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This paper presents a completely new approach to analysing the effect of
stochasticity upon the stability of sets in deterministic maps. Such stability is
quantified via the definition of an expected lifetime. More relevant to dynamical
systems modelling is the case where the stochasticity is small; the almost determin-
istic case. Formal arguments are employed to quantify the illness, through which
the effect on the lifetime expectancy due to small stochasticity, is obtained. In the
spirit of perturbative analysis, such equations are derived in terms of the determin-
istic dynamics, and the leading order stochasticity alone; the stochastic trajectories
need not be computed. Of help is the definition of the ageing (for mortal
trajectories) and the ageing exponent (for the immortal case). Special cases
(attracting sets, Hamiltonian maps, etc.) are analysed in some detail, leading to a
better understanding of the equations derived.  © 1999 Academic Press

1. INTRODUCTION

Many phenomena in the physical, chemical, and biological world can be
modelled via discrete dynamical systems, i.e., by repeatedly iterating maps
defined on some subset of R”. However, a variety of assumptions are
implicit in the development of any such model. Of interest is the fact that
it is only the dominant effects which are generally considered in a
mathematical model; the effect of other factors is assumed to be small,
and hence disregarded. The model is considered successful if its predic-
tions bear some semblance of reality, which moreover provides empirical
evidence that the ignored factors are indeed unimportant. This procedure
has some shortcomings, particularly in the case where there is chaos
present in the system. The inclusion of additional, albeit small, effects in a
dynamical system may result in completely different trajectories, and the
behaviour of the system may change qualitatively and well as quantita-
tively. For example, if there is a positively invariant set in a system, there is
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no guarantee that it persists in any guise under a small perturbation.
Furthermore, because it is often impossible to quantify the precise nature
of the perturbation, even numerical investigations have limited value.

An attractive alternative is to assume that the combined effects of all
the ignored factors can be modelled by introducing a random term into the
dynamical system. Thus, the perturbation will be stochastic, and the
resulting mathematical model would form a stochastic dynamical system;
in the case of a map, this will form an almost deterministic map. The
random perturbation may be achieved, say, by incorporating white noise
into a parameter. The resulting trajectory of the dynamical system is no
longer deterministic; one can attribute a probability for each possible
trajectory. Determining the probability is difficult in general, but if a
certain type of trajectory is frequently observed in nature, then that
trajectory must be a highly probable orbit of the stochastic dynamical
system. On the other hand, suppose that something close to an invariant
set is observed in a natural system, while a deterministic model predicts
precisely such an invariant set. This implies that, under the introduction of
a small noise, remaining close to the (deterministic) invariant set would be
a high probability event; i.e., the set is stable in some sense. Obtaining
some sort of measure of this probability (and hence stability of the set) will
be the main focus of this paper.

Assuming that a deterministic model containing an invariant set is
formulated for some system in nature, the stability of this set under the
inclusion of stochasticity (which models the myriad ignored factors) is
examined. If this set is not stable under small random fluctuations in this
sense, then it could not possibly be observable in nature. Here, “stability”
of the set is in a broad sense: that an (almost) invariant set, which is
(almost) identical to the original set, persists with probability (almost) one.
A precise definition of stability is clearly prohibitive, but can be assumed
intimately linked with what is defined as the “expected lifetime” of a
trajectory. Loosely speaking, this is the average number of iterates spent
within the (previously invariant) set, before exiting the set. A long expected
lifetime implies that the set is very stable under stochasticity, whereas a
short expected lifetime suggests instability. This paper explores this con-
cept, and obtains several different expressions for the expected lifetime of
trajectories of stochastic maps.

The expected lifetime developed in this paper therefore provides a
method of testing whether an invariant set predicted by a purely determin-
istic dynamical system has a chance of being observable in the real world.
This concept is developed in Section 2 in terms of one-step probabilities.
This is, the quantification of the stability of the set under many iterations
of a map, is obtained assuming that information concerning just one
iterate is known. This section does not insist on the map being in any sense
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close to a deterministic map, and indeed the results derived are valid for
any stochastic map with stationary transition probabilities. In Sections 3
and 4, the case in which the map is close to a deterministic map is
examined. The deterministic dynamics are assumed known, and the impli-
cations of stochastic perturbations is investigated. The analysis in these
sections is purely formal; certain linearisations are assumed without justifi-
cation, and highest order effects on the stability of a set is determined. The
leading order depreciation of lifetime at each age is defined to be the
illness, and the resulting reduction in the expected lifetime is calculated.
Certain special cases (neighbourhoods of attracting cycles, Hamiltonian
maps, finite and infinite deterministic lifetimes, etc.) are handled in some
detail. Although the development is formal, the results of these sections
are of immediate relevance to nature’s dynamical systems, because the
maps considered are “almost deterministic” in some sense. Given a certain
type of stochastic perturbation, the results of Section 4 provide an immedi-
ate guantification of the (leading order) effect on the stability of a set, as
measured via the lifetime expectancy. It is therefore possible to analyse,
using these results, the suitability of using a given model to emulate
invariant sets observable in nature, by estimating the probability of these
remaining “invariant” under small external noise; the ageing exponent
developed in Section 4 provides an immediate quantification of this
probability.

