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a b s t r a c t

Given a flow on a surface, we consider the problem of connecting two distinct trajectories
by a curve of extremal (absolute) instantaneous flux. We develop a complete classification
of flux optimal curves, accounting for the possibility of the flux having spatially and
temporally varying weight. This weight enables modelling the flux of non-equilibrium
distributions of tracer particles, pollution concentrations, or active scalar fields such as
vorticity. Our results are applicable to all smooth autonomous flows, area preserving or not.
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1. Introduction

Given a two-dimensional manifoldΩ , possibly with nonempty boundary, and a C2 function f : Ω → R2 we consider the
dynamical system

ẋ = f (x) (1)

in which x ∈ Ω . We will search for flux extremising curves that join a specified pair of points a and b. The ‘‘flux’’ here will
be a general quantity; our definitions will provide for the quantification of each of a variety of entities crossing the curve per
unit time, including the quantity of fluid, heat or chemical, or the amount of vorticity or potential vorticity. Clearly if a and
b lie on a single trajectory of the flow, one may travel along this trajectory from a to b and incur zero flux; this trajectory
segmentwould be the fluxminimising curve. To pose nontrivial questions about flux extremising curves, we need to restrict
our attention to pairs of points than cannot be joined by trajectories. This leads us to the notion of an integral set. Let φ(x, t)
be the flowwhich is generated by (1); that is, φ(x, t) is the location inΩ to which an initial condition x progresses by time t .

Definition 1 (Closed Trajectory). For any x ∈ Ω , define its closed trajectory Tx by

Tx := {φ(x, t) : t ∈ R}. (2)

Definition 2 (Integral Set). Define the sets I ix for i ∈ N inductively by

I1x = Tx,

I ix =

y ∈ Ω : Ty ∩ I i−1

x ≠ ∅


(i = 2, 3, 4, . . .),
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and then the integral set Ix of x by

Ix =


i∈N

I ix. (3)

Thus, Ix includes all trajectories that can be connected to x by going through a countable number of ‘‘end states’’, such as
fixed points or periodic orbits; connecting through an end state at infinity is not allowed. The set Ix may be either one- or
two-dimensional, depending on the topology ofΩ and the dynamics of (1). We will be concerned with pairs of points a and
b with the property that any curve joining a to b must have nonzero absolute flux across it. Thus the integral sets through
a and b should neither intersect, nor be connectable via a curve of fixed points:

Hypothesis 1.
(i) The integral sets Ia and Ib do not intersect, that is Ia ∩ Ib = ∅, and
(ii) There does not exist a curve C̃ ⊆ Ω such that f (x) = 0 for all x ∈ C̃, and for which Ia ∩ C̃ and Ib ∩ C̃ are both nonempty.

We will define flux in relation to a non-negative time-varying weight function g . The basic example to keep in mind is
that g(x, t) is a chemical concentration; the flux definitions will then compute the flux of the chemical (in chemical mass
per unit time, say), at each instance in time. Note that we allow g to vary with time; this enables the flux computations even
when the chemical concentration is not in equilibrium. As will be argued later, our definition for g will allow the modelling
of more general situations, such as the flux of vorticity or temperature. Our weight function is in general defined by:

Definition 3 (Weight Function). The weight function g : Ω × R → [0,∞) is such that g(·, t) ∈ C1 (Ω) for any t ∈ R.

At a fixed time t , the idea is to determine curves which extremise the flux; these curves are restricted to C1 curves in
Ω taking the form C = {r(p) : 0 ≤ p ≤ 1}. The following definitions for the flux are at a specific time instance t , and are
therefore instantaneous in nature.

Definition 4 (Weighted Local (Point) Flux). The weighted local flux (or weighted point flux) at differentiable points r(p) on a
piecewise C1 curve C = {r(p) : 0 ≤ p ≤ 1} ⊂ Ω at a time instance t is given by

Lg (r(p), t) := g(r(p), t) f (r(p)) · Jr′(p), (4)

where J :=


0 −1
1 0


.

Since Jr′(p) represents the leftwards-pointing normal directionwhen traversing the curve in the direction of increasing p,
the local fluxmeasures the strength of gf in the leftwards normal direction to the curve, weighted according to g . Integrating
the local flux over a curve C gives the ‘‘weighted flux’’ across C, in the following senses:

Definition 5 (Weighted Signed Flux). The weighted signed flux F s
g(C, t) across C at a time instance t is defined by

F s
g (C, t) :=

 1

0
f (r(p)) · J

r′(p)
|r′(p)|

r′(p) g(r(p), t) dp =

 1

0
Lg (r(p), t) dp. (5)

Definition 6 (Weighted Absolute Flux). The weighted absolute flux F a
g (C, t) across C at a time instance t is defined by

F a
g (C, t) :=

 1

0

f (r(p)) · J
r′(p)
|r′(p)|

 r′(p) g(r(p), t) dp =

 1

0

Lg (r(p), t) dp. (6)

The ‘‘standard flux’’ (quantity of fluid crossing per unit time) is obtained by setting g ≡ 1, while more general g can be
used to represent the flux associated with a passively transported chemical concentration or of a (passive or active) scalar
field. To state our main result, we also need the following definitions.

Definition 7 (Weighted Compressibility). The weighted compressibility function κg : Ω × R → R is defined by

κg(x, t) := ∇ · (f(x)g(x, t)), (7)

where ∇ denotes the derivative with respect to x.

If g ≡ 1, the weighted compressibility becomes the divergence of the vector field (the compressibility of the flow). That is,
κ1 = ∇ · f.

Definition 8 (Flow Derivative). The flow derivative of a scalar field h(x, t) onΩ × R which is C1 inΩ for each t ∈ R is given
by

Dfh (x, t) := f (x) · ∇h(x, t). (8)
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The flow derivative is equivalent to the material derivative (derivative following the flow of (1)) for time-independent
functions. Leaving the formalities of ‘‘local’’ for later, our main result is

Theorem 1. A piecewise C1 simple curve C connecting Ia to Ib at an instantaneous time t is:
1. locally weighted absolute flux minimal iff

(a) C is on the ‘‘entry boundary’’1 of Ω and satisfies C ⊆ {x ∈ Ω : κg(x, t) > 0},
(b) C is on the ‘‘exit boundary’’ of Ω and satisfies C ⊆ {x ∈ Ω : κg(x, t) < 0}.
(c) C in the interior of Ω and satisfies C ⊆ {x ∈ Ω : κg(x, t) = 0,Dfκg (x, t) > 0},

2. locally weighted absolute flux maximal iff
(a) C is on the ‘‘entry boundary’’ of Ω and satisfies C ⊆ {x ∈ Ω : κg(x, t) < 0},
(b) C is on the ‘‘exit boundary’’ of Ω and satisfies C ⊆ {x ∈ Ω : κg(x, t) > 0}.
(c) C in the interior of Ω and satisfies C ⊆ {x ∈ Ω : κg(x, t) = 0,Dfκg (x, t) < 0}.

