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Abstract.

Achieving rapid mixing is often desirable in microfluidic devices, for example
in improving reation rates in biotechnological assays. Enhancing mixing within
a particular context is often achieved by introducing problem-specific strategies
such as grooved or twisted channels, ac electromagnetic fields or oscillatory
microsyringe flows. Evaluating the efficiency of these methods is challenging since
either experimental fabrication and sensing, or computationally expensive direct
numerical simulations with complicated boundary conditions, are required. A
review of how mixing can be quantified when velocity fields have been obtained
from such situations is presented.

A less-known alternative to these methods is offered by dynamical systems,
which characterizes the motion of collective fluid parcel trajectories by studying
crucial interior flow barriers which move unsteadily, but nevertheless strongly
govern mixing possibilities. The methodology behind defining these barriers and
quantifying the fluid transport influenced by them is explained. Their application
towards several microfluidic situations (e.g., best cross-flow positioning in cross-
channel micromixers, usage of channel curvature to enhance mixing within
microdroplets traveling in a channel, optimum frequencies of velocity agitations
to use) is discussed.

Keywords: dynamical systems, microfluidic, fluid interface, fluid transport,
optimization, review
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1. Introduction

As microfluidic devices become increasingly relevant
in today’s biotechnological revolution, an inescapable
physical fact is that flow in such devices are typically
of low Reynolds number [1–5]. This occurs because
the spatial lengthscale L, and the typical speed U
are both small, and whatever the kinematic viscosity
happens to be, the Reynolds number Re := UL/ν is
inevitably small. The end result is that microfluidic
flows behave similarly to flows of highly viscous fluids,
and in particular the absence of turbulence (i.e., high
Re flow) makes the flows very regular, or laminar [5].
Indeed, the Stokes limit of infinite Re is sometimes used
for modeling such flows [6–14]. The laminar nature of
the flow is unfortunate in many applications in which
excellent mixing is required, for example in mixing
together a sample and a reagent for a biomedical assay.
It is desirable in such situations to mix the fluids
quickly, to account for fast chemical kinetics. Diffusion
does act to mix fluids, but in typical microfluidic
applications occurs on a time-scale that is too slow to
be efficient in and of itself [1, 5].

1.1. Advective mechanisms for microfluidic transport

Dynamical systems offers an approach to tackle this
difficulty, based on the observation by Aref [2] that
it is possible to obtain complicated mixing in fluids
in which the Eulerian velocity field is completely
regular. This mixing is often loosely referred to as
chaotic mixing, which is a purely advective mechanism
in which nearby fluid particles lose sight of one
another as time progresses, or equivalently a particle’s
eventual trajectory depends highly sensitively on its
initial position. It is instructive to note that chaotic
mixing cannot occur in two-dimensional (2D) flows
which are steady because of the Poincaré-Bendixson
theorem [15, 16], nor in three-dimensional (3D) steady
inviscid flows in which the velocity and vorticity are
linearly independent [17, 18]. This allows for the
possibility of chaotic mixing in 2D unsteady flows,
or in 3D viscous and/or unsteady flows—situations
which can be used to advantage to enhance microfluidic
mixing. Unsteadiness in the flow can arise via a
variety of processes: deliberately induced time-varying
forcing, transience, or moving flow structures (e.g.,
microdroplets) which experience changing velocity
fields because of their motion to different regions of

a microfluidic device.
Two schematics of microfluidic situations in which

mixing might be desired are shown in Figure 1.
Figure 1(a) shows two different fluids being introduced
into a channel on the left; the typical behavior
is for them to flow along the channel, forming an
interface along the middle of the channel (magenta
line) across which they tend not to mix [5, 19–36].
This phenomenon has been amply demonstrated both
experimentally and theoretically. Figure 1(b) shows
a streamline pattern associated with a microdroplet
traveling along a channel [37–44], in the frame of
reference of the microdroplet. In typical applications
the exterior (carrier) fluid is immiscible, with the
microdroplet carrying within it two cells containing
different fluids, as demarcated by the interior magenta
line. These cells arise from the formation process
of the microdroplet; the two fluids are injected in
to the channel at the same location, and the hope
is that they mix within the microdroplet rapidly
to improve the chemical reaction rate between the
two fluids. This configuration is also extensively
studied in the experimental [37, 39, 40, 42–47] and
theoretical [7–9, 14, 41, 48, 49] microfluidics literature.
It should be highlighted that the methods that are
to be discussed in this article are not confined to the
two pictures shown in Figure 1; these are prototypical
examples drawn from microfluidics which will be used
to illustrate how the techniques can be used.

While the pictures in Figure 1 show idealized
steady conditions in which mixing between the two
relevant fluids does not occur, the concept of chaotic
mixing can be used to make it occur. That is,
if it were possible using some mechanism to create
an additional fluid velocity which conforms with
the necessary conditions for chaotic mixing, then
fluid interchange might be achieved. For the 2D
situations, a time-variation would be necessary to
generate chaotic transport; such time-variation would
also be advantageous in 3D. In practical situations,
time-variation in the velocity can be achieved in a
couple of ways: by an active method, or a passive
method. For an extensive review of a range of such
methods, see [50] in this Focus Issue.

Active methods are those which supply an energy
to the system. These include for example pumping
fluid back and forth (for example in the transverse
direction to the channel flow in Figure 1) using
syringes or cross-channels [32, 33, 36, 51–59], vibrating
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boundary membranes to generate an additional interior
flow velocity [53, 54], or applying external oscillating
electromagnetic fields to influence charged particles
within the fluid [26, 29, 31, 60–64]. These methods
will cause fluctuating velocities in the frame of
reference of the flow barriers, thereby engendering
transport across them. Typically, the fluctuations are
oscillatory in time, for example sinusoidal, which is of
course natural for fluctuations driven by alternating
currents. In situations such as this, one might seek the
‘best’ strategy to optimize transport. For example,
prompted by experimental [26, 29, 30, 36, 60, 65–
72] computational [31, 66–68, 70, 73] and theoretical
[74] evidence on the presence of an optimal frequency
of oscillation, one might develop methodology to find
this particular frequency [75]. Alternatively, one
might analyze the locations at which to position
microsyringes or insert cross-channels [34, 35, 76], in
order to maximize transport. These problems can be
tackled using the dynamical systems theory that is
explained in this article, and a description appears in
Sections 5.1 and 5.2.

Passive methods are those which do not supply
energy, but use passive mechanisms which help to
cause the required velocity agitations. They take
advantage of physical/chemical phenomena such as
gravity, capillary action, surface tension or osmosis.
The simplest of these approaches is to have bends
or curves in microchannels to passively generate
anomalous velocities [8, 9, 14, 20–23, 39, 77, 78].
Even if the flow in the curved channel remains
steady, this can cause unsteady flows across flow
barriers, which as has been discussed is important in
generating transport. To see why this is so, imagine
a microdroplet such as that pictured in Figure 1(b))
traveling along a curved channel. When viewed in
the frame of reference of the droplet, the flow barrier
inside the droplet is experiencing different velocities as
it traverses different curves in the channel. Hence the
flow across the flow barriers would be unsteady. There
are many examples in the literature which indicate that
traveling within curved channels does indeed engender

transport within cells in a microdroplet [8, 11, 38, 38–
40, 40, 78–82]. Another passive approach which has
been studied is having grooves in a channel [19, 21,
25, 27, 83–85], which once again will cause velocity
agitations. As in the active approach, one might ask
questions on how best to apply the passive strategy
(i.e., how to bend the channels, or where to put the
grooves) in order to optimize the particular mixing that
one is seeking; this is discussed in Section 5.3.

1.2. Diffusive mixing

An important aspect absent from the discussion so
far is the role of diffusion. Indeed, in some areas
of fluid mechanics the above advective mechanisms,
i.e., variations in the Eulerian velocity field of the
fluid driving Lagrangian fluid particle trajectories, is
defined as stirring, whereasmixing explicitly means the
process of diffusion. Since diffusion occurs at slow rates
in microfluidic devices, using this specific ‘definition’
of mixing as pure diffusion is somewhat limited in
the present context. As has been argued, unsteady
advection (i.e., stirring) is essential to achieve fluid
transport across the flow barriers in (inevitably low
Re number) microfluidic flows. But does this by itself
mix the fluids together? The answer is that mixing can
be achieved by diffusion acting on top of a judiciously
chosen advective mechanism. Diffusive mixing can be
made effective if there are sufficiently small blobs of one
fluid immersed in a region of the other fluids; when
the length-scale of these blobs reaches the diffusive
length-scales, these blobs diffusive into the outer fluid,
resulting in good mixing (in any sense of the word).
If the blobs are too big, diffusive mixing is inefficient.
Therefore a reasonable approach is to use advective
mechanics, such as chaotic mixing, to help the fluid
create sufficiently small blobs. A particularly efficient
configuration of these blobs is if they are thin elongated
elements, i.e.., filaments, with their widths smaller
than the diffusive length-scale. Diffusion would then
break them up, and the filament would mix into the
surrounding fluid quickly.