The formal arguments of Sections 3 and 4 provide a stepping stone to a
new approach of quantifying stability of sets under small external noise. It
is hoped that these theories can be further developed, possibly with
rigorous analysis, to help extend our understanding of the stability of
special sets in phase space, under the influence of nature’s stochastic
interruptions.

2. LIFETIME EXPECTANCY

In this section, a mathematical formalism for the investigation of the
stability of sets under iterated mappings with stochasticity is developed, via
the expected lifetime of trajectories. Consider the stochastic mapping
defined for x € ), where Q is a subset of R", given by

Xip1 =M(x;, 0), i €N, (1)

for a fixed initial condition x,. Here, M is a smooth nonlinear mapping,
and o is a measure of the stochasticity inherent at each time-step i. That
is, M(-,0) would be a purely deterministic mapping and, for example, o2
could be the variance of a noise introduced into a parameter of the
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mapping. Notice also that, at this point, M(x;, o) is permitted to be
nonlinear in both x; and in o.

The consecutive iterates of Eq. (1) are called a trajectory, and can be
represented by the random variables X, X;, X,,..., each of which takes
values in . This sequence is in fact a Markov process, where X, = x, is
specified, while X, X,, etc., are probabilistically determined [1].

Let B be a Borel-measurable subset [2] of ), and suppose that the
initial condition x, € B. The stability of the set B under the mapping (1)
will be examined, via the definition of the expected lifetime of the set B.
Let L be the lifetime of a given trajectory, defined by

L=sup{i:X;eBforj=0,1,2,...,i—1,i}. (2)
ieN

That is, if the variables X, X,,..., X, are each in B, but X, isnotin B,
then the lifetime of that trajectory is i. Notice that the imposition x, € B
ensures that the lifetime is nonnegative. The lifetime is clearly a random
variable; for it to be of use in quantifying the stability of the set B, its
expected value needs to be calculated. This is first accomplished by
defining the probability that the lifetime of a trajectory is precisely i as g;,
ie.

q;=Pr(X,.,, € Q\B,but X, €B,j=0,1,..., i). (3)

Therefore, it is clear that the expected lifetime (or lifetime expectancy) (L)
(with respect to the set B) of trajectories of (1) can be expressed as

o]

(L) = Z iq;. (4)

i=0

It is necessary to evaluate ¢g; in order to use the above expression to
determine the lifetime expectancy { L) of trajectories, and hence estimate
the stability of the set B. Of interest is obtaining an expression for g, in
terms of one-step transition probabilities, that is, by considering only one
iteration of the map (1). Such one-step probabilities are often relatively
easily estimated for a given form of the function M(x;, o) in (1). Thus, if
g; can be adequately described by one-step probabilities, then (L}, and
hence a measure of the stability of the set B, can be computed. With this
in mind, define the (one-step) conditional probability density D(x | y), for
y € Q and almost all x € Q, by

d
D(xly) = —APr(M(y, o) =x)}, (5)
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where £ denotes the Radon—Nikodym derivative with respect to the
Lebesgue measure on ) [2, 3]. This represents the probability density of
mapping y €  to a neighbourhood of the point x € ) under one
iteration of the map (1). Furthermore, for each y € B, define P(y) to be
the (one-step) probability that M(y, o) € B, i.e.,

P(y) =Pr(M(y,o) €B). (6)

Notice that both D(x |y) and P(y) implicitly depend on the stochasticity
parameter o, but this fact is suppressed in the notation for convenience.
Hence, for y € B,

P(y) = [ D(x1y) d, (7)

where the integral is with respect to Lebesgue measure, and is over the set
B. An expression for the lifetime expectancy now is developed in terms of
the functions D(x | y) and P(y), which represent probabilities associated
with one iteration of the map (1). Notice first that the probability that the
lifetime is exactly zero is given by ¢, = 1 — P(x,). However, g, makes no
contribution to the sum in (4), and is therefore irrelevant. For the lifetime
to be exactly one, X; must remain within B, and X, must escape. Thus,

q, = fB[l _P(xl)]D(xl | xg) dx;.