If κg ≡ 0 onΩ we are in a degenerate situation where all curves joining Ia to Ib have equal weighted signed flux.

Related work includes that of MacKay [27], who considers signed and absolute flux (with g ≡ 1) for volume-preserving
three-dimensional flows. MacKay concludes that a surface S has locally stationary signed flux iff ∂S is invariant under
the flow, and that a surface S has locally minimal absolute flux iff S can be decomposed into surfaces through which the
flow is unidirectional and if there are no rapid changes of flow direction (‘‘sneaky returns’’). The questions we pose in
this present work are related, but rather different. Firstly, MacKay’s setting [27] is ‘‘degenerate’’ in our framework and all
connecting curves incur the same flux.We generalise this degenerate setting from area-preserving flows to flows preserving
any invariant density, and show that this degeneracy persists when the weight function g is chosen to equal the invariant
density, representing the long-term asymptotic distribution of points on trajectories. In the area-preserving case, we set
g ≡ 1 to obtain this degeneracy. Secondly, we consider the interesting case where the flux weight is not matched to the
invariant density. Such a situation arises for example, when considering ‘‘standard’’ flux for a non-area-preserving flow,
or when considering the transport of tracer particles in fluid where the distribution of the tracers is not uniform, nor in
equilibrium. Thirdly, as many models arising in applications from geophysical or mechanical fluid flow involve domains
with boundaries, we include an analysis of the variation of flux at or near boundaries.

Minimum flux curves from the perspective of standard maps on a cylinder have been addressed by Polterovich [35].
The idea was to determine a closed nonintersecting curve homotopic to a cycle across which the transport of Lebesgue
measure under one iteration of the map was minimal; equivalently, the partitioning of the cylinder into two regions such
that the interchange of Lebesgue mass by the map is minimal. Polterovich demonstrated the construction of such a flux
minimising curve for sufficiently large parameter values of the standard map, by connecting together smooth arcs related
to stable and unstable manifolds [35]. Thus, in this particular situation flux-minimising curves can be highly complex. Our
situation is quite different in that we examine a flow as opposed to a map, we do not confine our analysis to cylinders, our
prospective curves connect together two specific points as opposed to being closed curves, and we define our flux in terms
of the flow across the curve of interest. As stated in Theorem 1, our flux-minimising curves are much smoother entities,
which in unsurprising since we consider a flow.

The determination of minimal transport barriers has also been considered from the ergodic-theoretic or probabilistic
point of view, where the basic mathematical tool is the Perron–Frobenius operator (or its generator) for the flow. In this
setting, one typically seeks ‘‘almost-invariant’’ sets [14,17–19]; namely sets with a low probability of trajectories leaving
the set. These almost-invariant sets mitigate transport throughout the full phase space and provide a skeleton around
which faster mixing dynamics occurs. Almost-invariant set analysis has been applied to ocean flows [13,21], where almost-
invariant sets delimit stable structures such as gyres and eddies; to periodically forced flows [38] where almost-invariant
(almost-cyclic) sets describe coherent periodic regions (‘‘ghost rods’’) connectedwith stirring; to astrodynamics [15], where
almost-invariant sets are regions from which asteroid escape is rare; and to molecular dynamics [16,36], where almost-
invariant sets are stable molecular configurations. Related approaches include [9,30], where function values along long
trajectories are used to decompose the phase space into invariant regions.When the underlying dynamics is a flow, the only
possibility for the departure of trajectories from a set is through the boundary of the set. Co-dimension 1 invariantmanifolds
provide impenetrable barriers for trajectories and intuitively may seem likely to form (partial) boundaries of almost-
invariant sets. Invariant manifolds cannot provide full boundaries in transitive flows, (e.g., the steady three-dimensional
Lorenz equations with standard parameters [26]), as transitivity precludes the existence open invariant sets. Nevertheless,
numerical work [20] suggests that the boundaries of almost-invariant sets contain significant portions of ‘‘fundamental’’
invariant manifolds: those associated with fixed points or the lowest period orbits. Thus, our new analytic determination
of curves with minimal absolute flux has the potential to help find a theoretical link between geometric transport barriers
(co-dimension 1 curves in phase space) and almost-invariant sets.

Extremising flux is important in nano/micro-fluidics, where efficient mixing is desirable for improved performance of
micro-fluidic devices which operate in the low Reynolds number regime. In addition to multitudinous numerical and ex-
perimental quantifications of flux, there are a few theoretical tools to help maximise mixing measures [10,11,22,25,29,39],

1 The entry boundary ofΩ is the part of ∂Ω with the vector field f pointing towards the interior ofΩ (we assume that the vector field f can be smoothly
extended to a small open neighbourhood ofΩ); the exit boundary ofΩ is the part of ∂Ω with the vector field f pointing out ofΩ .
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or the flux across given flow separators [5–8]. This article addresses a complementary theoretical issue: determining the
‘‘flow separator’’ across which flux is extremal, as is also the focus in [27,28].

As demonstrated in [40], a flux extremising geometric flow method is also relevant in blood vessel segmentation in 2D
and 3D in angiography data. A solution of such problem is down to finding away to optimallymove a closed curve so that the
inward normals to the curve are everywhere aligned with the direction of a given (steady) vector field as much as possible,
hence maximising the total inward flux.

Studying two-dimensional flows onmanifolds as is done in this article also has applicability for three-dimensional flows
in several situations. Firstly, consider steady Euler flows, for which Arnold [2,3] established integrability, with motion
restricted on two-dimensional manifolds associated with level sets (‘‘Lamb surfaces’’) of the Bernoulli function [23,37].
Secondly, the barotropic assumption in oceanography [33] confines motion to isopycnal (constant density) surfaces; to a
good approximation, flow in the openocean is on slightly deformedparallel sheets. In both these examples, incompressibility
of the fully three-dimensional flow does not automatically imply area-preservation (i.e., κ1 = 0) in the two-dimensional
invariant surfaces, making the framework of the current article additionally relevant. The tiny cross-stream dimensions of
manymicro-fluidic devices provides a third example of a situation in which two-dimensional flow is a good approximation,
in which moreover the concept of maximising fluid mixing is crucially important in improving reaction rates (cf. [12,31]).

