterises the
location of the two-dimensional unstable manifold in the augmented system.
Theorems 2.1 and 2.3 by Balasuriya [35] (see also Remark 2.6) quantify this
precisely by

yε
u(ℓ, x) = yu(ℓ) +

[

Mu(ℓ, x)

|f (yu(ℓ))|
f̂⊥ (yu(ℓ)) +

Bu(ℓ, x)

|f (yu(ℓ))|
f̂ (yu(ℓ))

]

+O(ε2) (B.1)

for ℓ ∈ [−∞, P ] and x ∈ [−∞, Q] for any finite P,Q, with

Mu(ℓ, x) :=

∫ ℓ

−∞

f (yu(τ)) ∧ g (yu(τ), τ + x− ℓ) dτ (B.2)

and

Bu(ℓ, x) := |f (yu(ℓ))|2
∫ ℓ

0

Ωu(τ)Mu(ℓ, τ+x−ℓ)+f (yu(τ)) · g (yu(τ), τ+x−ℓ)

|f (yu(τ))|2
dτ

(B.3)
in which

Ωu(τ) := f̂T (yu(τ))
[

(Df)T (yu(τ)) +Df (yu(τ))
]

f̂⊥ (yu(τ)) (B.4)

and the wedge product is defined in (A.6). The quantity Mu is associated
with a “normal” movement to the original unperturbed manifold, while Bu is a
“tangential” movement whose existence and importance was first presented by
Balasuriya [35], and developed further [36, 58].

Now let us turn to characterising the stable manifold. Suppose that ys(x)
represents the stable manifold solution to (A.1) with g ≡ 0. Using exactly the
same sorts of description as for the unstable manifold, Theorems 2.7 and 2.8
(see also Remark 2.9) by Balasuriya [35] quantifies exactly this. It is shown that
this two-dimensional surface is parametrically representible by

yε
s(ℓ, x) = ys(ℓ) +

[

M s(ℓ, x)

|f (ys(ℓ))|
f̂⊥ (ys(ℓ)) +

Bs(ℓ, x)

|f (ys(ℓ))|
f̂ (ys(ℓ))

]

+O(ε2) (B.5)
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for ℓ ∈ [P,∞] and x ∈ [Q.∞] for any finite P,Q, with

M s(ℓ, x) := −
∫ ∞

ℓ

f (ys(τ)) ∧ g (ys(τ), τ + x− ℓ) dτ (B.6)

and

Bs(ℓ, x) := |f (ys(ℓ))|2
∫ ℓ

0

Ωs(τ)M s(ℓ, τ+x−ℓ)+f (ys(τ)) · g (ys(τ), τ+x−ℓ)

|f (ys(τ))|2
dτ

(B.7)
in which

Ωs(τ) := f̂T (ys(τ))
[

(Df)T (ys(τ)) +Df (ys(τ))
]

f̂⊥ (ys(τ)) . (B.8)

Now in our problem, we have an unperturbed homoclinic trajectory, and thus
yu = ys. We will set yσ to be either of these, and thus yσ(x) is the unperturbed
homoclinic trajectory of (A.1) when g ≡ 0. (There is a subtle difference between
yu and ys in this homoclinic case: yu(x) is defined for [−∞, P ] for any finite P ,
while ys(ℓ)’s domain of definition is of the form [P,∞]. This will be accounted
for in what follows.) Suppose ℓ is fixed, and consider a normal line drawn at
yσ(ℓ) in an x-slice. So if we have a nearby homoclinic point, we need yε

s(ℓ, x) =
yε
u(ℓ, x) in (B.1) and (B.5). Now, for an intersection between the stable and

unstable manifolds to occur on this normal vector, we need Mu(ℓ, x) in (B.2)
and M s(ℓ, x) in (B.6) to be identical, which leads to the necessary condition for
an intersection:

M̃(ℓ, x) :=

∫ ∞

−∞

f (yσ(τ)) ∧ g (yσ(τ), τ + x− ℓ) dτ = 0 . (B.9)

The above condition (B.9) by itself is not a sufficient condition for an intersection
between the stable and unstable manifolds, since there are O(ε2)-corrections
in (B.1) and (B.5). On the other hand, if it is true that M̃ as a function
of x crosses zero at a specific x value (let us call it x̄), then such a crossing
is structurally stable. That is, under small perturbations this zero-crossing
persists, and therefore a homoclinic connection exists in a x-slice within O(ε)
of x̄. If M̃ is differentiable in x, a similar characterisation could be presented
more formally using the implicit function theorem to say that if there exists x̄
such that M̃(ℓ, x̄) = 0 and M̃x(ℓ, x̄) 6= 0 (in which the subscript x represents the
x-derivative), then there is a nearby homoclinic connection (this is a standard
Melnikov function approach; see Guckenheimer and Holmes [33], Wiggins [34]).