(a) (b)

Figure 1. Idealized steady microfluidic flows with flow barriers (magenta): (a) two fluids flowing along a channel, and (b) a two-cell
microdroplet in a channel.
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To summarize the above discussion: good mixing
in microfluidic devices requires a two-step process.

(i) A carefully chosen unsteady advective mechanism
needs to be selected; this is essential in combating
the laminar nature of the flow, and attempting
to promote advective transport (such as chaotic
mixing);

(ii) The advective strategy should result in fluid blobs
or filaments, whose shapes are such that diffusive
mixing is accelerated.

Thus, one can think of mixing as occuring
via an advection-driven diffusion process. This has
a long history of being modeled in the literature
using advection-diffusion equations (see [6, 86–89] and
references therein).

1.3. Optimizing mixing

Each microfluidic device being designed usually has a
specific goal. Obtaining excellent mixing according to
a device-dependent specification may be an important
aspect in the design process. If so, it is necessary
to fabricate the device such that the above two-step
advection-enhanced diffusive mixing is maximized.

But how can one optimize this? The most
obvious thing to do is to fabricate many devices with
slightly different configurations, experimentally test the
mixing in each, and choose the design which gives the
best mixing. For the moment let us postpone the
issue of how one might measure this mixing which
is necessary for the comparison. This is difficult
in experimental microfluidic devices, since ultra-high
resolutions for the measurement method (e.g., particle
image velocimetry, or PIV) will be needed. If we
are able to do obtain these measurements, and do
this comparison across the devices, a particular design
could be chosen from among the experimental devices
that we have fabricated, as the optimal one. This
process is ad hoc at best since, realistically, only a
small number of devices can be fabricated because of
the considerable time and cost of the process. Usually,
most laboratories will design and fabricate just one
device at a time, and report on its performance in
the literature [20, 23, 26, 29, 31, 36, 37, 39, 40, 42–
47, 51, 65, 77]. This by itself offers only an incremental
step in the understanding of design optimization,
since comparison across many such designs is essential
before any claim on optimized mixing can be made.
The fact that the mixing measures used for devices
manufactured at different laboratories are usually
different [8, 12, 14, 40, 42–44, 81] exacerbates the
difficulty of comparison. Experimentally determining
the best designs to optimize mixing is therefore
difficult, impractical and costly.

A cheaper alternative would be to first use direct
numerical simulations (DNSs) of a particular design.
In this approach, the relevant fluid equations (Navier-
Stokes equations, or suitable simplifications such as
the Stokes equations which characterize extremely
low Reynolds number flows) need to be numerically
solved using computational fluid dynamics (CFD). A
significant difficulty in this process is how one expresses
the necessary boundary conditions for the governing
partial differential equations. The interfaces between
fluids at which conditions need to be specified are
themselves moving and changing shape, resulting in the
necessity of expressing boundary conditions on moving
interfaces, with this motion itself influencing the flow.
As a result of this, most microfluidics-inspired DNSs
available in the literature limit themselves to highly
simplified geometries or idealized interface/boundary
conditions [13, 14, 21, 22, 25, 26, 77, 81, 82, 90, 91].
The result of the DNS is the knowledge of the fluid
velocity on a spatial and temporal grid, which can then
be used for evaluating mixing. Emerging advances
in computational techniques such as the immersed
interface method [92, 93] might in the future help
include the interior flow interfaces in a more realistic
way. At this point, however, each DNS that is run
needs to be carefully developed for each specific design.
As in the experimental literature, DNS results are
also usually reported for one specific design at a time
[13, 14, 21, 22, 25, 26, 77, 81, 82, 90, 91], making
comparisons of mixing efficiency once again difficult.

As a result of these considerable difficulties
in either experimental or DNS microfluidic mixing
evaluations, an approach which utilizes simple models
has been proposed. Here, one expresses the fluid
velocities in the device based on some kinematically-
or dynamically-plausible hypothesis [7–11, 41, 94, 95].
Typically, the fluid velocities can be specified exactly,
doing away with the need for DNS or PIV, but of course
the velocities are based on highly-idealized models.
While this is the least realistic of the three approaches,
it offers the opportunity to quickly test across different
configurations. For example, parameters such as the
curvature of a channel bend, the location of a cross-
channel, the frequency at which a microsyringe pushes
fluid in, or the viscosity ratio between the fluids interior
to an exterior from a droplet, can be manipulated
quickly. A strong recommendation for these simple
models is that they can be used as the basis for
preliminary investigation, and suggstions for the ‘best’
parameter values can emerge from these analyses.
This can enable an informed choice of parameters to
investigate in proceeding to the more realistic, but
more costly, DNS and experimental approaches.

Typically, it is the fluid velocity which is obtained
through an experimental, DNS, or simple model
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approach, and the issue postponed in the discussion
was how this can be used to measure the mixing.
Section 2 has a discussion on dynamical systems
methods which can be utilized to measure mixing in
a global sense. However, as in the schematics of
Figure 1, the goal may not be to have excellent global
mixing, but rather to have excellent mixing across
the interface between the fluids. Indeed, one might
argue that the first step in achieving global mixing (if
that is the goal) is to promote mixing across the fluid
interface(s). While in the idealized steady pictures in
Figure 1 the interfaces are easy to explain, realistic
microfluidic flows are unsteady, and even defining what
the relevant fluid interfaces are becomes problematic.
Thus, it is necessary to understand flow barriers, across
which mixing is suppressed in unsteady situations.
(It is the transport across these barriers that is to
be assessed in the experimental devices.) Section 3
offers a discussion on how one might determine these
flow barriers, concerning which there is a large and
growing literature in dynamical systems. The issue
of quantifying transport across these barriers is itself
tricky, and explained in Section 4. Finally, Section 5
describes some recent successes of these dynamical
systems methods for maximizing mixing (including
new comparisons with experiments), and postulates
other situations in which they have promise.

2. Measuring global mixing

Suppose that the time-varying velocity field v(x, t)
within a microfluidic device have been obtained by one
of the three methods discussed previously: from an
experimental device, from a DNS, or from a simple
model. Then, the fluid trajectories are given by the
solutions of the ordinary differential equation

dx

dt
= v (x, t) . (1)

Equation (1) is the advection equation of the fluid,
representing the simple fact that the rate of change
of position of each fluid particle is given by its velocity.
Suppose we imagine seeding particles across the spatial
domain at an initial time (say, t = 0). Choose a
specific particle which is at the location x0 at this time.
Its Lagrangian trajectory x(t) is then the solution
to (1), subject to the initial condition x(0) = x0.
By solving (1), numerically or otherwise, over many
initial conditions, the Lagrangian trajectories of many
particles in the fluid can be determined.

In realistic situations, v will only be known on
a spatial grid, at discrete points in time. Knowing v

by itself does not tell us about mixing; this velocity
field information needs to be processed in some way
to obtain mixing measures. Typically, the mixing
measures will be changing with time t. Some possible

approaches for obtaining these mixing measures are
now discussed; a more extensive collection of mixing
measures is available in review articles [87, 96].

2.1. Concentration variance: particle-based advection

A simplest way of quantifying mixing is to assume that
each particle has a signature which is conserved as it
moves around in the flow. For example if there are
two fluids whose mixing together is to be assessed, one
can assume that particles from one fluid are labeled ‘0’
and those of the other fluid are labeled ‘1.’ A finite
number of particles is identified at time 0, and then
their location at a general time t is determined by
numerically solving (1). To see how the ‘0’ and ‘1’
particles have intermingled by this stage, the spatial
domain is gridded into small boxes Bi, and the number
of each particle type within each box is counted [86, 97,
e.g.]. If ci(t) is the fraction of particle type ‘1’ in box Bi

at time t, the level of homogenization can be assessed
by determining how uniform ci is across all the boxes.
A measure of this could be a standard variance

σv(t) :=
〈

|ci − 〈ci〉|2
〉

=
〈

c2i
〉

− 〈ci〉2 , (2)

where 〈·〉 represents the average over all the boxes.
Since the ci here are proxies for the spatial
distribution of the concentration of particle ‘1,’ (2) is a
concentration-variancemeasure for mixing. Indeed, (2)
is equivalent to the segregation measures suggested by
Danckwerts in 1952 [98]. Expressions equivalent to (2)
are often used in the literature to measure microfluidic
mixing [8, 12, 14, 19, 21, 23, 25, 26, 28, 31, 36, 42, 44,
77, 78, 81, 82, 84], where the cis can be obtained from
some other means (see Section 2.2, for example) rather
than particle advection. For example, the so-called
mixing measure [20, 21, 23, 28, 28, 36] is effectively
1 − σv(t). In some experiments, the quantity ci could
have been estimated by optical methods (for example
the pixel intensity associated with the presence of a
dye [27, 31, 36, 65, 77]).