An outline of the paper is as follows. In Section 2we consider the variation of instantaneous fluxwhen perturbing a curve
either in, or against, the direction of the flow. Section 3 builds on the results developed in Section 2 to construct necessary and
sufficient conditions for curves to be locally flux minimal or maximum under perturbation. Section 4 considers the special
case in which the weighted compressibility is zero, which includes, for example, incompressible flows. Section 5 discusses
the role of the weight function g , including the degenerate situation where g is a multiple of the invariant density of the
flow, or when it corresponds to a non-equilibrium tracer concentration or vorticity field. Proofs are given in the Appendix.

2. Absolute flux and perturbed curves

We begin by demonstrating some basic responses of flux over a curve C when the curve is perturbed in ways that are
naturally related to the underlying flow.

Definition 9 (Uni-Directional). Let C be a piecewise differentiable curve of non-zero length, parametrisable by r(p) where
p ∈ [0, 1]. Let L1 be the point flux associated with g = 1. Then at time t we say,

• the flow across C is uni-directional if for all p1 and p2 in [0, 1] at which r(p) is differentiable,

L1 (r(p1), t) L1 (r(p2), t) > 0.

• the flow across C is essentially uni-directional if for all p1 and p2 in [0, 1] at which r(p) is differentiable,

L1 (r(p1), t) L1 (r(p2), t) ≥ 0.

While uni-directionality ensures that the flow across the curve is ‘‘in the same direction’’ at each point on the curve,
essential uni-directionality permits the piecewise differentiable function L1 (r(p), t) to be zero at points or on intervals in
p, corresponding to situations in which the curve is tangential to the vector field f.

Definition 10 (Weighted Compressibility Partition). Define

Kg(t) :=

x ∈ Ω : κg(x, t) = 0


K p
g (t) :=


x ∈ Ω : κg(x, t) > 0


K n
g (t) :=


x ∈ Ω : κg(x, t) < 0

 (9)

Clearly, K p
g ∪ K n

g ∪ Kg = Ω , and we begin by considering the flux response of perturbations of curves lying within either
K p
g (t) or K n

g (t). The following definition is needed to define the class of permitted perturbations.

Definition 11 (C-Generated Curves). Let C be a simple piecewise differentiable finite curve segment, across which the flow
is unidirectional at a time instance t . Let C be parametrised by r(p)where 0 ≤ p ≤ 1. Then, the class of C-generated curves
are those curves Cτ given by

Cτ := {y ∈ Ω : y = φ (x, τ (x)) for x ∈ C} , (10)

for continuous and piecewise differentiable functions τ : C → R.

A C-generated curve is thus formed by following the flow of each point on C along its trajectory fibre for some specified
time (which can be different for each point), to obtain a collection of points. Given a curveC ∈ Ω we define neighbourhoods
(called fattening sets) of C by flowing forward and backward in time.
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Definition 12 (Positive and Negative Fattening Sets). Let C be a simple piecewise differentiable finite curve segment with its
two endpoints being on Ia and Ib respectively, and suppose the flow is unidirectional across C at time t . Let T+ > 0 and
T− < 0 be piecewise C1 functions defined on C.
• A positive fattening set ST+ of C is defined to be the region bounded by the curves Ia, Ib,C and the C-generated curve

CT+ = {y = φ(x, T+(x)) ∈ Ω for x ∈ C}, in which ST+ includes the boundaries along Ia, Ib, but not along C and CT+ .
• A negative fattening set ST− of C is defined to be the region bounded by the curves Ia, Ib,C and the C-generated curve

CT− = {y = φ(x, T−(x)) ∈ Ω for x ∈ C}, in which ST− includes the boundaries along Ia, Ib, but not along C and CT− .
We will call a positive or negative fattening set permissible if it is a subset ofΩ .

Lemma 1 (One-Sided Flux Optimisation). Let C be a piecewise C1 curve segment across which the flow is uni-directional at time
t.
1. Let C ∈ K p

g (t).
• All C-generated curves Cτ in a permissible positive fattening set in K p

g (t) have greater absolute flux; that is, F a
g (C, t) <

F a
g (Cτ , t). Thus C is a one-sided flux minimising curve in relation to forward-time deformations of C.

• All C-generated curves Cτ in a permissible negative fattening set in K p
g (t) have lower absolute flux; that is, F a

g (C, t) >
F a
g (Cτ , t). Thus C is a one-sided flux maximising curve in relation to backward-time deformations of C.

2. Let C ∈ K n
g (t).

• All C-generated curves Cτ in a permissible negative fattening set in K n
g (t) have greater absolute flux; that is, F a

g (C, t) <
F a
g (Cτ , t). Thus C is a one-sided flux minimising curve in relation to backward-time deformations of C.

• All C-generated curves Cτ in a permissible positive fattening set in K n
g (t) have lower absolute flux; that is, F a

g (C, t) >
F a
g (Cτ , t). Thus C is a one-sided flux maximising curve in relation to forward-time deformations of C.

Proof. See Appendix A.2. �

The point of Lemma 1 is that it provides sufficient conditions for a curve C (in e.g. the first dot point of the lemma) to
‘‘get worse’’ (have greater flux) when perturbed (generated) by flowing forward in time. For example, if Ω has a boundary
over which flow is ‘‘entering’’Ω (we assume that the vector field can be smoothly extended to a small open neighbourhood
ofΩ and on ∂Ω the vector field points towards the interior ofΩ) and a segment C of this boundary joins Ia, Ib and satisfies
C ∈ K p

g (t), thenC (i.e., part of the boundary ofΩ) has the potential to be a global fluxminimising curve joining Ia, Ib. Similar
considerations hold for boundaries ofΩ where the flow ‘‘exits’’Ω .

We demonstrate the application of Lemma 1 via two straightforward examples in which g is time-independent,
postponing a time-dependent example to the next section.