In translating these general results to the KdV problem, we set

y(x) =

(

η(x)
ζ(x)

)

, f =

(

ζ
− 9

2η
2 + 6(F − 1)η

)

and g =

(

0
−3p(x)

)

.

The unperturbed homoclinic trajectory yσ(τ) can be represented by

yσ(τ) =

(

η̄(τ)
η̄′(τ)

)
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in terms of the fundamental solitary wave solution (8). Therefore,

f (yσ(τ)) ∧ g (yσ(τ), τ + x− ℓ)) = −3p(τ − x− ℓ)η̄′(τ) (B.10)

and thus from (B.9) for an intersection in the slice x̄ along a normal drawn at
yσ(ℓ) we need

∫ ∞

−∞

η̄′(τ)p(τ + x̄− ℓ) dτ = 0 .

We choose to draw our normal at ℓ = 0. This corresponds to the symmetric
point at which η̄ = 2(F − 1) and η̄′ = 0 as shown in Fig. 4, and thus our choice
of normal is exactly N as in Fig. 4. Thus, our condition above becomes

∫ ∞

−∞

η̄′(τ)p(τ + x̄) dτ = 0

for the presence of an intersection between the stable and unstable manifolds in
a x-slice x̄ along N . Inserting η̄ as given in (7) leads to

∫ ∞

−∞

sech 2

(
√

3(F − 1)

2
τ

)

tanh

(
√

3(F − 1)

2
τ

)

p(τ + x̄) dτ = 0 ,

and thus we have derived (12) and (13). So any x̄ which satisfies the above
such that M(x̄) crosses zero at x̄ corresponds to an intersection of the stable
and unstable manifold, and thus a homoclinic connection. On the other hand,
if there is no x̄ which satisfies this condition, then for small enough ε there will
not be an intersection of the stable and unstable manifolds, and so a homoclinic
connection will not persist.

Assuming a homoclinic connection exists, we next determine the free sur-
face ηεx̄(x) which corresponds to this value of x̄. We have already determined
that in the x-slice x̄, there is an intersection between the stable and unstable
manifolds. This intersection, when evolved in backwards x, lies on the unstable
manifold. Also, this intersection, when evolved in forwards x, lies on the stable
manifold. We will determine the entire x-evolution (for all x ∈ R) by “stitching
together” the backwards x evolution (using the unstable manifold expression
(B.1) for x ∈ [−∞, x̄]), with the forwards x evolution (using the stable manifold
expression (B.5) for x ∈ [x̄,∞]). We note though that (B.1) and (B.5) give the
two-dimensional position of the homoclinic in terms of the coordinates (η, ζ),
and thus we can limit our attention to the first component of each of these
expressions.

Now, in the x-slice x̄, our homoclinic is at the location yε
u(0, x̄), or equiv-

alently yε
s(0, x̄), since we chose ℓ = 0. As x evolves, this homoclinic will stay

close to the unperturbed homoclinic trajectory yσ(x− x̄), since this is the spe-
cific unperturbed homoclinic trajectory which is shadowed by the perturbed
one, and in particular is near yσ(0) when x = x̄. Thus, in a general x-slice,
we need to locate the perturbed homoclinic trajectory along a normal drawn
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at yσ(x − x̄); this is illustrated in Fig. 5 as Nx. Therefore, we will recover the
perturbed homoclinic by

ηεx̄(x) =















yε
u (x− x̄, x)

∣

∣

∣

1
if x ≤ x̄

yε
s (x− x̄, x)

∣

∣

∣

1
if x > x̄

(B.11)

in which the subscript 1 stands for the first component of the vector.
Before we apply (B.1) and (B.5) to evaluate (B.11), we shall write f slightly

differently for convenience. Since ζ = η′, and since the second component of f
is alternatively expressed from (4) as ζ′ = η′′, we will write

f (yσ) =

(

η̄′

η̄′′

)

and so, when evaluated at yσ,

|f | =
√

(η̄′)
2
+ (η̄′′)

2
, f̂ =

1
√

(η̄′)
2
+ (η̄′′)

2

(

η̄′

η̄′′

)

, f̂⊥ =
1

√

(η̄′)
2
+ (η̄′′)

2

(

−η̄′′

η̄′

)

.

Thus we can write

f̂⊥

|f |

∣

∣

∣

∣

∣

1

=
−η̄′′

(η̄′)
2
+ (η̄′′)

2 and
f̂

|f |

∣

∣

∣

∣

∣

1

=
η̄′

(η̄′)
2
+ (η̄′′)

2 .

Moreover, Ωu and Ωs are identical since yu and ys are the same, and we can
redefine these to be called Ω. Substituting the formulæ for f into (B.4) or
(B.8) and simplifying leads to the expression (17). Now, since we have already
calculated f ∧ g in (B.10), we may insert this into (B.2) to get

Mu(ℓ, x) = −3

∫ ℓ

−∞

η̄′(τ)p (τ + x− ℓ) dτ .