One shortcoming of using the particle-advected
method for evolving the quantity ci is that, since one
merely uses the velocity field to directly push particles
each with a fixed signature value (i.e., type ‘0’ or type
‘1’), the effect of diffusion is not explicitly included in
this approach.

2.2. Concentration variance: passively advected field

Rather than counting particles to estimate a concen-
tration, a mathematically more precise method which
also incorporates diffusion would be to think of an ini-
tial concentration of some quantity at time 0 as a quan-
tity per unit volume entity, i.e., a density. For exam-
ple, c(x, 0) could be the density distribution of a salt
or dye at time 0, which might be high on one side of
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the microfluidic device and zero on another, because
the dye is initially contained in one fluid and not the
other. When quantifying ‘mixing’ now, the idea is to
see how the dye mixes as time progresses, under the
condition that there is a velocity field v(x, t) acting on
the fluid in the device. The evolution of the concentra-
tion c(x, t) is then governed by an advection-diffusion
equation [6, 86–88]

∂c

∂t
+ v(x, t) ·∇c(x, t) = κ∇2c(x, t) (3)

where κ ≥ 0 is a small diffusion coefficient. If in
nondimensionalized form, κ in (3) can be thought
of as the reciprocal of the Péclet number (which
measures the relative importance of advective versus
diffusive transport). Diffusion as represented by the
Laplacian operator on the right-hand side of (3) is
the averaged effect of small scale random (Gaussian)
particle motions, which is well-known to be tiny in
comparison to advective motion in microfluidic devices.
Thus, (3) may be thought of as the modeling equivalent
of a standard scenario used in microfluidic experiments:
taking optical measurements to capture the spread of
a dye [10, 39, 40, 44, 84].

Returning to the model (3), suppose an initial
concentration distribution is given, and knowledge of
the velocity v (gleaned from PIV, DNS, or a simple
model) is available. Then, it is possible to numerically
evolve the scalar field c using the equation (3) which
is linear in the unknown, c. Having done so until a
time t, it seems reasonable that one can then use (2)
as a measure of mixing, where the averaging of c is
performed over the spatial domain in any fashion (not
necessarily by choosing a collection Bi of boxes).

However, this process has a significant practical
problem, as argued by Thiffeault [87]. At tiny κ as
appropriate to microfluidics, concentration gradients
occur on length-scales of order κ1/2. Thus any
numerical scheme used in evolving c in (3), and any
procedure used to determine the velocity field v,
should both be able to resolve to this tiny length-
scale. While there are many studies which do use (3)
to numerically compute concentration variances in this
way, the validity of such results is perhaps questionable
unless it is clear that a resolution of better than κ1/2

is used.

2.3. Capturing multiscale behavior: mix-norms

Using κ = 0 in (3) means that the quantity c is
conserved by fluid particles when following the flow,
since for any trajectory x(t) which obeys (1), the
material derivative
D

Dt
[c (x(t), t)] =

∂c

∂t
+

dx

dt
·∇c(x, t) = 0

by using (3) with κ = 0. (It should be noted however
that (3) in the limit κ → 0 does not give the same

results as one gets by setting κ = 0. This is for the
same reason that high Reynolds numbers flows are
quite different from inviscid ones; the behaviour as
Re → ∞ is not the same as for Re = ∞.) In this κ = 0
situation, it can also be shown that the variance of c
does not change with time [87, 99], rendering useless
its role as a mixing measure. This is the reason for
the proposal of a mix-norm by Mathew et al [99, 100],
which defines a variance-like quantity in which the
smaller length-scales are suppressed. The definition
is given for spatial domains which are periodic (for
example, 2D domains which are periodic in both x
and y), in which a Fourier representation c(x, t) =
∑

k ck(t)e
i2π(k·x) is possible, where the average value

of c has been subtracted already to ensure that 〈c〉 =
0. For example, in the 2D case with the (spatially
periodic) domain being the unit square, this involves
summations over the wavenumber k = (kx, ky), where
kx ∈ {0,±1,±2, · · ·} and similarly for ky. Then, the
mix-norm is equivalent to the Sobolev H−1/2 norm,
and is given by [99, 100]

σm(t) :=







∑

k

∣

∣ck(t)
∣

∣

2

(

1 + 4π2 |k|2
)1/2







1/2

. (4)

The intuition is that the smaller length-scales (larger
wavenumbers) are given less prominence in the
calculation (should the denominator above be unity,
this is equivalent to the variance; the mix-norm
therefore weights each length-scale differently in order
to obtain a fuller picture of the concentration). Non-
periodic domains require more complicated definitions,
which makes the mix-norm difficult to use. However,
the mix-norm (and its closely-related forms [87, 101])
are useful in the appropriate geometries, and also have
theoretical utility for optimizing mixing [87, 99–102].

2.4. Capturing stretching of fluid blobs: Lyapunov
exponents

When the velocity v is known, an alternative measure
which in some senses quantifies mixing is the Finite-
Time Lyapunov Exponent (FTLE). This is quite
different from the concentration variance measures in
that it is not the mixing of a concentration that is
evaluated, but rather the stretching of fluid blobs.
Lyapunov exponents are commonly cited as measuring
the ‘chaotic mixing’ in flows, but in reality measure
the relative deformation of a fluid particle in relation
to nearby particles, over a given finite time interval (say
from t = 0 to t = T ). Suppose the particle of interest
is located at x0 at time 0. This particle, and particles
near to x0 in all directions, are advected by v according
to (1) for this time duration. The nearby particle
which has experienced the most separation from the
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main particle is then identified, and this amount of
the separation, after a suitable logarithmic scaling, is
characterized as the Finite-Time Lyapunov Exponent
(FTLE) of the location x0. This process is carried out
for all locations in a spatial grid, thereby generating
a scalar field. In 2D, for example, this can be viewed
as a color map, in which high regions of fluid blob
deformation will be visible as those with high FTLE
values. Thus, this process generates not just one global
number for ‘mixing,’ but a scalar field from which
the regions experiencing higher ‘mixing’ than others
can be identified. (The relationship to chaotic mixing
arises from the fact that ridges of the FTLE field are
associated with stable and unstable manifolds whose
intersections—as shall be described subsequently—are
associated with chaotic transport.)

FTLEs, and closely related measures, are expe-
riencing extensive interest in fluid mixing problems
at the laboratory [97, 103–105, e.g.] and geophysical
[106–111, e.g.] scales. Since computing the FTLE at
each location requires advecting many nearby particles,
obtaining a refined FTLE field can be computation-
ally expensive. Thus, there are many ongoing studies
on improving the methodology of FTLE computations
[107, 112, 113]. Since good spatial resolution is re-
quired for computing FTLEs, their usage in microflu-
idic devices has only been taken up by a few studies
[27, 29, 30, 36]; this however should be no bar to their
being used in DNSs of such devices.

3. Barriers to mixing

The discussion on FTLEs reveals that mixing does
not occur homogeneously, but occurs preferentially in
some regions as opposed to others. Moreover, these
regions turn out to move around in space, as would be
visible if FTLEs were computed at different times. For
the purposes of this review, we shall think of FTLE
ridges as codimension-1 (that is, one dimension less
than the spatial dimension being considered) entities
that have a sharply larger FTLE value than adjacent
regions. Thus, for an experiment/simulation in 2D,
the FTLE ridges will be curves, whereas for a 3D
experiment they will be surfaces. FTLE ridges are
regions in which particle spreading is largest, and
(given the logarithmic scale of the FTLE), this usually
traslates into exponential stretching away from the
ridge. That is, there is a large diversion of particles
that occurs near the ridge; particles on each side
get pushed further away from the ridge, resulting in
a quick separation between nearby particles which
happen to have the ridge in between. Thus, FTLE
ridges are in some senses barriers to fluid mixing.
This might appear a paradoxical statement because of
the understanding that chaotic mixing is identified by

regions of large FTLE; as shall be seen, the nearby
flow often exhibits complicated stretching and folding
characteristics indicative of ‘excellent’ mixing.