Example 1 (Horizontal Flow on a Square). Let Ω = [0, 1] × [0, 1] and set f(x, y) = ((x + y − 1)2 + δ, 0), δ > 0. Suppose
a = (ax, 0) and b = (bx, 1) for some ax, bx ∈ [0, 1]. Then Ia = [0, 1] × {0} and Ib = [0, 1] × {1} satisfy Hypothesis 1. Let
g be associated with a uniform equilibrium concentration of a chemical which is passively advected by the flow; set g = β
(a positive constant). We have K p

g = {y > −x + 1} ∩ Ω and K n
g = {y < −x + 1} ∩ Ω for all t . Lemma 1 shows that the

‘‘entry’’ boundary Centry = {0} × [0, 1] is a one-sided (forward time, to the right) flux maximiser and the ‘‘exit’’ boundary
Cexit = {1} × [0, 1] is a one-sided (backward time, to the left) flux maximiser. The flux (mass of chemical crossing per unit
time) across both Centry and Cexit is β (1/3 + δ). �

Example 2 (Duffing). Consider the modified Duffing equation

ẍ − x + x3 − ϵxy = 0,

with ϵ > 0, which can be written as a system as

ẋ = y
ẏ = x − x3 + ϵxy


. (11)

We considerΩ = {(x, y) : x, y ≥ 0}, and let g = 1. There are two fixed points inΩ: a saddle at a = (0, 0) and a source at
(1, 0). For small ϵ, Ia is the segment of unstable manifold beginning at a and ending at a point on the x-axis beyond

√
2, say

at d = (0, d). We choose b = (
√
2, 0)2; Ib is the backward trajectory from (

√
2, 0) to some point c = (c, 0), c > 0. The sets

Ia, Ib satisfy Hypothesis 1, see Fig. 1. By Lemma 1, since K p
g is the open right hand plane, the line segment a to c (the ‘‘entry’’

boundary) is a one-sided flux minimising curve. Similarly, the line joining b to d (the ‘‘exit’’ boundary) is a one-sided flux
maximising curve. For ϵ = 0.1, the fluxes across these two boundaries are respectively c2(c2 − 2)/4 ≈ 0.04983, where
c ≈ 0.32433, and (d2(d2 − 2)− b2(b2 − 2))/4 ≈ 0.06223, where b =

√
2 and d ≈ 1.45518. �

Wehave not yet discussed the situationwhereC ∈ Kg(t), but the intuition fromLemma1 is that under suitable additional
conditions, such C would be candidates for two-sided local absolute flux minimising or maximising curves. In the next
section we develop these additional conditions.

2 If ϵ = 0 the unstable manifold of a passes through b.
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Fig. 1. The sets Ia (in green) and Ib (in red), and the entry and exit boundaries (in black) in Example 2 with ϵ = 0.1. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

3. Local absolute flux optimising curves

In this section, we examine curves which locallyminimise and maximise the absolute flux.

3.1. Local absolute flux minimising curves

We will show that absolute flux minimising curves are associated with the zero weighted compressibility set Kg(t).
Generically, at each instance in time Kg(t) is either a connected curve or a finite union of such connected curves. If the flow
(1) is area-preserving (Hamiltonian) for all times and g = 1, then Kg = Ω which requires special consideration.

Definition 13 (Weighted Compressibility-Increasing Subset). The weighted compressibility-increasing subset K+
g (t) of Kg(t) is

defined by

K+

g (t) :=

x ∈ Kg(t) : f · ∇κg(x, t) > 0


:=

x ∈ Kg : Dfκg(x, t) > 0


. (12)

Hypothesis 2. The sets Ia, Ib, Kg(t) and K+
g (t) are such that

• Kg(t) is one-dimensional,
• K+

g (t) is one-dimensional, and
• There exists a point in Ia ∩ K+

g (t) and a point in Ib ∩ K+
g (t) that can be connected by a piecewise C1-smooth simple curve

segment C+ ⊆ K+
g (t) ⊆ Kg(t) of positive length.

• C+ lies in the interior ofΩ .

We restrict our attention to times t for which Hypothesis 2 is met, and note that the curve C+ depends on t (but this
dependence will be suppressed for notational brevity). The picture associated with Hypothesis 2 is given in Fig. 2. Let
r+(p), 0 ≤ p ≤ 1, be a parametrisation for C+ such that r+(0) is the intersection point of C+ with Ia, and r+(1) is the
intersection point with Ib.

Lemma 2 (Uni-Directional Flux). The flow across C+ is uni-directional at time t.

Proof. See Appendix A.3. �

Definition 14 (Fattening Set). Let T+(x) > 0 and T−(x) < 0 be continuous and piecewise differentiable functions defined on
C+, such that φ (x, T+(x)) ⊆ Ω and φ (x, T−(x)) ⊆ Ω . We define the fattening set ST of C+ to be the union of the associated
positive and negative fattening sets, i.e., the region bounded by the curves Ia and Ib, and the two C+-generated curves

CT+ = {φ (x, T+(x)) : for x ∈ C+} and CT− = {φ (x, T−(x)) : for x ∈ C+}

inwhich ST includes the boundaries along Ia and Ib, but not the boundaries alongCT+ andCT− . The fattening set is permissible
if it is contained inΩ .
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Fig. 2. Intersection pattern needed for flux-minimising result.

Given the strict positivity of T+ and the strict negativity of T−, the fattening set defines an expansion ofC+ in the directions
of the fibres associated with the trajectories passing through C+. Such a fattening set exists since C+ is in the interior ofΩ ,
and thus permissible positive and negative fattening sets exist. Since Lemma 2 guarantees a non-zero uni-directional flow
at all points on C+, a fattening set is the union over x ∈ C+ of open curve segments lying along trajectories of (1) between
φ (x, T−(x)) and φ (x, T+(x)).

Definition 15 (Non-Degenerate Fattening). A fattening set ST of C+ is called non-degenerate if it is permissible and

(a) The flow across any C+-generated curve Cτ in ST is essentially uni-directional, and
(b) Kg(t) ∩ ST = C+, i.e., there are no points in ST except for those on C+ at which κg = 0.

Lemma 3 (Existence of Non-Degenerate Fattening Set). There exists a non-degenerate fattening set of C+, that is, there exist
continuous functions T+(x) > 0 and T−(x) < 0 such that the corresponding fattening set ST of C+ satisfies Definition 15.

Proof. See Appendix A.4. �

Proposition 1 (Flux-Minimising C+-Generated Curve). Let ST be a non-degenerate fattening set of C+, as guaranteed
by Lemma 3. Then, for all C+-generated curves Cτ ≠ C+ in ST , C+ has the smallest absolute flux at time t, i.e.,

F a
g (C+, t) < F a

g (Cτ , t) .

Proof. See Appendix A.5. �

Theorem 2 (Flux-Minimising Curve). Let ST be a non-degenerate fattening set of C+, as guaranteed by Lemma 3. Of all piecewise
differentiable continuous curves which connect a point on Ia to a point on Ib while remaining in ST ,C+ has the smallest absolute
flux at time t, i.e.,

0 < F a
g (C+, t) < F a

g (C, t)

for any piecewise differentiable curve C ≠ C+ in ST which connects Ia to Ib.

