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ABSTRACT. This is an excerpt from Mathematisches Forschungsinstitut Ober-
wolfach Report 4/2014, doi: 10.4171/OWR/2014/4, which contained ex-
tended abstracts from the Workshop on Mixing, Transport and Coherent
Structures held at Oberwolfach in January, 2014. This extended abstract
takes a broad and critical view on the existing methods on determining flow
barriers in unsteady flows, while also calling for extensions to the ideas of
stable and unstable manifolds to account for realistic flow situations.

Abstracts

Flow barriers in realistic flows, and their relationship to invariant
manifolds

SANJEEVA BALASURIYA (University of Adelaide)

Unambiguously identifying time-varying flow barriers in realistic unsteady flows
faces many difficulties, since velocity fields are usually only available as spatially
and temporally discrete data over a finite time. Despite a lack of agreement
on the definition of flow barriers, a variety of methods for locating them are in
usage. These include—but are not limited to—passively advecting tracers; Finite-
Time Lyapunov Exponents; eigen/singular-vectors of transfer operators; complex-
ity measures along trajectories; curves/surfaces of extremal stretching, or shearing,
or flux, or attraction; ergodic quotient; and topological entropy. Interesting the-
oretical and computationally-efficient advances are being made at a rapid rate
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within the context of each proposed method of identifying flow barriers, as were
explored by the many specialists attending this workshop.

Flow barrier detection: As more and more instances of these methods being
applied to oceanographic, atmospheric and experimental data are being reported,
it would be good to be certain of the legitimacy of the conclusions reached in such
studies. As such, several broad questions are of concern:

1. In what way are these definitions related to each other? How is a curve
of extremal deformation related to eigenfunctions of the transfer operator? Is a
mesohyperbolic trajectory associated with an extremal flux? Questions of this sort
can be posed between any two definitions, and demand our attention.

2. What is the accuracy of each definition in identifying flow barriers? Strangely,
there is little analysis of this crucial question. While there is an obvious disincen-
tive for a proponent of a particular definition to undertake such an investigation,
this is surely scientifically necessary. A major problem in analysing this is having
unequivocal unsteady flow barriers with which to compare.

3. And what is a flow barrier in an unsteady flow anyway? There are sim-
ple counter-examples which show that entities across which there is minimal (or
zero) flux is a bad definition for this—but what is a flow barrier if it is not some
entity associated with minimal transport across it? Should one of the proposed
definitions— say a curve/surface of extremal stretching [10]—be used as the defi-
nition? This is unlikely to hold water, since competing definitions will surely vie
for this, and more and more definitions are being developed thick and fast! Are
there any features which are essential for a flow barrier to possess? For example:

4. Is frame invariance necessary? Not all methods for locating supposed flow
barriers are frame invariant. A continuing debate on this issue is necessary. If,
say, the boundary of an oceanic eddy is identified using some method based on
observations from the earth’s frame of reference, would the same boundary be
identified from the reference frame of a ship travelling alongside it? Alternatively,
if we want to quantify transport in our frame of reference, do we care what result
we get in another frame of reference?

5. In what sense is time-periodicity implicit in some definitions? Real flows
are patently not time-periodic, and thus recent methods that are being used and
developed ostensibly avoid this restriction. However, consider the standard finite-
time approach of defining a flow map P from a time ¢; to another time ¢5. As an
example, suppose the fact that all eigenvalues of a fixed point a of P are within the
unit circle is used to argue the stability of a. This argument relies on P"(z) — a
as n — oo for x near a, i.e., repeated applications of P. As a second example,
suppose spectral—say, Koopman—methods based on Fourier series on [t1,t2] are
used. In both examples, the flow has been implicitly assumed time-periodic.

6. Is the time-variation captured? Flow barriers in unsteady flows must vary
with time. If we think of ¢; and t5 above as fized, we are simply addressing the
limited problem of just one iteration of an autonomous map P, thereby ignoring
the time-dependence of flow barriers. For a definition/theory to be legitimate
and useful, it must genuinely incorporate the time-varying nature; it should quite
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naturally be able to think of t5 as a varying entity. Thus, addressing objects like
P’s invariant sets is surely meaningless in a time-varying setting.

Stable and unstable manifolds: Our initial ideas of flow barriers possibly
arose from stable and unstable manifolds of stagnation points in steady flows,
which indubitably form flow separators between regions of distinct fluid motion.
The clear analogue in unsteady flows would be stable and unstable manifolds of
hyperbolic trajectories/sets. The trouble is that to define these, one needs infinite-
time flows. Thus, for an understanding of unsteady flow barriers and associated
transport, further developments are called for:

a. Develop theory of finite-time invariant manifolds: There are some develop-
ments in this regard [12, 7, 8, 13, 9, 15], but theory to specifically locate finite-time
flow barriers, and to establish connections with any diagnostic method, would be
of tremendous value.

b. Quantify flux across intersection/non-intersecting invariant manifolds: While
a segment of stable manifold might be considered a transport barrier, since such a
segment by itself does not partition space, its location relative to other manifold
segments controls how fluid is transported. In nonautonomous flows, this picture
is changing with time, and moreover stable and unstable manifolds can intersect
in an arbitrary fashion. How do such intersections—or lack of such—lead to trans-
port? For time-periodic flows, transport across a flow barrier composed from such
manifold segments can be quantified [14, 1]. For time-aperiodicity, a gate-surface
idea [11] can be used to quantify time-dependent transport for nonautonomously
perturbed 2D flows [2], but a general theory for more realistic flows is lacking.
Since when we think of flow barriers, there is clearly an intuition regarding lack of
transport across these, the development of theory to quantify transport explicitly
across flow barriers in unsteady flows is highly relevant.

c. Test models with known invariant manifolds: There are unsteady nonchaotic
models in 2D and 3D in which time-varying stable and unstable manifolds are ex-
plicitly known [4]; these apply also to finite time, and their construction explicitly
addresses frame-dependence. Segments of invariant manifolds in nonautonomously
perturbed chaotic 2D flows can also be computed to leading-order using recent the-
ory [3]. In an alternative approach, recent work [5, 6] enables the determination
of the control velocity needed to force segments of [un]stable manifolds and hyper-
bolic trajectories to almost follow user-specified time-aperiodic behaviour. Given
the explicit nature of all of these models, they offer yet-to-be-exploited opportu-
nities for testing accuracies of different methods of barrier detection.

In summary: Given the unequivocal nature of invariant manifolds as intuitive
flow barriers in unsteady flows, their further development towards less idealised
flows should be an important avenue we should pursue. These will further assist
in the essential task of evaluating the accuracy of the multitudinous diagnostic
methods in usage.
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