3.1. Lagrangian Coherent Structures

The barriers to mixing as given by ridges of the
FTLE field are more properly stated through the
idea of Lagrangian Coherent Structures (LCSs), a
term coined by Haller and collaborators [114, 115].
The observation was that in ‘most’ flows, there were
typically structures which remained ‘almost coherent,’
even though they do move around in the flow.
The word ‘Lagrangian’ in the phrase LCS for these
structures is used in the fluid mechanical sense as
associated with ‘moving with the flow’ or ‘following
particles’ (as opposed to the ‘Eulerian’ viewpoint in
which fluid properties are examined as a function of
position and time). Typically, LCSs are surrounded
by regions of larger mixing. Examples of these from
geophysical flows include oceanic eddies, the Antarctic
circumpolar vortex (the ‘ozone hole’), and Jupiter’s
Great Red Spot. Similar structures exist in laboratory
and microscale fluid motion as well, and represent
blobs which are resistant to mixing fluid with the
surroundings. Hence, understanding these entities is
of importance if good mixing is desired. The key
observation by Haller [114, 115] was that in order
to study the LCSs, it was necessary to follow fluid
particles (i.e., Lagrangian particle trajectories), and
that information obtained from frozen-time pictures
(i.e., the Eulerian viewpoint) was not necessarily
correlated with these structures [116, cf.].

At this point, an issue regarding terminology must
be mentioned. While the above discussion makes
clear that it is the coherent structures which are the
LCSs, in recent literature it is often the boundaries
of these structures which are referred to as LCSs.
One reason for this unfortunate terminology is that
methods for locating coherent structures (described
further in Section 3.2) usually focus on determining
these boundaries. In steady flows in which there is
no time-variation, the boundaries can be described in
terms of classical dynamical systems theory. Consider
once again Figure 1, which shows the flow patterns
for several steady flows, loosely based on microfluidic
situations. Each magenta curve forms a flow barriers
which are interior to the fluid flow. In Figure 1(a), it
forms the interface between the upper and lower fluids,
which tend to flow in parallel along the channel [20–
36]. In Figure 1(b), the curved barrier separates the
interior of the circular microdroplet from the exterior
fluid, while the interior straight barrier separates the
fluid within the droplet into an upper and lower cell
[10, 37–44].

What is important to note in Figure 1 is that the
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flow barriers are connectors between saddle-like fixed
(stagnation) points. Indeed, the barrier is part of the
stable manifold of a fixed point, and simultaneously
part of the unstable manifold of another (possibly
the same) fixed point. Here, the stable manifold
refers to the set of points approaching the fixed
point as time progresses to infinity, while the unstable
manifold consists of points approaching a fixed point
as time goes to negative infinity. An entity which is
both a stable and an unstable manifold is called a
heteroclinic manifold or heteroclinic trajectory; in the
special instance in which the fixed point at both ends
is the same, it is called a homoclinic manifold. In any
event, the point is that for steady flows, heteroclinic
manifolds are the important flow barriers.

Realistic flows are however unsteady; their
velocities change with time. Generically, this means
that there are no fixed points. It turns out that
the unsteady analogue of the saddle fixed point is
called a hyperbolic trajectory [110, 117–119], which
does not remain at one location, but moves around
in time. Its defining characteristic is the presence
of a manifold of points which get attracted to it in
forwards time, and another set of points which do so
in backwards time. (Defining this precisely requires the
concept of exponential dichotomies [117, 120] which is
beyond the scope of this review article.) Instantaneous
stagnation points have no relationship to hyperbolic
trajectories. This is an example of how the Eulerian
(fixed-time) information is insufficient to determine
Lagrangian (following the flow) information. Since
the flow is unsteady, the manifolds themselves will be
moving around in time. These are then the purported
unsteady flow barriers of the flow, and are well-known
to form a skeleton which governs transport [121].
For example, fluid cannot cross these, and there is
exponential separation of particles which begin life on
the two sides of such a barrier.

While this is a pleasing interpretation, there
are considerable difficulties beyond the above simple
statement. In the steady situation as shown in
Figure 1, such manifolds are guaranteed to not
intersect each other, except in the degenerate situation
of them coinciding. (This is a result of the uniqueness
of flow trajectories; should there be a nondegenerate
intersection, fluid particles at the point of intersection
do not know in which of the two directions they
must travel.) However, in the unsteady situation
there is no such requirement, and generically the
manifolds will intersect each other in different ways.
This causes difficulty in the interpretation of these
manifolds as flow barriers. For example, under a time-
dependent perturbation the straight flow barriers in
Figure 1 would break up into a varied collection of
stable and unstable manifolds of the two hyperbolic

trajectories, which while being nearby the steady
manifolds would not coincide with them. There
would typically be a tangling between the stable and
the unstable manifolds, which then means that the
boudaries between the upper and lower fluids cannot
be umambiguously defined. Indeed, fluid transport will
occur across these (previously impermeable) barriers—
so in what sense does the word ‘barrier’ make sense?

Typically, outside of an ill-defined region in
which stable and unstable manifolds intersect, the
flow remains faithful. In other words, there will be
(somewhat) coherent blobs of fluid towards the middle
of the upper and lower cells in the droplet, with
fluid interchange occurring in the region of manifold
intersections. Therefore, identifying these stable and
unstable manifolds—which are the entities most often
called the LCSs—is crucial to understanding the main
transport mechanisms [4]. Unfortunately, doing so
is not always easy. There are very few examples
of exactly known stable and unstable manifolds in
unsteady flows [117], and a theoretical development
explicitly seeking such manifolds is difficult, though
some progress has been made [122, 123]. Hence,
numerical methods for finding these barriers has
become popular.

3.2. Methods for locating barriers

Having knowledge of the velocities of the flow of a
system (say, from PIV, DNS, or a simple model) by
itself does not identify the flow barriers in unsteady
flow situations. One needs to flow fluid particles
according to that velocity (i.e., as given in (1), and
use this information to reconstruct these structures
which govern transport. One particular difficulty
from the perspective of dynamical systems is that,
inevitably, such velocities are only defined over a finite
time window. Using exponential decays as time goes
to infinity to define flow entities therefore becomes
problematic; after all, any function over a finite time-
window can be bounded by an exponential term. There
are many competing methods which purport to do
this, and there is an ongoing debate about both the
legitimacy, and the efficiency, about each of these
methods.

(a) FTLEs: The most common and popular method is
to use FTLEs [30, 36, 97, 103–111], as had already
been discussed in Section 2.4. By beginning at
time t and going in forward time, the FTLE
field can be determined. Its ridges, forward-time
FTLE ridges, are where the maximum separation
of particles occur; these are the analogues of
the stable manifolds. (The reason for this can
be understood by examining particles near one
of the stable manifolds in Figure 1; as time
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increases they approach a fixed point, but particles
on the two sides are then pushed away from
the fixed point in opposite directions due to the
influence of the unstable manifolds, resulting in a
large stretching between the particles.) By doing
in backwards time, the backwards-time FTLE
ridges, analogues for unstable manifolds, can be
identified. While FTLEs are perhaps the easiest
flow-barrier identifying method to describe, it
is known that these sometimes falsely identify
structures as being important [115].

(b) Averages along trajectories: A scalar field similar
to FTLEs can be formed by averaging some
specified scalar function (such as the speed) along
finite-time trajectories which are indexed by the
particle location at time 0. This field is sometimes
thought of as a measure of trajectory complexity.
It has been observed that the ridges of this scalar
field often match well with flow barriers obtained
from other methods [124–126], and this method
has been used in applications [124, 127–129].

(c) Transfer operator methods: An alternative to
determining ridges of scalar fields comes from
the ergodic-theoretical idea of a transfer operator
or Perron-Frobenius operator. In this approach,
transport of a density is directly assessed by
seeding many particles, allowing them to flow for
a finite time, and then determining an operator
which quantifies how the density of points has
evolved. This operator is defined on a spatial
discretization, i.e., as the transition probability
from tiny spatial boxes to other spatial boxes,
and can be represented by a matrix operator
from the set of boxes to themselves. Suitable
generalizations of the eigenvectors of this matrix,
shown in a color-scale on these boxes, give an
immediate spatial impression on the coherent
structures, which appear as a collection of boxes
of similar color. Thus, this approach directly
addresses coherent structures, as opposed to their
boundaries, and explicitly evaluates transport of a
scalar density (i.e., a concentration). Considerable
theoretical work has been done on this method
[86, 130–133], with many emerging applications
[134, 135] in realistic fluid-mechanical situations.