Proof. See Appendix A.6. �

The time-dependence t appearing in Theorem 2 is in the form of a parameter representing the weight function’s
t-dependence. The evolution of flux-minimising curves can be determined by identifying how C+ changes with t . This is
examined in detail for certain classes of weight functions which are advected by the flow in Section 5.

Example 3 (Horizontal Flow on a Square (Cont.)).We continue Example 1. One has Kg = K+
g = {y = −x+ 1 : 0 ≤ x, y ≤ 1},

satisfying Hypothesis 2. By Theorem 2, C = Kg is a local flux minimising curve with total flux of βδ. Combining this result
with those of Example 1 we see that the local3 flux maximising curves occur at each vertical boundary of the square domain
Ω (with flux β(1/3 + δ)) and the global flux minimising curve equal Kg (with flux βδ). �

Example 4. Let f(x, y) = (−x − 2y + x2, 2x − y − y2) and set g = 1 to quantify the fluid amount transferred per unit time.
The global features of the flow under this vector field are a (counterclockwise) spiral sink and a saddle; see Fig. 3.

It is straightforward to verify that Kg is the line y = x − 1. One has f · ∇κg = (−x − 2y + x2, 2x − y − y2) · (2,−2) =

−6x − 2y + 2x2 + 2y2. Thus, the zero-level-set of Dfκg = f · ∇κg is a circle centred at (3/2, 1/2) with radius
√
10/2. The

3 These are in fact global flux maximising curves in view of Section 3.2.
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Fig. 3. Trajectories of the flow generated by the vector field f(x, y) = (−x− 2y+ x2, 2x− y− y2) in blue. The straight black line is the zero divergence set
Kg . The set K p

g is the region below the black line and the set K n
g is the region above the black line. The red circle is the zero-level-set of f · ∇κg . The interior

of the disc bounded by the black circle has f · ∇κg < 0 and the complement of the closed disc has f · ∇κg > 0. Thus K+
g is the portion of the black line

outside the red circle and K−
g is the portion of the black line inside the red circle. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

interior of this circle has Dfκg < 0 and Dfκg > 0 on the complement of this closed disc. Thus K+
g is the line y = x − 1

intersected with the complement of the closed disc (x − 3/2)2 + (y − 1/2)2 ≤ 5/2, a nonempty set. By Theorem 2 all
piecewise differentiable local flux minimising curves have to be subsets of these two line segments. Suppose we excise a
small open neighbourhood of the origin from Ω . Now, if a, b do not lie on the same trajectory, then Ia ≠ Ib. Suppose the
trajectories of a and b pass through the lower left part of Fig. 3 and cross the black line in the same direction (left to right),
outside the black circle. If we wish to connect a and b in a flux minimal way, then by Theorem 2 we should follow the
trajectory of a until the black line, then move along the black line to the trajectory of b and then follow this trajectory to
the point b. If these trajectories cross the black line in the same direction (below to above) inside the black circle, then by
Proposition 2 (see Section 3.2) a fluxmaximising connection can be made along the black line segment intersecting the two
trajectories. �

Wenow consider a situation in which g has explicit t-dependence. Rather than artificially prescribing g , wewill consider
a g which is obtained by a natural advection process (more implications for such gs are examined in detail in Section 5).

Example 5 (Time-Dependent Advected Weight Function). Consider the system

ẋ = x − x2

ẏ = y2


, (13)

and suppose 0 ≤ t < 1 to avoid finite-time blow-up issues. Fig. 4 displays the phase portrait of (13). Points in the regions
R = {(x, y) : x > 1 and y > 0} and L = {(x, y) : x < 0 and y < 0} are the interesting regions for a flux extremising problem,
since all other regions can be connected together along trajectories via the two fixed points at (0, 0) and (1, 0). Let g(x, y, t)
be the passively advected field generated from the initial condition g(x, y, 0) = |y| + 1. Then,

g(x, y, t) =

 y
1 + ty

+ 1 (14)

since the y-coordinate evolves independently of x according to y(t) = y(0)/ (1 − y(0)t) and hence y(0) = y(t)/ (1 + ty(t)).
We restrict attention to the region R, in which y > 0, enabling the absolute value in (14) to be removed. Following
Definition 7, we find

κg(x, y, t) =
y2

(1 + ty)2
+ (1 − 2x + 2y)


(1 + t)y + 1

1 + ty


and that the zero set of κg is given by

Kg(t) =


(x, y) : x =

y(t(2y + 1)(ty + y + 2)+ 3(y + 1))+ 1
2(ty + 1)(ty + y + 1)


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Fig. 4. The phase portrait of Example 5.
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Fig. 5. The Kg (t) sets (the almost straight solid curves) at five different times (t = 0, 0.2, 0.4, 0.6, 0.8), along with several trajectories (the dashed curves)
of (13).

at each time t . These curves are indicated at several different times in Fig. 5 (the almost straight solid curves) along with
several trajectories (the dashed curves) of (13). The value of Dfκg on Kg(t) can be computed exactly, and takes the form of
a rational function in y with coefficients which are polynomials in t . This is positive for values of y above a t-dependent
threshold value, and evolves monotonically in t from 0.318254 at t = 0 to 0.332832 at t = 1.4 Thus, if attempting to
connect two points a and b in R as indicated in Fig. 5, one proceeds along the trajectories until intersecting the Kg(t) curve
corresponding to the appropriate time t , and makes the connection along that curve. �

3.2. Local absolute flux maximising curves

Obtaining an absolute fluxmaximising result analogous to Theorem 2 is clearly impossible, since the absolute flux across
a curve can bemade larger by simplymaking the curve longer andmore contorted (in contrast to the signed flux, the absolute
flux has a non-negative contribution at each point on the curve). Nevertheless, a ‘‘localmaximising’’ result, exactly analogous
to Proposition 1, is possible if restricting to a certain class of curves. The compressibility-decreasing subset K−

g (t) of Kg(t) is
defined by

K−

g (t) :=

x ∈ Kg(t) : f · ∇κg(x, t) < 0


=

x ∈ Kg(t) : Dfκg(x, t) < 0


, (15)

and we hypothesise that Kg(t) and K−
g (t) are one-dimensional, and that there exists a point in Ia ∩ K−

g (t) and a point in
Ib ∩K−

g (t)which can be connected by a piecewise C1-smooth simple curve segment C− ⊆ K−
g (t) ⊆ Kg(t) of positive length

4 The value at t = 0 is exactly expressible, but since all other values require numerical evaluation numerical values are given here.
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contained in the interior ofΩ . SupposeC− is parametrised by r−(p), where 0 ≤ p ≤ 1, and r−(0) ∈ Ia and r−(1) ∈ Ib. Define
a non-degenerate fattening of C− analogous to Definition 15, with C+ and r+ being replaced by C− and r− respectively.