This expression is obtained by realising that D(x, | x,) dx, represents the
probability of mapping x, to a neighbourhood of x, with vanishingly small
measure dx;, and that the next iterate from x; leaves B with probability
1 — P(x,). By integrating over all possible values of x; in B, the relevant
probability g, is found. By iteratively proceeding in this fashion, it can be
seen that, for i = 1,2, ...,

g = fBi [1- p(xl_)]j]_i[l {D(x_,- lx;_1) dxj}. (8)

Here, the symbol [ is used to denote the multiple Lebesgue integral over
B crossed with itself i times. It will be convenient to develop the sequence
g; in terms of another sequence f;, which will be defined for i € N, by

= f T 1) ). ©)
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It is clear that f; is the probability that the trajectory beginning at x, is

1

still within B by the ith step; i.e.,
fi=Pr{X,, X,,..., X, € B}.
Thus, the connection between the sequences ¢; and f; can be expressed as

q; =f; = fisr ieN, (10)

which may be verified by direct computation using Egs. (8) and (9) as well.
It is also obvious that f; is a nonincreasing sequence. In fact, under a
certain hypothesis, it can be shown that f; decreases to zero geometrically.
The following definition for the quantity P, is required to state the

hypothesis.

DeriniTiOoN 1. P, is defined to be the essential supremum of the
function P(y) in B, with respect to Lebesgue measure; i.e., it is the
maximum value achieved by the function P in all sets of the form B\ E,
where E is any subset of B with Lebesgue measure zero. Thus

P, = esssup(P(y): y € B}. (11)

HypoTHESIS 1. The essential supremum of P (with respect to Lebesgue
measure) in the set B is strictly less than one, i.e., P, < 1.

This hypothesis ensures that there is (almost) always a positive probabil-
ity of escape from the set B. In fact, the quantity P, would appear to be a
good measure of the stability of the set B in some sense. However, this is
only a measure under one iteration of the map (1), and does not provide
information on the lifetime expectancy of frajectories, which is now devel-
oped with the help of the following lemma dealing with the decay proper-
ties of the sequence f;.

LEMMA 1. Under Hypothesis 1, for each i € N,

fi < P(xo) P,

and hence the sequence f; is geometrically decreasing.
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Proof.  Assume that P, is chosen in accordance with Hypothesis 1, and
thus P(y) < P, for almost all y € B. This permits the estimate

fiva _ [piv1D( X411 X;) dxi+1nj‘=1{D(xj |xj—1) dxj}
fi eIl {D(x; ;) dx;}

_ Je PO)TT_o{D(x; 1, y) )

- fB‘n§=1{D(xj |xj—l) dxj}

B PJp T o{D(x; | x;,) dv;)
f31n§=1{D(xj | x;-1) dxj}

=P,.

Therefore, f;, — P.f; < 0, with the initial condition f, = [, D(x, | x,) dx,
= P(xy). Thus, f; < P(x))P!"', and f; is a geometrically decreasing
sequence. |

These properties of the sequence f; enable an alternative expression for
the lifetime expectancy, as is expressed in the following proposition.

ProposITION 1. Under Hypothesis 1, the expected lifetime of trajectories of
(1) can also be written as

(LY =Y f (12)
i=1
where f; is as defined in (9). Moreover,
(L) < Pxo) (13)
<1_p"

Proof. Incorporating (10) into the expected lifetime definition (4), one
obtains

o0

(L) = Z l(fz _fi+1)-

i=1

This summation can be evaluated by computing the partial sum
k

Z l(fz _fi+1) = (fl _fz) + (2f2 - 2f3) + (3f3 - 3f4)

i=1
t+ - ((k - 1)fk—1 - (k - 1)fk) + (kfk - kfk+1)
(fitfot - +f) =K

k
Z fz - kfk+1-
i=1
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In the limit as k — « of the above, note that kf,,, — 0, because f, is
geometrically decreasing to zero by Lemma 1. Thus, the lifetime ex-
pectancy can be expressed very simply in terms of the sequence f as in
(12). Moreover, the estimate f; < P(x,)P.~* as given in Lemma 1 permits
the upper bound

(L)< ¥ P(xp)Pit = f(x"; .

i=1 ©

as required. 1

The alternative formula for (L) derived above is pleasing in that it is a
straightforward infinite sum of terms for which the relatively simple
definition (9) exists. The explicit evaluation of the sequence f; may be
difficult in general, but (12) provides a compact theoretical tool to estimate
the stability of B under repeated iterations of (1). Note also that the upper
bound on (L) is consistent with the association of P, €[0,1) with the
one-step stability of the set B: a small P, obviously curtails the lifetime,
whereas as P, approaches 1, trajectories of (1) reach immortality. Also
worthy of note from the above proof is that, even if Hypothesis 1 were not
enforced, the formula (12) remains suitable to some extent. As long as the
summation on the right of the expression (12) is convergent, it must
converge to the lifetime expectancy. Convergence can also be assured by
weaker, though more convoluted and less realistic, conditions than Hy-
pothesis (1), which will not be detailed in the interests of clarity.