(d) Other methods: There are many other methods
which are suggested, including curves of minimum
flux [136, 137], curves of minimum curvature
deformation [138], curves of extremal braiding
entropy [139], extent of trajectories [140], entropy
and ergodic measures [141, 142], and a range
of tools continuing to be developed by Haller
[115, 143–145] which explicitly characterize the
most/least attracting curves. Indeed, Haller
defines LCSs using this criterion (though the

concept of ‘flow barriers’ used in this review
article is much broader). Haller’s methods utilize
Eulerian information on the (instantaneous)
Cauchy-Green strain tensor to reveal Lagrangian
structures; in addition to flow barriers as discussed
here, these also include several other flow features.

3.3. Barriers and transport

One important consideration about the methods above
is that they are all purely advective; that is, they use
the flow velocity (1) to advect particles, and do not use
diffusion. This is in a broad sense perfectly reasonable
for microfluidic flows, since the advective time-scales
are much less than the diffusive time-scales in micro-
devices. In the parlance of fluid mechanics, stirring
(i.e., advection) is more important than mixing (i.e.,
diffusion) at these scales. Thus, the idea of fluid mixing
is often associated directly with diffusion. So when
determining transport barriers, does it make sense to
ignore diffusion?

Definitively answering the above question is
impossible, but several comments are in order.
First, when forwards and backwards flow barriers
intersect, since they are associated with exponential
stretching, nearby fluid parcels experience substantial
stretching and folding (more will be said about this
in Section 4.1; these are signature properties of
chaotic mixing). This causes filamentation of fluid
parcels, and when the widths of the filaments become
sufficiently small, diffusion becomes more effective.
Thus, this intersection process results in an advection-
driven diffusion process [6, 87–89], which while not
explicitly stated in the methods for determining flow
barriers, does enhance mixing (in any sense of the
word). Second, there are new studies [24, 137] which
explicitly use diffusion in their framework, and attempt
to identify unsteady flow barriers within that context.

While the identification of flow barriers (i.e.,
LCSs) has had success in explaining a variety of issues
in geophysical and other flows [127, 134], how one can
use these to maximize fluid transport is a more vexing
issue. Clearly, having the forwards- and backwards-
time flow barriers intersecting often, and across a large
region of space, improves transport. Are there ways
of quantifying the resulting transport, in order to
optimize mixing?

4. Cross-barrier transport

The answer lies in the fact that the ‘flow barriers’ in
unsteady flows serve the dual-role of being transport
barriers, and influencing transport through their
intersection patterns. From the dynamical systems
perspective, these are stable and unstable manifolds,
but unlike in the idealized Figure 1, these do not



Dynamical systems techniques for enhancing microfluidic mixing 10

need to coincide in unsteady flows. A given stable
manifold at some instance in time may intersect with
a given unstable manifold infinitely many times, a
finite number of times, or not at all [122, 146].
Moreover, the stable and unstable manifolds are
themselves changing with time. Thus, determining the
cross-barrier transport associated with those particular
stable and unstable manifolds would appear to be
ambiguous.

4.1. Time-periodic flow

The most well-known resolution to this problem comes
when considering incompressible 2D time-periodic flows
in which a 1D stable manifold intersects a 1D unstable
manifold infinitely many times, such that lobes of equal
areas are created through these intersections [147–
149]. Under these considerable idealizations, through
the ideas of lobe dynamics occurring near turnstiles,
the work of Rom-Kedar and collaborators enables
the rationalization of the lobe areas as quantifiers of
transport [147–149]. (Lobe areas had been suggested
as transport quantifiers prior to this [150–152], but
the idea of lobe dynamics explained exactly how the
transport occurred. If the lobe areas are unequal,
further modifications are necessary [153].) The fact
that the flow is time-periodic enables the definition
of a Poincaré map [15, 16, 149] P0 which maps fluid
particle locations from time 0 to time T , the periodicity
of the flow. Suppose P0 has a fixed point a (i.e.,
P0(a) = a) which is a saddle, characterized by the
fact that the eigenvalues of the Jacobian derivative
of P0 are real and positive, with one being larger
than 1 (representing a stretching direction), and the
other being less than 1 (a contracting direction). The
corresponding eigenvectors respectively indicate the
directions in which the unstable and stable manifolds
emanate from a. Now, suppose there is a point b

(which might be the same point as a) which satisfies
the identical conditions, and suppose as indicated
in Figure 2(a) that the 1D unstable manifold (red)
of a intersects the 1D stable manifold (green) of b

infinitely often, moreover creating lobes of equal areas.

Additionally, suppose that the intersection points are
associated with exactly two heteroclinic trajectories;
that is, a sets of points ri such that limi→−∞ |ri − a| =
0 and limi→∞ |ri − b| = 0, and exactly one distinct set
of points si which satisfy the same condition. The
lobes created through these intersection points satisfy
Li+1 = P0(Li) and Mi+1 = P0(Mi) for i ∈ Z.

Now, define a pseudo-separatrix as the unstable
manifold segment from a to r0, combined with the
stable manifold segment from r0 to b (any of the
primary intersection points can be chosen instead of
r0; the following argument still holds). This is shown
in Figure 2(b). It is clear that only lobes which cross
the pseudo-separatrix under forward iteration of P0

are M−1 and L0, which respectively cross upwards
and downwards to the lobes M0 and L1. These four
lobes are called turnstile lobes, and are the only lobes
associated with pseudo-separatrix crossing. Given that
all lobes have the equal area A, A is a good measure
of transport [148]. Since this transport actually occurs
over a time T , the average flux A/T has been suggested
as a more appropriate measure [74].

Under the geometric structure of Figure 2, the
lobes’ elongation, and eventual folding (which would be
inevitable if the flow is confined, and guaranteed if a =
b) can be used to prove chaotic mixing using the Smale-
Birkhoff Theorem [15]. All fluid trajectories inside
the lobe structures will exhibit complicated transport,
getting pulled out and then re-entrenched into the
‘tangled’ region. This can be illustrated by repeatedly
applying the Poincaré map, which has been illustrated
in microfluidic applications in a variety of studies
[14, 27, 30, 36, 97]. In certain situations in which
the velocities are nearly recurrent, or quasiperiodic,
it is possible to modify these ideas in still using lobe
dynamics to describe transport [154, e.g.].

4.2. Time-aperiodic flow

Unless time-periodicity is achieved in a well-controled
fashion, most realistic microfluidic flows are not time-
periodic. For example, within the frame of reference of
a microdroplet traveling along a channel with arbitrary
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Figure 2. (a) Lobe dynamics for time-periodic flow, and (b) pseudo-separatrix (magenta).
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shapes and bends, the velocity experienced is time-
aperiodic in general. Additionally, transport does
occur before a flow becomes well-developed, during
which time the velocity has a time-variation. Thus,
quantifying transport within a general time-varying
framework is important in microfluidics. However,
when the flow is not time-periodic, a Poincaré map
cannot be defined. Rationalizing the flux between
a given stable and unstable manifold now requires a
continuous-time viewpoint [122, 146]. The analogues of
the saddle fixed points are now hyperbolic trajectories
to which are attached stable and unstable manifolds.
All these entities move around with time. Consider
taking a snapshot of these at a specific time t, as
shown in Figure 3(a). Many other assumptions of the
lobe dynamics approach of Section 4.1 have also been
relaxed in this figure: the flow may be compressible,
there may be any number of intersections (or none),
and lobe areas (if lobes exist) may be unequal. The
manifolds will continue on beyond the pictured range,
and may exhibit any intersection pattern in this
unshown region. Consider a fixed line G, called a gate
surface [146, 155, 156]. Let u(t) be the first instance
in which a(t)’s unstable manifold intersects G, and
suppose s(t) is the closest intersection to b(t) on G of
b(t)’s stable manifold. Define the pseudo-separatrix at
time t by the collection of curves a(t)−u(t)−s(t)−b(t),
as shown by the magenta curve in Figure 3(b). When
the pseudo-separatrix evolves with time (with u(t) and
s(t) continually redefined so as to connect between
the two manifolds), the only possibility of transport
across this is through the gate surface between u(t) and
s(t), since the manifolds are flow barriers. Note that
the portions of manifolds beyond the pseudo-separatrix
become irrelevant in this analysis. For the picture
of Figure 3(b), since the red curve is the unstable
manifold and the green one is the stable manifold, flux
occurs acrossG from left to right as shown by the heavy
arrows. From the perspective of the pseudo-separatrix,
this means that there is instantaneous flux transport
from below to above the pseudo-separatrix. Let us
call this a positive flux. Eventually, the intersection

point to the left of G will move so that it crosses
G. At that instance in time, the flux is zero. Just
after this, the manifolds would have exchanged their
relative positions on G, and it is clear that now the
flow is in the opposite direction across the pseudo-
separatrix, i.e., from above to below. The flux has
therefore become negative. This evolution of the flux
will continue as t is changed; if there are no manifold
intersections whatsoever, the flux will be sign definite.
The flux can be defined to be dimensionally consistent
with an area of fluid per unit time [122, 146]. This shall
be called an instantaneous flux [122, 146], denoted by
φ(t), which quantifies the transport as the fluid per
unit time occuring at each instance in time.