Proposition 2 (Absolute Flux-Maximising C−-Generated Curve). Let ST be a non-degenerate fattening set of C−. Then, for all
C−-generated curves Cτ ≠ C− in ST ,C− has the greatest absolute flux at time t, i.e.,

F a
g (C−, t) > F a

g (Cτ , t) .

Proof. See Appendix A.7. �

4. Degenerate situation in absolute flux optimisation

The previous sections outlined the possibility of obtaining curves which optimised the absolute flux in a certain sense:
those curves, in comparison to ‘‘nearby’’ ones, represented a minimum (or maximum) of the flux. However, in a situation
which is natural in fluid mechanics, the optimisation problem is degenerate in that for all curves of a certain class lying in a
region, the absolute flux is identical. Let C0 be a simple curve segment of finite length lying in the interior of Ω , such that
the flow across C0 is uni-directional.

Hypothesis 3 (Weighted Incompressible Flow). The weighted compressibility κg = 0 onΩ at time t .

Theorem 3 (Absolute Flux Degeneracy Under Weighted Incompressibility). There exists a fattening set ST of C0, such that the
absolute flux across all C0-generated curves lying in ST is identical.

Proof. This is a straightforward result obtained by following the proof structure of Proposition 1 and obtaining a zero from
the divergence theorem (Lemma 5). �

For the standard flux (g = 1) in incompressible flows (κ1 = 0), this is a stationarity result in two-dimensional area-
preserving flows, and is immediate from an easy application of the divergence theorem. MacKay’s result of stationarity of
algebraic (signed) flux in three-dimensional volume-preserving flows [27] is closely related.

5. Weighted flux

Our previous results indicate that for a weight function g(x, t), at each time instant, the location of κg = 0 (the set Kg(t))
is important in determining flux extremising curves. Knowing the temporal evolution of this set is therefore relevant. It is
possible to characterise this evolution for some important choices of the weight g(x, t): that resulting from the evolution
by the flow of an initial distribution g(x, 0). There are two main ways this can be done:
1. Consider g(x, 0) as a density: If g is a density, onemay use g to naturally model non-equilibrium concentration of passive

tracers or chemicals in the domainΩ , and to calculate curves over which the tracer or chemical flux is minimal/maximal.
2. Consider g(x, 0) as a conserved function: In this case we think of g as a quantity which is advected by the flow and each

particle retains its g value over time. For example, if g is the vorticity or potential vorticity of an unsteady flow, it is
conserved by fluid particles (i.e., advected by the flow), in which case we are also able to make statements regarding the
evolution of zero-level sets of κg .

5.1. The weight g is a density

Suppose that g is a density, which also includes the possibility of g being a concentration of a chemical in the flow. It can
be shown that κg = ∇ · (fg) = 0 if and only if g is an invariant density of the flow; see for example, Theorem 7.8.2 [24]. This
result is known as Liouville’s theorem.

This choice of g (g is preserved by the flow) is particularly interesting from a dynamical point of view. Preservation of the
density g by the flow can be written in terms of the associated probability measure defined by µg(B) =


B g dm2, where B is

a (Borel) measurable subset ofΩ . Then g = dµg/dm2, the Radon–Nikodym derivative of µg . The probability measure µg is
said to be flow-invariant or an invariant probability measure ifµg = µg ◦φ(·,−t) for all t ∈ R; that is,µg is equal to its push-
forward under the flow for all t .We say that the density g is preserved by the flow or an invariant density ifµg is flow-invariant
or an invariant probability measure. If µg is additionally ergodic,5 by Birkhoff’s ergodic theorem (see e.g. Walters [41]6) one
has for h ∈ L1(Ω, µg)

lim
t→∞

1
t

 t

0
h(φ(x, τ ))dτ =


Ω

h(x) dµg(x) for µg almost-all x. (16)

5 The probability measure µg is ergodic if the only invariant sets have full or trivial µg -measure; i.e., if B ⊂ Ω satisfies φ(B,−t) = B for all t ∈ R, then
µg (B) = 0 or 1.
6 The discrete time version of the Birkhoff theorem stated in [41] is easily converted to a continuous time version by applying the discrete time version

to φ(x, 1), the time-1 flow map, and the function h̃(x) :=
 1
0 h(φ(x, t)) dt .
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In particular, if B ⊂ Ω , setting h = χB one has

lim
t→∞

1
t

 t

0
χB(φ(x, τ ))dτ =


Ω

χB(x) dµg(x) = µg(B) for µg almost-all x. (17)

Eq. (17) states that the frequency with which trajectories visit a set B ⊂ Ω is given by the measure of B, µg(B). Thus, the
choice of weighting g that leads to the degenerate flux optimisation setting is the weighting given by the distribution of
long trajectories of the flow. In the specific case of area-preserving flow, this distribution is uniform and g ≡ 1.

The interesting situation is when g is not preserved by the flow, as occurs when the concentration represented by g is
not in equilibrium with the flow. By [24, pp. 211–213] and the definition of κg in (7), the density g is advected according to

∂g
∂t

= −∇ · (fg) (18)

(the ‘‘continuity equation’’). Observe from (18) that κg = −∂g/∂t , which gives an alternative representation of the flux
extremising curves which are associated with κg = 0. This evolution of g also allows one to determine the time-evolution
of the zero-level-sets of κg , within which local flux minimising curves must lie.

Theorem 4 (Evolution for a Density). Let Ω be compact, g(x, 0) be a C2 initial density with compact support and let g(x, t)
represent the push-forward of g(x, 0) after a time t ≥ 0 under the flow φ(·, t) generated by (1). Then κg(x, t) evolves as a
push-forward of a (scaled) signed density (i.e. it satisfies ∂κg/∂t = −∇ · (κg f)) and the zero-level-sets of κg evolve by advection
under φ; that is,

{x ∈ Ω : κg(x, t) = 0} = φ({x ∈ Ω : κg(x, 0) = 0}, t).

Proof. Using (18),

∂κg

∂t
=
∂(∇ · (fg))

∂t
= ∇ ·


∂(fg)
∂t


= ∇ ·


∂g
∂t

f


= −∇ · (κg f). (19)

The Perron–Frobenius operator pushes forward densities with the flow map φ and is defined by

P th(x) = h ◦ φ(x,−t)/| detDφ(φ(x,−t), t)|, h ∈ L1(Ω). (20)

The operators P t form a C0 semigroup of bounded linear operators on L1, and by Theorem 2.6 [32] are the only such
semigroup with generator (or infinitesimal operator) −∇ · (fh) (cf. [24]). Therefore, the function κg(x, t) := P tκg(x, 0)
is the unique bounded C0 semigroup solution of (19).