Therefore,

Mu(x− x̄, x) = −3

∫ x−x̄

−∞

η̄′(τ)p (τ + x̄) dτ ,

and we now have all the elements to determine the normal component for x ≤ x̄.
To compute the tangential component, we note that

f · g = −3η̄′′p

and thus from (B.3),

Bu(x−x̄, x) = |f (yu(x−x̄))|2
∫ x−x̄

0

Ω(τ)Mu(x−x̄, τ+x̄)+f (yu(τ))·g (yu(τ), τ+x̄)

|f (yu(τ))|2
dτ

=
[

η̄′(x−x̄)2+η̄′′(x−x̄)2
]

×
∫ x−x̄

0

−3Ω(τ)
∫ x−x̄

−∞
η̄′(λ)p(λ+[τ+x̄]−[x−x̄])dλ+[−3p(τ+x̄)η̄′′(τ)]

η̄′(τ)2 + η̄′′(τ)2
dτ
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We now have all the terms to compute the x ≤ x̄ term in (B.11). The term
arising from Mu gives the normal component, which has been included in the
expression for ηεn in (15). The term arising from Bu gives the tangential com-
ponent, which has been incorporated into the expression for ηεt in (16).

Next, essentially the same calculation can be done for M s and Bs, in order
to determine the expressions for x > x̄ as given in (15) and (16). These are
omitted for brevity.

Appendix C. Explicit formulæ for perturbations of a uniform stream

This appendix outlines some explicit formulæ for the free surface due to
various forms of p; it is the basis for the preparation of Fig. 10. Since the
combination of terms

√

6(F − 1) occurs frequently in all the formulæ here, we
use the shorthand notation

γ :=
√

6(F − 1) . (C.1)

Appendix C.1. Step
The easiest nonzero topography to deal with is that of a step given by

p(x) =

{

0 if x < a
ε if x ≥ a

, (C.2)

for some parameter a at which the step is located. By choosing ε either positive
or negative, the step could be either a step up or a step down when proceeding
from left to right. Now, utilising (11) gives us the result

ηε(x) ≈























ε

6(F − 1)
eγ(x−a) if x < a

ε

6(F − 1)

[

2− eγ(a−x)
]

if x ≥ a

, (C.3)

with error O(ε2). This goes to zero as x → −∞, and to ε/(3(F −1)) as x → ∞,
consistent with the prediction that if p(x) = ε (a constant), the fixed point at
η = 0 moves to this new location.

Appendix C.2. Rectangular bump
Consider a rectangular bump/depression of width 2a given by

p(x) =

{

ε if |x| < a
0 if |x| > a

, (C.4)

where ε > 0 constitutes a raised rectangular bump, and ε < 0 a rectangular
depression. Performing calculations using (11) gives

ηε(x) ≈























ε

2(F − 1)

[

1− e−aγ cosh (γx)
]

if |x| ≤ a

ε

2(F − 1)
sinh (aγ) e−γ|x| if |x| > a

(C.5)

26



with error O(ε2). This solution is differentiable at x = ±a, despite p’s jump
discontinuities at these values.

Appendix C.3. Triangular wedge

Consider a triangular wedge located in the region x ∈ [0, a], with height
changing linearly from 0 at x = 0 to b at x = a. Thus

p(x) =

{

ε b
a
x if 0 ≤ x < a

0 if x < 0 or x > a
, (C.6)

where positive ε corresponds to a triangular wedge sticking up into the channel,
while negative ε would be a triangular depression. Performing calculations using
(11) gives the explicit formula

4γa(F − 1)ηε(x)

εb
≈











































eγx [e−γa (1 + γ(a− 2x)) + 2γx− 1] if x ≤ 0

2γx−e−γx (1+2γx) + eγ(x−a) (1+γ(a−2x)) if 0 < x ≤ a

e−γx [eγa (1 + γ(2x− a))− 2γx− 1] if x > a

(C.7)

Appendix C.4. Sharp edge/pit

Now consider
p(x) = εe−a|x| (C.8)

for a > 0, which is a sharp edge at x = 0, but with the topography easing to
zero as x → ±∞. If ε < 0, this is a pit at x = 0, while if ε > 0, it is an edge
jutting up. In either case (11) gives the result

ηε(x) ≈















3ε

[a2 − γ2] γ

[

ae−γ|x| − γe−a|x|
]

if a 6=
√

6(F − 1)

ε

4(F − 1)
e−γ|x| (1 + γ |x|) if a =

√

6(F − 1)

. (C.9)

It is instructive that the decay at ±∞ is at a rate which involves both the
scale factor a of the bottom topography and the quantity γ =

√

6(F − 1) which
incorporates the Froude number. The surface’s decay at ±∞ occurs exponen-
tially, at a rate no quicker than the smaller of these coefficients. When these
are identical, the decay rate is (slightly) slower than exponential, as given in
the second equation above, but to all intents and purposes does not look very
different.
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