3. ALMOST DETERMINISTIC MAPS

So far, the discussion has been fairly general in that the development is
valid for any Markov process with stationary transition probabilities, given
by a known conditional probability distribution D(x |y). This (and the
next) section specialises on stochastic maps which are almost deterministic,
in a sense which will be made precise. Such maps are of great relevance in
the field of dynamical systems; the persistence of an invariant set of a
deterministic map under small external noise is of extreme importance.
Nature’s inevitable fickle influences can be modelled by such noise, and
hence if a certain form of invariant set is observable in nature, it must
persist under small random perturbations of a deterministic map. This
section will lay the groundwork for the analysis of almost deterministic
maps in this sense; directly meaningful results will follow in Section 4.
With this in mind, think of the map (1) as a small perturbation on the
deterministic map

X1 = H(x,), (14)
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with the fixed initial condition x, € B C R". One possible way to imagine
a stochastic perturbation on (14) is to enforce the conditional probability
distribution function

_(x—H®) (x - H())
20°

D(xly) = (zﬂ—lmexp , (15)

a?)

where o is a small positive quantity. This particular form models the point
y being mapped to points x distributed normally around the point H(y)
with variance o 2. Such a Gaussian distribution would be a natural assump-
tion from probability theory and the central limit theorem [1]. In the
nonanalytical limit as o — 0, this distribution collapses to the Dirac delta
distribution 6(x — H(y)), in which case the point y is mapped to the point
H(y) with probability 1. Thus, the limit ¢ — 0 of (15) represents the
deterministic map (14), and hence (15) with small o is an appropriate
expression for the inclusion of small noise into (14).

Analysis using (15) proves to be difficult, so consider instead the condi-
tional probability distribution

D(xly) =8[x—H(y)] —og[x—H(y)] +@(c?), (16)

for almost all x, y € B. Here, o is a small positive parameter which is a
measure of the imposed noise (for example, o may be any positive
monotone increasing function of the variance of the noise). As before, & is
the Dirac delta distribution, and g is a function which is nonnegative, thus
ensuring that the resulting probabilities do not exceed 1. The function g is
assumed known: the distribution of the noise imposed is known in this
linearised fashion. The argument of g is taken to be x — H(y) because
that is the vector between the expected position H(y) and the actual
mapped position x, and it is reasonable to imagine that the probability
density is associated with precisely this vector. In fact, the length of this
vector may be even more appropriate as an argument for g; this special
case is discussed later. The expression (16) is a perturbative expansion in
the parameter o, and it is apparent that o = 0 corresponds to the purely
deterministic map (14). Equation (16) is a purely formal expression; in
practise, such an expansion is not always available for a given form of
D(x | y). However, it is possible to furnish a formal derivation of the
first-order correction to the lifetime expectancy, by using the ansatz (16).
That is, the reduction in the expected lifetime of a deterministic trajectory
under the influence of vanishingly small external noise is derived. This
result provides an estimate on the leading order stability of the set B
under the almost deterministic map described by the distribution (16).
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First, note that H is a purely deterministic map, and hence for a given
initial condition x,, the trajectory of (14) is a deterministic sequence in R”".
This sequence will have a deterministic lifetime [, given by

I =sup{j>0: H*(x,) € Bfork =0,1,..., j}. (17)

In the event that the trajectory remains within B for all time, I will be
infinity. In any case, under the influence of small stochasticity in the map,
the lifetime will in general reduce, because there could be a nonzero
probability that each iterate i </ may exit B. Such a reduction depends
on the particular trajectory followed, and hence it makes sense to talk of
an average reduction in the lifetime. This is derived by using the sequence
f. described in Section 2. However, because f, =0 for i>1[ for the
deterministic map, the introduction of mild stochasticity would seem to
make f; < 0, a negative probability! This is clearly nonsense, and there-
fore, it is only legitimate to talk of a variation in f; for i <1 in almost
deterministic maps. Thus, for almost deterministic systems the sequence f;
will be assumed to have the form

_ e (D(x 1 xy ) dxg), i<
0, i>1,

f; (18)

where the almost deterministic conditional probability distribution is given
by (16). The following expansion for f; is now possible.