Now

{x ∈ Ω : κg(x, t) = 0} = {x ∈ Ω : P tκg(x, 0) = 0}
= {x ∈ Ω : κg(φ(x,−t), 0) = 0}
= {φ(x, t) ∈ Ω : κg(x, 0) = 0}
= φ({x ∈ Ω : κg(x, 0) = 0}, t),

where the second equality follows from (20) since 0 < | detDφ| < ∞ andΩ is compact. �

If g(x, 0) is an invariant density, then ∂g/∂t = −κg = 0 and so the field κg is unchanging (and identically equal to zero).

Theorem 5. With the setting and notation of Theorem 4, one has K+
g (t) = φ(K+

g (0), t) and K−
g (t) = φ(K−

g (0), t) for t ≥ 0.
Thus, locally flux minimising curves are advected by the flow φ.

Proof. First, we calculate:

∂(Dfκg)

∂t
=
∂(f · ∇(∇ · (fg)))

∂t
= f · ∇(∇ · (f∂g/∂t))
= −f · ∇(∇ · (fκg)) (cf. proof of Theorem 4)
= −f · ∇((∇ · f)κg + f · ∇κg)

= −f · (∇(∇ · f)κg + (∇ · f)∇κg)− f · ∇(f · ∇κg)

= −f · ∇(∇ · f)κg − (∇ · f)(f · ∇κg)− f · ∇(f · ∇κg)

= −f · ∇(∇ · f)κg − ∇ ·

(f · ∇κg)f


= −f · ∇(∇ · f)κg − ∇ · (fDfκg)

= −(Dfκ1)κg − ∇ ·

fDfκg


.
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As argued in the proof of Theorem 4, if ∂(Dfκg)/∂t = −∇ · (fDfκg) then the function Dfκg evolves as a signed density under
the flow. In particular, over a finite flow time, as in the proof of 4, zero-level-sets of Dfκg would be advected by φ, and
furthermore, the positive and negative supports of Dfκg would also be advected by φ. There is, however, an additional term
−(Dfκ1)κg , but for x ∈ Kg(t), κg(x, t) = 0 and this term vanishes. Thus, on Kg(t), the positive and negative supports of Dfκg
(namely K+

g (t) and K−
g (t)) are advected by φ. Repeating the argument from the proof of Theorem 4, one therefore has

{x ∈ K+

g (t)} = {x ∈ Ω : κg(x, t) = 0,Dfκg(x, t) > 0}

= {x ∈ Ω : P tκg(x, 0) = 0,P t(Dfκg)(x, 0) > 0} (21)

= {x ∈ Ω : κg(φ(x,−t), 0) = 0,Dfκg(φ(x,−t), 0) > 0} (22)
= {φ(x, t) ∈ Ω : κg(x, 0) = 0,Dfκg(x, 0) > 0}
= φ({x ∈ Ω : κg(x, 0) = 0,Dfκg(x, 0) > 0}, t)

= φ(K+

g (0), t),

where (21) follows by Theorem 4 and the arguments above, and (22) follows from (20), the fact that 0 < | detDφ| < ∞,
and compactness ofΩ . The result for K−

g (t) follows identically. �

Example 6 (Example 4 Cont. . . ). We demonstrate Theorems 4 and 5 by calculating the location of flux minimal curves in
two ways. Firstly, by beginning with a uniform weight g ≡ 1 at time 0, (as in Example 4) and then numerically estimating
g(·, t) for t = 0.05. We consider g as a density and numerically estimate g(·, t) by discretising a domain [−6, 6] × [−6, 6]
into 360 × 360 square grid cells and integrating forward 100 uniformly distributed test points within each grid cell. The
images of these test points are then used to create a histogram at time t = 0.05 on the grid cells restricted to the square
[−4, 4]×[−4, 4] (we use the larger initial domain [−6, 6]×[−6, 6] to ensure it contains the preimage of [−4, 4]×[−4, 4]).
We then apply an interpolation to smooth the resulting histogram (this removes sampling errors due to a finite number of
test points), and then numerically compute κg and Dfκg by central difference methods. The resulting estimates of the zero-
level-sets of κg and Dfκg at time t = 0.05 are shown as zero-level contours in Figs. 6 and 7. Secondly (and with considerably
less effort), utilising Theorems 4 and 5 we numerically advect the zero-level-sets of κg and Dfκg determined in Example 4
at t = 0. These are shown as curves of small circles in Figs. 6 and 7. �

5.2. The weight g is a conserved function

Now suppose g is a function which is conserved by fluid particles under the flow (1). This implies that g ’s material
derivative is zero, that is

0 =
D
Dt

g :=
∂g
∂t

+ f · ∇g =
∂g
∂t

+ ∇ · (fg)− g (∇ · f) =
∂g
∂t

+ κg − g κ1 (23)

An equivalent viewpoint is that the function g is advected forward t ≥ 0 time units by U ′
tg(x) := g ◦ φ(x,−t). Following

[24, pp. 210–211], {U ′
t}t≥0 is a continuous semigroup on a subspace of C1, compactly supported, L∞ functions. Taking a time

derivative of U ′
t as t → 0, one obtains the infinitesimal operator K ′g := −f · ∇g that generates the semigroup {U ′

t}t≥0.
One has g(x, t) = U ′

tg(x) satisfying ∂g/∂t = −f · ∇g (as in (23)). The operator Ut := g ◦ φ(x, t) is commonly known as
the Koopman operator, and for t ≥ 0 is a pull-back; thus we consider U ′

t , which is merely the ‘‘backward time’’ Koopman
operator, and amounts to a push-forward for t ≥ 0.

For this situation, the important sets Kg(t) and K±
g (t) do not evolve cleanly with the flow as in Section 5.1. For purposes

of evolution, the term that plays the role that κg took in Section 5.1 is

κg − gκ1 = Dfg = −
∂g
∂t

(24)

in which the equalities are because of the definition of κg in (7) and (23) respectively. We define

K̃g(t) :=

x ∈ Ω : κg(x, t)− g(x, t)κ1(x, t) = 0


along with its subsets

K̃±

g (t) :=


x ∈ K̃g(t) : Df


κg(x, t)− g(x, t)κ1(x, t)


≷ 0


.

Theorem 6 (Evolution for An Advected Function). If g is advected by the flow, the quantity κg −gκ1 is conserved by fluid particles.