Incidentally, this approach can encapsulate the
time-periodic Poincaré map picture, which if consid-
ered in relation to continuous time would have pictures
like Figure 2(a) (which is associated with P0) evolving
continuously in t (i.e., with Poincaré maps Pt which
map from time t to t+ T ), such that PT is once again
the same picture. However, each Li in the time-0 pic-
ture would have been mapped to Li+1 in the time-T
picture. Suppose G were chosen exactly at r0. If so,
φ(0) = 0. However, as time progresses, the intersec-
tion point r0 will move through G, and now the stable
manifold will be above the unstable one, corresponding
φ < 0. As s0 moves across G, φ will cross zero and be-
come positive, and then at time T , r−1 will be exactly
on G (at r0), at which instance φ(T ) = 0.

Intriguingly, the instantaneous flux can also be
defined in some instances where the velocities are
discontinuous, and perhaps even impulsive (i.e., have
infinitely large magnitudes occuring over infinitesimal
times; Dirac delta functions) [146]. These two
forms are particularly relevant if attempting to
enhance mixing by respectively shaking microfluidic
devices abruptly, or tapping them with an object.
The potential of these situations, which incidentally
have mathematical difficulties when viewed according
to ‘standard’ dynamical systems theory, is as yet
unexploited in microfluidics.

a HtL b HtL

G

a HtL b HtL

uHtL

sHtL

(a) (b)

Figure 3. (a) A snapshot of manifolds in time-aperiodic flow, and (b) the pseudo-separatrix (magenta) formed via the gate surface
G.
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If lobes exist, their area could be obtained by

A =

∫ t2

t1

|φ(t)| dt , (5)

where t1 and t2 are the time-values at which the
end-points of the lobe cross G. This is because
a lobe is created through the instantaneous flux
in a fashion which is similar to that of filling a
balloon through its ‘mouth’ G. Rom-Kedar and
collaborators [147, 149] observed that, subject to the
assumptions of Section 4.1, the Melnikov function
from dynamical systems [15] could be integrated to
give lobe areas in time-periodically perturbed flows.
In time-aperiodically perturbed flows, and without
the additional assumptions of Section 4.1, Balasuriya
[122, 146] showed that the instantaneous flux φ(t) was
identical to the Melnikov function, and the relationship
(5) was still true.

Therefore, the instantaneous flux/Melnikov func-
tion φ(t) is an appropriate measure of cross-barrier
transport in flows which have general time-dependence
in their velocity agitations. As shall be shown in Sec-
tion 5, additional theory [34, 35, 75, 76, 153] applied to
this fact can utilized to great advantage in optimizing
cross-barrier transport in microfluidic designs.

4.3. Other cross-barrier transport measures

There are several other methods which have been
suggested for measuring cross-barrier transport which
shall be briefly mentioned. One is to define the
instantaneous flux across barriers as defined by FTLE
ridges [107]. Another is to provide a measure for how
complicated an interface between two fluids gets as
the flow evolves [32, 73, 83, 157, 158]. While this
does not directly assess fluid transport, the idea is
that if the interface becomes increasingly stretched and
folded, then this promotes transport between the two
fluids because diffusion becomes more effective. A
representative description of this idea is to imagine
two fluids flowing along a channel as in Figure 1(a),
and to introduce one or more cross-channels which
slosh fluid back and forth [32, 33, 56, 73]. If a
dye is released on the well-defined interface to the
left of these cross-channels, the evolution of the dye
would give an indication of what the interface has
become in the cross-channel region and beyond [32,
73, 83, 157]. This approach therefore uses the concept
of streaklines, which combines both Lagrangian and
Eulerian frameworks, in contrast to streamlines which
are instantaneous and Eulerian, and pathlines which
follow specific particles and are Lagrangian. (The
reason the dye fills out streaklines is because it was
released at one location on the flow interface.) Once
these streaklines are observed, one can use some sort

of folding measure [32, 73, 157, 158] as a proxy for the
‘mixing’ as time evolves.

5. Optimizing microfluidic cross-barrier flux

Suppose a microfluidic devices has a flow barrier—
such as either of the magenta lines in Figure 1—
which is a heteroclinic manifold. Can the various
results discussed above be used to determine the
velocity agitation that needs to be created (through
cross-channels, microsyringes, electromagnatic forces,
boundary vibration, etc) to maximize cross-barrier
transport?

To be concrete, suppose the initial velocity field
is steady, and is incompressible. Particle trajectories
x(t) therefore obey

dx

dt
= J∇H (x) , J :=

(

0 1
−1 0

)

, (6)

where H is the streamfunction (or Hamiltonian). In
particular, suppose a and b are saddle stagnation
points of (6) connected by the heteroclinic trajectory
x̄(t), which forms the flow barrier Γ of interest. Since
H is conserved by the flow, Γ is part of a level curve of
H . To break this barrier, suppose an unsteady velocity
of the specific form εg(x) cos (ωt), where 0 < ε ≪ 1, is
introduced. What are the ‘best’ choices for the spatial
part of this velocity g(x) and the frequency ω > 0 in
order to maximize transport across the flow barrier?

For small enough ε and bounded g, it is well-
known [120, 123, 159, 160] that the perturbed flow

dx

dt
= J∇H (x) + εg (x) cos (ωt) . (7)

inherits hyperbolic trajectories a(t) and b(t) which are
O(ε)-close to a and b for all t ∈ R. The trajectory
a(t) retains its unstable manifold, while b(t) retains
its stable manifold, and the primary segments of each
are O(ε)-close to Γ. However, these are t-dependent,
and need not coincide any more; the typical picture in
each t-slice is as given in Figure 3(a). It however turns
out that under these conditions of time-periodicity and
incompressibility, the picture is actually more special:
it is exactly in the form of Figure 2(a), with the lobe
areas being identical [76, 122, 153]. More can be said,
by defining

λ(t) := g (x̄(t)) ·∇H (x̄(t)) , Λ(ω) := F {λ(t)} (ω) (8)

where F is the Fourier transform defined by
F {h(t)} (k) :=

∫∞

−∞
h(τ)e−ikτ dτ . Then, the instan-

taneous flux function associated with a gate surface
which is drawn at the point x̄(0) is [76, 122, 153]

φ(t) = ε |Λ(ω)| cos [ωt−Arg (Λ(ω))] +O(ε2) . (9)

Moreover, by using (5), the area of each of the lobes is
[122]

A = ε
2 |Λ(ω)|

ω
+O(ε2) (10)
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and the average flux A/T (with the period T = 2π/ω)
is [122]

A

T
= ε

|Λ(ω)|
π

+O(ε2) . (11)

Whether using the amplitude of the instantaneous flux
or the average flux as a measure of the cross-barrier
transport, it is clear that what one needs to optimize
is the quantity |Λ(ω)|.

5.1. Optimum frequency of velocity agitation

The presence of a ‘best’ frequency is backed by
experimental [26, 29, 30, 36, 60, 65–72] and numerical
[31, 66–68, 70, 73] evidence (usually obtained by
laboriously testing many frequency values), and
theoretical considerations [74]. The few studies which
either indicate that the mixing increases [33, 161,
162] or decreases [31, 163] with frequency may well
arise from sampling a non-monotonic function in a
monotonic region.