L

LEMMA 2. Fori < I, the sequence f, can be formally expanded in o in the
form

fi=1—cr§l: fK glx — Hi(x)] dx + @(c?), (19)

i

where the sets K; are defined for j € N by

K= rj] H*(B). (20)
k=0

Proof. Substituting the expansion (16) in (18), and assuming that a
formal expansion in o remains legitimate, one obtains

fi = /;;i Agl:l {5[xj _H(xj—l)] - a-g[xj _H(xj—l)] dx]} + @(0.2)
(21)
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for i <. Evaluating at i = 1,

fo= [ 3lx = H(x)] de, = o[ g[x, = H(x)] duy + @ ()

= Al H(x)] = of g[x: = H(xo)] dvy + @ (o),

where the standard property of the delta distribution is used to obtain the
indicator function of the set B(.%) from the first integral. Similarly,
evaluating (21) at i = 2,

fo= [ 01x = H(xo)]0lx, = H(xp)] dy dx,
= of 8lx = H(xo)]d]x, = H(xp)] dx, dx,
—q;ﬂm—Hu@kthKMﬂwM@+ﬁw%
= [ 3% = H(xo)| 7 H(x)] de
= of glx = Hx) 5[ H(x)] dx
—o/Bg = H(x0) 5[ H(x0)] dr, + (%)
T H ()| A HOx)] —of  glx— H(xo)] dv

—of glx = H(x)] dr A [H(xo)] + €(?),

Analogous tedious algebra yields the expression for f;:

fa = H(x0)]5 [ H? (x0)|A[ H(x0)]

-0 g[x — H(xo)] dx
BN H(B)N H*B)
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- m[H(xo)]anH(B)g[x — H?(xg)] dx

= o[ H(xo)} [ H2(xo)] [ g = H(x0)] de + @(?)
1:[ [H](xo)] - UZ {klﬁljB[Hkl(xo)]}

x/ i [x = HI(x0)] dx + #(a?).

The details of this calculation are omitted for clarity, but are obtained in
precisely the same fashion as for f,. By defining the sets K; = N I_oH"(B),
and by extrapolating the procedure used to arrive at the expression for f;,
the general expansion for f; in the form

1

o= LLal)] - o X { Al 0]
XfK;g[x — Hi(x,)| dx + #(a?)

can be derived. Now note that, for i </, l_[j oZl H(xy)] = 1, because
each indicator function is unity (H/(x,) remains in B for all j < [ by the
definition of I). Thus, for i < I, the indicator functions can be all set to
one in the derived expression, resulting in

fi=1- a_il [K glx — Hi(xp)] dx + @(o?),

as required. |

Note that in the above lemma the values of f; are only obtained for
i < I; as explained earlier, nonzero f; for larger values of i makes no sense
in the present context. Moreover, it must be remembered that this is a
formal result, because the expansion in ¢ has not been justified. Even if
the expansion is valid, it must be borne in mind that the result is of use
only in the case of very small o. In any case, Lemma 2 is useful in that it
shows, as an expansion in the noise parameter o, the way in which the
probability of escape from the set B by the ith iterate varies. The effect
this has on the expected lifetime of the trajectories is analysed in the next

section.
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4. ILLNESS AND AGEING

It must be emphasised that the entire development of the previous
section is based on a linearisation argument in o, which has not been
adequately justified. Therefore, the results achieved are only correct in a
formal sense. That is, the results proven implicitly assume that the expan-
sion (16) is valid, and moreover can be extended to the various functions of
o that are of interest. In other words, the proofs are not absolutely
rigorous in the sense of analytical mathematics, but should provide a first
step in a subsequent rigorous analysis.

Recalling that f; = 1 for the purely deterministic case if i < [, Lemma 2
implies that the reduction in the probability that the trajectory remaining
in the set B up to the ith iterate, is given by

(r._i [K' glx = Hi(xp)] de + &(o?).

This prompts the following definition.

DEFINITION 2. The illness at age i is defined by

Lm X le - m] ax

for i <.

The illness is the leading order term in the reduction of the probability
of the trajectory being alive at age i. Thus, if the expansion in o is valid, a
large I, would imply that the expected chance of being alive at age i is less.
The special case i = 1 has an illness therefore defined by

I = fBg[x — H(x)] dx.

Because this represents the probability of exiting the set B by age 1, I, is
called the infant mortality. 1t should also be noted that the illness I; is
increasing in i, as befits the aged being more likely to become sick. This is
clear if it is observed that, because f; > f,. ,, then
l—ol,>1—ol,, +@(0?),

and hence I;,, > I; to leading order. Now, possibilities of using the illness
as a measure of the instability of a deterministic trajectory under external
noise, is discussed, under two cases.
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4.1. Mortal Trajectories (I < )

The expansion (19) can be used to derive the reduction in the expected
lifetime because of external noise. Thus, of interest is deriving an expres-
sion for the reduction in the expected lifetime from I when small stochas-
ticity is present.

PROPOSITION 2. If I < o, then the (modified) expected lifetime can be
expanded formally as

i
(LYy=1-aY I, +0(c?).

i=1

Proof. The proof of this fact is easily obtained via the chain of
equalities

(Ly=)f Z =Y [l-ol]l+d(c?)=1—0a) I +(c?).
i-1 - i-1

i=1

Thus, the presence of the noise, characterised by the parameter o,
reduces the expected lifetime by an amount o ¥!_, I, to leading order.

DerINITION 3. If [ < =, the ageing R is defined by

Yy

i=1
where I; are the illnesses.

Thus, R is the coefficient of o in the expansion for the reduction of the
lifetime due to stochasticity of (small) measure o. Notice from Definition
3 that R is the effectively accumulated illness over a lifetime. Now,
because I, is given by Definition 2, R has the form

! i
R=1 2/ glx = H(xo)] d. (22)
= J= *J
The double summation above is over 4”—12 points of the form (i, j) in the
space N2, Equation (22) therefore prowdes a compact expression which
measures the reduction in the lifespan (the ageing) of trajectories under
small external perturbations. Should the value of R be large, the lifetime
is expected to shorten significantly. It is clear that R can become large if /
is large, because a large number of points will be summed over. Therefore,
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a longer lived deterministic trajectory is more prone to reduction in
lifespan under the influence of small stochasticity, as is perhaps obvious
intuitively.

The ageing R could also become large by the integrals in (22) providing
significant contributions. This is analysed further by assuming a particular
form for g, which is justified as follows. Notice from the initial expansion
(16) that, if the not unreasonable assumption that the conditional distribu-
tion function D(x | y) is isotropic around H(y) is made, then a possible
form for g is

g(x) = llxll, (23)

where || - || is the standard Euclidian norm on R”. This form of g will result
in a distribution function not biased in any particular direction; hence the
term “isotropic.” Moreover, the Euclidian norm can be chosen rather than
any other because all norms on R” are equivalent. Under this choice of g,
the infant mortality I, becomes

I, = anx — H(xy)ll dx.

This quantifies how the set B (excluding sets of Lebesgue measure zero) is
spread around the point H(x,); if I, is small, that means that B is
clustered very tightly around H(x,), or in other words, that H(x,) is
positioned well into the centre of the set B. Naturally, this would imply
that the infant mortality is small, because in this case H(x,) must be
perturbed a large distance if it is to escape B.

All the other expressions derived so far are similarly modified, and in
particular, Eq. (22) becomes

I I
=L L[ Iw-H(x)lde= ¥ T

i-j

where the tensor J;; has the structure of a triangular matrix. Each J;;
therefore quantifies the lack of tightness of the set N ~/, H*(B) about the
point H'(x,), ignoring a set of measure zero. Thus, the ageing is small if
the J;;s are small; i.e., the set K, ; is closely packed about H’(x,), or
H/(x,) is, qualitatively speaking, close to the centre of the set K;_;. That
this predicts that, for enhanced lifetime, the point H’(x,) must be close to
the centre of a set is not surprising, but that it should be precisely the set
K;_; is somewhat mysterious. In any event, the expression (22) provides an
immediate quantification of the lifespan reduction that can be expected of
a trajectory subject to small noise, and hence a measure of the instability
of the trajectory relative to the set B.
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4.2. Immortal Trajectories (I = =)

In the case where [ = o, it makes little sense to speak of a reduction in
the lifespan, and therefore a slightly different viewpoint is in order.
However, the special relevance of the case [ = o must first be mentioned.
Of interest in the theory of dynamical systems in the persistence of
positively and negatively invariant sets under external stochasticity. This
set may be an attractor, a set of fixed points, a periodic cycle, basins of
attraction of some object, etc. For example, if the set B is positively
invariant under the deterministic map (14), then all iterates H'(x,) remain
within B, and hence [ = .