The above theory is now applied to the experimen-
tal device as reported by Lee et al [36] (see also [32]),
and shown in Figure 4(a). Lee et al postulate parabolic
velocity profiles [31, 32] in the main channel, and in the
one cross-channel which they use to obtain the veloc-
ity agitation; these are respectively V0

[

1− (y/W0)
2
]

in the x-direction, and Vs

[

1− (x/Ws)
2
]

cos (ωt) in
the y-direction. They define the Stouhal number by
St := fWs/V0 where 2πf = ω [36]. After much testing,
Lee et al [36] report the St-dependence on mixing (mea-
sured in a cross-sectional place at a downstream loca-
tion using a mixing index akin to (2)) in their Figure 6,
whose data has been extracted and is shown in Fig-
ure 4(b) by the dots. The curve is that obtained by cal-
culating |Λ(ω)|. The ability of the theory, which specif-
ically addresses cross-barrier transport, to so quickly
predict a optimum Strouhal number of around 0.3, in
comparison to a similar result obtained experimentally
by assessing global mixing downstream [36] is quite re-
markable. Early application of this method can provide
good insights before spending considerable time and
money fabricating potentially non-optimal devices.

The calculation of |Λ(ω)| as shown by the curve
in Figure 4(b) is done as follows. Since the length of
the main channel is much larger than the width of the
side channel, one can assume that the velocity on the
center-line (the flow barrier) in the region −Ws < x <
Ws is approximately constant when the side channel
is not in operation; therefore, ∇H = V0i in this
region. Moreover, εg(x̄(t)) = Vs

[

1− (x̄(t)/Ws)
2
]

j =

Vs

[

1− (V0t/Ws)
2
]

j, since x̄(t) = V0t in this region.
Now, since g = 0 outside this region, λ(t) = 0 for
|t| ≥ Ws/V0, and

λ(t) = V0Vs

[

1−
(

V0t

Ws

)2
]

, −Ws

V0

< t <
Ws

V0

.

Taking the Fourier transform, simplifying, and
replacing ω with 2π StV0/Ws yields

|Λ| =
(

2VsWs

4π3

) ∣

∣

∣

∣

sin (2π St)− 2π St cos (2π St)

St2

∣

∣

∣

∣

.

Now, the prefactor is irrelevant in the quest for
determining the best St values, and can be ignored.
The remaining term is scaled by a factor of 0.05 to
enable comparison with the mixing-index scale of Lee
et al [36], and plotted in Figure 4(b) as the solid curve,
forming an excellent predictor of the optimal frequency
of fluid sloshing to use.

Incidentally, Lee et al [36] obtain as estimate
of St ≈ 0.32 using a heuristic analysis based on
expectations of particle positions. The method given
here can be used to obtain not only this peak, but other
local flux maxima of |Λ| which occur around St = 0.95,
1.45, 1.97, etc, when Figure 4(b) is extended in St.
Moreover, the flux measure arising from this procedure
provides the amplitude of the flux, expressed directly
in terms of quantity of fluid crossing the interface. The
Lee et al [36] analysis captures neither of these features.

A comment on the ‘zero-mixing’ prediction at
around St = 0.72 in Figure 4(b) is in order. This
indicates a frequency value at which the O(ε)-flux in
(9) is zero. In practise, however, the flux is unlikely to
be zero because of two reasons: the O(ε2) terms (which
cannot be determined by the present analysis) will
generically contribute, and in the experimental device,
there will be additional ignored effects such as diffusion
and boundary layers. This is amply illustrated by the
fact that the Lee et al [36] value at St ≈ 0.72 does not
appear to be zero. Nonetheless, it is small; plotting
|Λ| can help decide what frequencies are best avoided
if optimum mixing is desired.

The above example is new to the literature, and is
based on the optimal frequency analysis by Balasuriya
[75], developed for parallel-flowing two-fluid scenarios
as in Figure 1(a) [26, 33, 60, 66, 164, 165]. In
that study, two other examples (related to multi-cross
channel fluid sloshing in another experiment [33] and
an electro-magnetic perturtabation) were addressed
[75]. The current example, though, uses quick and
dirty estimates (such as the main channel velocity not
changing within the duration of the cross-channel) to
compute |Λ|, illustrating that maximizing cross-barrier
transport is appropriate for maximizing global mixing,
and that good results are possible even with gross
simplifications.

5.2. Optimum positioning of velocity agitation

This section addresses the different question of whether
any insight can be obtained into how best to position
the velocity agitation spatially. For example, are there
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preferred locations at which to position the cross-
channels in a cross-channel micromixer?

This question has been analyzed by Balasuriya
through a sequence of papers [34, 35, 76] in which
specific designs for cross-channel micromixers were
offered [34]. For this review, attention shall be focussed
only on the latest of these studies [35] which poses
the problem as how to find the best positioning for
a velocity agitation across the flow barrier subject to a
given energy budget.

Under the formalism introduced in Section 5,
the question is therefore to determine the best g(x).
However, the results of Section 5.1 give immediate
insights. Notice that the structure of the flow in the
main channel was not needed in the calculations; only
an estimate of the (unperturbed) velocity on the flow
interface Γ. Even the postulated parabolic profile in
the main channel was not used. Therefore, to leading-
order, it is only necessary to consider the values of g
on the flow barrier. Moreover, since λ = ∇H · g and
Γ is associated with a streamsurface H = constant, it
is only the component of g perpendicular to Γ that is
useful. Hence one may as well attempt to utilize flow
energies as close to Γ as possible, and in particular have

{=0 {=L

agitation region

x=-W x=W

Figure 5. Optimum velocity agitation g⊥ for cross-interface
transport using (13) with L = 1, V0 = 1 and ω = 20 (solid
profile), 40 (dashed) and 50 (dotted).

this energy generate velocity agitations perpendicular
to Γ.

Suppose the flow interface Γ (which may be
curved) has length L, and is parametrized by arclength
ℓ. Thus ℓ = 0 and ℓ = L represent the beginning and
ending saddle points associated with the heteroclinic
connection. The question is to determine g such that
the flow generated through (7) for some fixed small ε,
has optimum transport across Γ, i.e., maximum |Λ(ω)|.
Based on the above discussion, let g⊥ := g·∇H/ |∇H|
be the velocity orthogonal to Γ, which is subject to the
kinetic energy constraint
∫ L

0

g2
⊥
(ℓ) dℓ = G2L , (12)

where G is some specified constant with dimensions
of velocity. Using an Euler-Lagrange variational
approach, Balasuriya and Finn [35] obtain an explicit
solution to this optimization problem, and demonstate
its optimality through comparison of numerically
computed lobe areas from other spatial forms of g

which satisfy the constraint (12).
For the purposes of this review, a simple

approximation which gives an easier representation
than that of [35] is proposed. Consider Figure 5 in
which two fluids come in from the left, and there
is a central region in which some agitation strategy
(cross-channels, boundary vibration, electromagnets)
is to be implemented to optimize flux. This is a
typical design [29–34, 56, 73, 76, 166]. The saddle
points corresponding to ℓ = 0 and ℓ = L are well
outside this region in typical devices; at T- or Y-
junctions at the inlet as in Figure 4(a), and possibly
within a collecting reservoir at the outlet. Consider
the simplifying assumption that the velocity along the
interface in the agitation region in the absence of an
agitation is V0, a constant. This provided good results
in the example of Section 5.1, is reasonable in most
devices where the agitation region is far from saddle
points, and so is worth pursuing. Suppose the midpoint
of this agitation region is labeled x = 0, and the region
itself is described by −W < x < W . Then, the results
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Figure 4. (a) A schematic of the microfluidic device experimentally investigated by Lee et al [36], and (b) the scaled flux measure
|Λ| (solid curve) in comparison to the results of Figure 6 in [36] (dots).
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in [35] simplify considerably in this regime to give

g⊥(x) =

√
2G

√

1 + V0

ωL sin ωL
V0

cos

(

ω

V0

x

)

(13)

on the flow interface for x ∈ (−W,W ). Note that
g⊥(x) = 0 for |x| > W , since no velocity agitation is
used outside the region. Now, (13) tells us specifically
how the perpendicular agitation velocity should vary
along the interface, and it is instructive to note that
it changes direction at xm = (2m+1)πV0/(2ω), where
m ∈ Z. To ensure continuity in the agitation, pick the
largest M such that (2M + 1)πV0 < 2ωW , and set g⊥
to zero outside the region (−xM , xM ).