Consider first the special case where B is both positively and negatively
invariant with respect to the map H of (14). That is, it is assumed that
H(B) = B. It is clear that this means that H/(B) = B for all j € N, and
hence K; = N|_,H*(B) = B for all j € N. This simplifies the illness to

Ii=2

j=1

/Bg[x—Hf(xO)]dx, (24)

which is valid for all i € N. In this case, it is even more apparent than
before that I, is increasing in i; the trajectory becomes more prone to
exiting B as time progresses. Even if I, approaches a finite limit as i — oo,
the sum X7_, I, diverges, rendering the expression derived in Proposition 2
indeterminate. Nevertheless, Eq. (24) can be used as a measure of the
instability of the iteration process, as a function of i. For a given map H
and invariant set B, the illness I, is seen to be affected by either changing
the initial condition x,, or by choosing a slightly different form of stochas-
tic perturbation (i.e., changing g). Thus, even if the precise reduction of
the lifetime is not readily quantified for the case of invariant B, it is still
possible to determine the effect of different forms of small noise on the
stability of an invariant set. Should B not necessarily be both positively
and negatively invariant, it is still possible to establish some results.

LEMMA 3. Suppose B is a suitably small neighbourhood of an attracting
fixed point (or attracting periodic cycle) of the deterministic map (14). Then
the illness 1, is bounded for i € N.

L

Proof. Consider first the case of the attracting fixed point. Let y € (0,1)
be the largest eigenvalue corresponding to the attracting fixed point of (14)
contained in B. Thus, length contracts by a factor of at most y in any of
the n eigenvector directions of the fixed point, if remaining in a suitably
small neighbourhood. Since H(B) c B because of the attracting nature of
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the fixed point, the Lebesgue measure p of the set K; satisfies

N H*(B)

k=0

w(K;) = = w(H/(B)) < w(B)y".

Therefore, forany i € N,

|Il| =

é [ slx=Hi(x)] dX‘

< {sgplgl} Z |w(K;-)]

j=1

i . .

<a) (ym'"’
j=1

1_,yni
al_,yn’

where a is a constant for suitably small B. Thus,

a

I <

1-vy
and the illness remains bounded. Now, if B is a small neighbourhood of an

attracting periodic cycle of period m, a similar argument can be made by
considering the map H™. |

Because I, is in general nondecreasing, the above lemma shows that, for
this particular form of B, the sequence I, approaches a finite limit; the
iliness does not increase without bound as the trajectory grows older.
Notice also that, for a set B with the strongly attracting properties given in
Lemma 3, it can be expected that any trajectory beginning in B would be
impervious to small external noise. Hence, if the illness is bounded, one
would expect the set B to be extremely stable toward small stochasticity.
This is an important criterion that can be used to characterise stability of a
set under small noise. Another instructive case is presented in the follow-
ing lemma.

LEMMA 4. If the deterministic map (14) is Hamiltonian, | = %, and the
set B is finite, then the illness I, grows at most linearly in i.

Proof. A Hamiltonian dynamical system conserves phase space area,
and hence, if B is any subset of its phase space, u(H(B)) = u(B) [4]. That
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is, the Lebesgue measure w of the iterated sets of B is conserved, and
hence

N H*(B)

k=0

w(K;) = p < u(B),

for all j € N. Furthermore, K; C B, and therefore

i

/ g[x - Hf(xo)] dx

K;

J

-

IA
-

I
-

sup |g|M(Ki—j)

j=1 Ki_;

IA
™-

Il
-

sup |glu(B)
] B

= ai,
where a is some positive constant, and the result is proven. |

It is possible to quantify in some sense an ageing for the case where
[ = oo, but it is necessary to index this quantity. Define

i

Ry = Z Z fK .g[x - Hj(xo)] dx = Z i Jij' (25)

i=1 j=1 i-j i=1 j=1

The proof of Proposition 2 indicates that, for the case where [ = %, an
informal expression for the expected lifetime after the introduction of
noise is

(L) = lim [k = oR,] +&(a?).

It is clear that, if R, grows greater than linearly in k for large enough k,
the so-called perturbative term above would dominate: the lifetime com-
puted from the limit may well be finite. Hence, the speed of divergence of
R, is a relevant measure of the suppression of the lifespan of a trajectory
with the introduction of noise. For the conditions of Lemma 3,

M=
=

R, =

i

I <Y C=Ck,

1 i=1
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where C is the constant which bounds the illnesses. Therefore, the lifetime
expectancy is expected to satisfy

(L) = klim [k — oCk]+@(0?) > =,

for small enough o. Because the expected lifetime remains infinite, this
implies extreme stability of the set B. Moreover, R, grows at most linearly
in k. However, because the I;s are nondecreasing in i, it is clear that the
lowest rate of increase of R, with k that is possible is linear, and
therefore the conditions of Lemma 3 represent the most stable case
possible. A reasonable quantity to measure the stability in this sense, for
the case where [ = =, is therefore given in the following definition.

DEFINITION 4. If [ = =, then the ageing exponent r is defined by
r=inf{t > 1: 3K Vk > K 3C: R, < Ck'}.

The ageing exponent is therefore the smallest possible choice for r
which ensures that R, /k”" remains bounded for large enough k. In other
words, it is the order of the rate of increase of R, with k, and it is readily
seen that the rate of increase of the illness I, with k then is of the order
r — 1. As has been discussed, r = 1 implies that the trajectory is very
stable under small stochastic perturbations (in the sense of remaining
within B). A large r, on the other hand, means that the lifetime reduction
is very large—instability. The ageing exponent r therefore provides a good
theoretical object which precisely quantifies stability in the sense that is of
interest: for small noise imposed on a (initially immortal) trajectory. Notice
that, by these arguments, the following proposition has already been
established.

ProposiTION 3. If B is a suitably small neighbourhood enclosing an
attracting periodic cycle of the deterministic map H, then, for a trajectory with
initial condition x, € B for the almost deterministic map, the ageing exponent
r=1

If the map H is Hamiltonian, this imposes additional constraints on the
problem, and actually contributes to the stability of the finite set B in the
sense that has been described. In fact, as is apparent from the following
lemma, the ageing exponent for this case cannot be more than 2, and
hence, if H is Hamiltonian, there is very little reduction in the lifespan
because of small noise.

ProrosITION 4. If [ = o, the map H is Hamiltonian, and the set B is
finite, then the ageing exponent r < 2.
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Proof. It is shown in Lemma 4 that I, < ai for some constant i, for
large enough i. Thus,

k(k + 1)
—

=

Rk=

i

k
L[ <a) i=a
i=1

1

which goes as k? to infinity for large k. Hence, there exists a constant C
such that for large enough k, R, < Ck?, and therefore the ageing expo-
nent r <2. 1

The fact that a Hamiltonian system possesses an ageing exponent which
is less than 2 is an indication that such systems are stable in some sense
toward small noise. This is not surprising because area preservation
ensures that, if a certain direction is unstable, a corresponding stable
direction exists. For general maps, however, the quantitative reduction of
immortality must be determined through the evaluation of the ageing
exponent r via a calculation of R, from (25).

5. CONCLUSIONS AND DISCUSSION

The stability of sets in stochastic maps has been examined, using a
completely new approach. The stability in this sense has been quantified
via the expected lifetime of trajectories within the set; i.e., the average
number of iterates that stay within the set of interest. If this is large, one
would expect the set to be stable in the sense that computed, or observed,
trajectories would appear to remain within the set. Because deterministic
models are only approximately correct for real life systems, observed stable
sets from such models would only give appropriate information if the set
were stable under small noise.

Thus, this paper has focused primarily on almost deterministic maps;
that is, maps in which the stochasticity can be represented in a perturba-
tive form. The result of this stochasticity upon the previously deterministic
lifetime expectancy is calculated, and formulae are developed. These
formulae are in terms of the deterministic map, and the form of the
perturbation only, and do not depend on precise knowledge of the per-
turbed (stochastic) trajectory. In general, mild stochasticity causes the
lifetime expectancy to decrease; the leading order decrease is quantified by
the ageing. The ageing is the result of accumulated illness, which measures
the probability that the iterate escapes the set at each step. The mathemat-
ical definition of these terms helps in comprehending how the stochasticity
affects the trajectory to leading order.
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The development in this paper is based on fundamental ideas, and is a
new approach to the problem of quantifying stability of sets under small
noise. Much of the formulae derived depend on formal perturbative
analysis, and as such lack absolute mathematical rigour. Nevertheless, it is
expected that these formulae enhance our understanding of the phenom-
ena associated with the stability of sets. In particular, they provide guide-
lines on using evidence from deterministic models to, say, predict the
presence of a basin of attraction for a strange attractor in the real
problem, in which factors ignored from the deterministic model actually
must have a small effect.

There are may possible extensions or improvements that arise out of this
paper. Whether the formal perturbative arguments presented here could
be rigorously proven is one issue of interest. Extensive analysis of particu-
lar examples of almost deterministic systems using the theory developed
here is also suggested; it would be instructive to compare the formulae
developed with numerical investigations of the stability of sets. A more
ambitious project would be to analogously determine the effect of small
stochasticity upon continuous dynamical systems; that is, to analyse almost
deterministic differential equations with the same viewpoint.
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