The results of this process are shown inside the
agitation region of Figure 5 for three different choices
of ω, with the other parameters being L = 1 and
V0 = 1. If examining the solid curve (ω = 20), this
structure of g⊥ can be obtained by positioning three
cross-channels adjacent to each other, with the middle
one having a flow which is exactly out of phase with the
outer two cross-channels. Since the velocity agitation
is εg⊥ cos (ωt), each of these velocity profiles within the
cross-channels are modulated by cosωt, causing fluid
sloshing across this central region of Γ. The results
of this theory tell us exactly where to put each of the
cross-channels; their ends are located at the values xm

where m = 0,±1,±2, · · · ,±M . If ω = 40, five cross-
channels provides the optimum agitation. Moreover, it
tells us to situate the cross-channels right against each
other, and to have fluid flowing in opposite directions
in adjacent channels. This is useful information, not
hitherto used in experimental designs. Rather than
using pumping in cross-channels, one could also use
membranes located on the top and bottom boundaries
of the agitation region [53, 54], which are made to
vibrate at precisely the form given in (13), modulated
by cosωt. For example at t = 0, flexible upper and
lower boundaries would have a deformation in the y-
direction given by (13), and illustrated by the solid
curve in Figure 5. By the time t has evolved to π/ω
(half the period of the flow) the deformation would
be negative that given in (13). When t has reached
2π/ω they would once again be given by (13). For
design purposes, it is instructive to note that boundary
positions located at the xm values will always remain
stationary. These can be used to anchor the boundary
membranes to the apparatus. Thinking of boundary
membranes in this fashion indeed renders the energy
constraint (12) much more direct: it is the energy
supplied to vibrate the membranes along their length.

The method described here is considerably
simplified in comparison to the original mathematical
formalism [35], but has been formulated under the
conditions of finding relatively easily explainable
design characteristics while maintaining reasonable

assumptions. It is hoped that the theoretical tools
which are continuing to be developed can be adapted
to satisfy these practical considerations.

5.3. Optimum channel bends for intra-droplet mixing

The methods for optimizing mixing discussed so far
are active ones. A passive approach relevant to
mixing within a microdroplet as shown in Figure 1(b)
would be to use channel bends and/or grooves to
passively create velocity agitations which influence
the droplet in an unsteady fashion as it moves along
the channel. The first step in this endeavour is to
evaluate the role of channel boundaries on interior
mixing, which has interested many authors [8, 9, 20,
28, 49, 78]. One main issue in this process is how
to precisely quantify the mixing within one particular
configuration. In experimental devices [20, 28] one
usually measures a variance such as (2). The difficulty
in extrapolating from this is that in order to determine
how changing a parameter, say the curvature of the
channel, affects the mixing properties requires building
yet another device. DNS modeling of this situation is
also complicated by the several moving interfaces on
which moving boundary conditions would need to be
specified. However, simplified models [8, 49] may offer
opportunities for quicker investigation of the parameter
space.

In this review, the promise of a new simple model
[9] will be briefly discussed. The basis for this model
is the Hadamard-Rybczynski solution [8, 49, 167–
169] of a steadily translating droplet in a different
medium, which specifies the velocities in the frame
of reference of the microdroplet. These velocities will
inevitably get modified by local channel curvature [8],
but reasonable assumptions on the impact of a nearby
channel boundary on the velocity on the interior flow
barrier are possible [9]. Basically, the flow along the
center of the channel must bend to keep track of
how the channel boundaries are bending; additional
boundary effects will of course occur, but this will only
influence the droplet’s interior boundary at higher-
order. As has been demonstrated in several situations
so far, information on the interface should be sufficient
to evaluate the flux to leading-order. Of particular
note is that this will avoid having to do trajectory
integration and computing a global mixing measure of
Section 2, as has previously been necessary even in
models in which the velocity field is explicitly specified
[8].

A simplification used in almost all models of
the transport of droplets within curved channels is
that the droplet instantaneously realigns to make sure
that its axis remains parallel to the local boundaries
[7, 8, 12, 41, 49]. This clearly is not reality; yet
investigating this aspect has been difficult so far. As
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an example, Figure 6(a) shows a particular serpentine
channel configuration along which a carrier fluid flows
from left to right. Suppose the microdroplet travels
along this channel, experiencing the local channel
curvature at each instance, and reorienting towards
the local channel bends subject to a time-lag. Note
that since the bends in the channel occur only over a
certain range, the droplet will experience unsteadiness
in its velocities mainly over a finite time-interval; these
effects will die out as time goes to −∞ (at the left)
and +∞ (at the right). In particular, the unsteadiness
experienced is not periodic, necessitating the aperiodic
development of Section 4.2.

Figure 6(b) shows the flux function, with
positivity indicating flux from the lower to the upper
cell in the microdroplet picture of Figure 1(b), as a
function of time t. The markers labeled 0 through 5
in Figure 6(a) are cross-sectional positions along the
channel, and the same markers are given in Figure 6(b)
to indicate the time-values at which the droplet is
crossing those positions. While precise dimensions
are not given in Figure 6 (this is the subject of a
detailed article [9], which quantifies the roles of the
carrier fluid velocity, viscosities of the droplet and the
carrier fluids, droplet radius, and measurements of the
channel geometry), the qualitative behavior of the flux
function should be apparent. The three different curves
shown in Figure 6(b) are associated with no time lag
(solid), a small time lag (dashed) and a larger time lag
(dotted) for droplet reorientation. Thus, it is possible
to determine not just the time-variation of flux as a
result of channel curvature, but also the effect of the
time lag. It is instructive to note that the amplitude
of the flux functions is highly sensitive to the time lag,
pinpointing the necessity of investigating this issue in
experimental and DNS processes rather than ignoring
it, as is the norm.

It is hoped that this new approach—for which the
time-aperiodic flux definition was essential—will pro-
vide methods for assessing the intra-droplet transport
as a time-varying entity, which can be quickly com-
puted for differing channel boundaries. This will pro-

vide a tool for more efficiently investigating the influ-
ence of how best to choose channel boundary curvature
to optimize mixing within a microdroplet such as that
of Figure 1(b).

5.4. Other optimizing methods

Dynamical systems inspired mixing optimization
methods which are quite different from those discussed
here have also been developed [99, 101, 102]. These
methods impose periodic boundary conditions, and
require adjusting the velocity field across the flow
domain, which at this point in time renders them
difficult to apply to microfluidic situations. A different
class of methods attempts to control stable and
unstable manifolds [170], possibly by controling the
locations of hyperbolic trajectories [118, 119] to which
particles on the manifolds are attracted/repulsed. The
control of the direction of emanation of the manifolds
from the hyperbolic trajectories has also recently been
managed [171]. These methods may offer promise in
the future, since by controling the stable and unstable
manifolds themselves (and not just their relative
location, which is all that is needed for the time-
aperiodic flux quantification of Section 4.2) transport
characteristics may be better optimized.

This review article has discussed the state-of-
the-art in how dynamical systems methods can be
used to quantify and enhance mixing in microfluidic
devices. The continuing development of dynamical
systems theory will indubitably provide interesting and
fruitful ideas in this endeavour, into the future.

Acknowledgments

Support from the Australian Research Council through
grant FT130100484 is gratefully acknowledged.

0

1 2 3 4

5

0 1 2 3 4 5

t

fluxHtL

(a) (b)

Figure 6. (a) A serpentine channel along which the microdroplet travels, and(b) resulting flux from lower to upper cell of
microdroplet as a function of time.



REFERENCES 17

References

[1] Tabeling P 2014 Current Opinion Biotech. 25
129–134

[2] Aref H 1984 J. Fluid Mech. 143 1–21

[3] Aref H and et al 2015 submitted arXiv:1403.2953

[4] Ottino J 1990 Annu. Rev. Fluid Mech. 22 207–
253

[5] Whitesides G 2006 Nature 442 368–373

[6] Giona M, Anderson P and Garofalo F 2013 Phys.
Rev. E 87 063011

[7] Chabreyrie R, Vainchtein D, Chandre C, Singh
P and Aubry N 2008 Phys. Rev. E 77 036314

[8] Stone Z and Stone H 2005 Phys. Fluids 17 06313

[9] Balasuriya S 2015 Phys. Fluids 27 052005

[10] Grigoriev R, Schatz M and Sharma V 2006 Lab
Chip 6 1369–1372

[11] Kroujiline D and Stone H 1999 Phys. D 130 105–
132

[12] Sivasamy J, Che Z, Wong T, Nguyen N T and
Yobas L 2010 Chem. Engin. Sci. 65 5382–5391

[13] Che Z, Wong T and Nguyen N T 2010 Intern. J.
Heat Mass Transfer 53 1977–1985

[14] Che Z, Nguyen N T and Wong T 2011 Phys. Rev.
E 84 066309

[15] Guckenheimer J and Holmes P 1983 Nonlinear
Oscillations, Dynamical Systems and Bifurca-
tions of Vector Fields (New York: Springer)

[16] Alligood K, Sauer T and Yorke J 1996Chaos: An
Introduction to Dynamical Systems (New York:
Springer)

[17] Arnold V 1965 C. R. Acad. Sci. Paris 261 17–20
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