Thus, K̃g(t) = φ

K̃g(0), t


. Moreover, Df


κg − gκ1


is conserved by fluid particles, and hence K̃+

g (t) = φ

K̃+
g (0), t


and

K̃−
g (t) = φ


K̃−
g (0), t


.
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Fig. 6. (Contours of κg (0.05)): The set {κg (0) = 0} (the line y = x−1) as calculated in Example 4 is shown as a solid black line. The set {Dfκg (0) = 0} from
Example 4 is the red circle. The contours of κg (0.05) are as indicated. Note that the zero contour is perfectly covered by small circles; the curve indicated
by the small circles is the result of directly advecting the solid black line from time t = 0 to t = 0.05 and demonstrates the conclusion of Theorem 4. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (Contours of Dfκg (0.05)): The set {κg (0) = 0} (the line y = x − 1) as calculated in Example 4 is shown as a solid black line. The set {Dfκg (0) = 0}
from Example 4 is the red circle. The contours ofDfκg (0.05) are as indicated. The curve indicated by the small green circles is the result of directly advecting
the red circle from time t = 0 to t = 0.05. The graphical interpretation of Theorem 5 is that the interior (resp. exterior) of the closed zero-level contour
of this figure intersected with the zero-level contour in Fig. 6 coincides with the interior (resp. exterior) of the closed curve of green circles in this figure
intersected with the curve of circles in Fig. 6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Proof. Note that

∂κg

∂t
=
∂

∂t
[∇ · (gf)] = ∇ ·


f
∂g
∂t


= ∇ ·


f

gκ1 − κg


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by using (23). Thus

∂κg

∂t
= (∇ · f) gκ1 + f · ∇ (gκ1)− ∇ ·


fκg


= gκ2
1 + f · ∇ (gκ1)− (∇ · f) κg − f ·


∇κg


= κ1


gκ1 − κg


+ f · ∇ (gκ1)− f · ∇κg ,

and hence
D
Dt


κg


=
∂κg

∂t
+ f · ∇κg = κ1


gκ1 − κg


+ f · ∇ (gκ1)

= κ1

gκ1 − κg


+

D
Dt
(gκ1)−

∂

∂t
(gκ1)

= κ1

gκ1 − κg


+

D
Dt
(gκ1)− κ1

∂g
∂t

=
D
Dt
(gκ1)

since κ1 is time-independent, and by utilising (23) in the final step. Thus, D/Dt

κg − gκ1


= 0, that is, the quantity κg −gκ1

is conserved by fluid particles. This implies that the zero-level sets of this quantity are advected by the flow φ. Now we
compute

D
Dt


Df

κg − gκ1


=

D
Dt


f · ∇


κg − gκ1


=

∂

∂t


f · ∇


κg − gκ1


+ f · ∇


f · ∇


κg − gκ1


= f · ∇


∂

∂t


κg − gκ1


+ f · ∇


f · ∇


κg − gκ1


= Df


∂

∂t


κg − gκ1


+ f · ∇


κg − gκ1


= Df


D
Dt


κg − gκ1


= 0.

Since this implies that Df

κg − gκ1


is conserved by the flow, parts of the zero level set of κg − gκ1 at time zero at which Df

were positive would continue to have the same positive value once evolved by the flow φ, and a similar result holds for its
subsets where Df were negative. �

We remark that the level sets which evolve with the flow are here associated with κg − gκ1, which is equal to −∂g/∂t .
In the case in which g were a density as addressed in Section 5.1, the quantity of interest was κg , which was also equal to
−∂g/∂t . Hence, in both of the advected situations the zero-level sets of ∂g/∂t are advected by the flow, and also preserve
the quantity Df (∂g/∂t)which is associated with the flow directionality across the curve.

Example 7 (Time-Dependent Advected g (Cont.)). We continue Example 5, once again considering the region R. Here,
κ1(x, y) = 1− 2x+ 2y, and straightforward algebra leads to κg − gκ1 = y2/ (1 + ty)2. This quantity is obviously conserved
since it can be written as (g(x, y, t)− 1)2, and g is conserved by the flow. Moreover, Df


κg − gκ1


= 2y3/ (1 + ty)3 =

2 (g(x, y, t)− 1)3, which is therefore also conserved. This verifies Theorem 6. An alternative approach would be to compute
∂g/∂t = −y2/ (1 + ty)2 in R, from which identical conclusions could be drawn. Note that in this case neither κg nor Dfκg is
conserved by the flow, and thus flux extremising curves are not carried along with the flow. �

While Theorem 6 tells us that flux extremising curves are not advected by the flow in general, in one physically relevant
situation, they are:

Corollary 1. Suppose the flow (1) is incompressible; i.e., κ1 = 0. If g is advected by the flow, then κg and Dfκg are both conserved
by fluid particles. Thus, Kg(t) = φ


Kg(0), t


and K±

g (t) = φ

K±
g (0), t


.

Proof. If κ1 = 0, then the definitions for K̃g and K̃±
g collapse to the definitions for Kg and K±

g respectively, and the corollary
follows. �

Example 8 (Vorticity Flux). Consider two-dimensional inviscid, incompressible fluid motion. In this case, there exists a
streamfunction ψ(x, y) such that the velocity field is f =


ψy,−ψx


. Let g = ∇

2ψ , which represents the vorticity (curl)



S. Balasuriya et al. / J. Math. Anal. Appl. 409 (2014) 119–139 133

of the velocity field f. Thus, g is an active scalar in this instance, and the relevant flux here is the vorticity flux, measuring
the amount of vorticity (modulated by the fluid area) transferred across a curve in unit time. The vorticity equation [1, e.g.]
guarantees that g is conserved along flow trajectories, and hence from Corollary 1 the level sets of

κg = ψy

∇

2ψ

x − ψx


∇

2ψ

y = Df


∇

2ψ


are advected by the flow. Here, κg has several possible interpretations: it is the flow derivative of the vorticity, and also the
Poisson bracket between the vorticity ∇

2ψ and the streamfunctionψ . Thus, zero-level sets of κg are carried along with the
flow.Moreover, the subsets of this zero-level set at time zero at whichDfκg > 0 preserve the same value forDfκg as the flow
evolves, and thus locally flux-minimising curves are advected by the flow. Since κ1 = 0 under incompressibility, (23) implies
that κg is zero throughout the flow domain, and thus there is degeneracy of vorticity flux-extremising curves by Theorem 3.
This is of course closely related to the classical Stokes’ theorem representation of Kelvin’s circulation theorem [1, e.g.]. �

Example 9 (Rossby Wave and Potential Vorticity Flux). An approximation used for oceanic flows is that of the barotropic
β-plane [33], in which incompressible inviscid flow with streamfunction ψ(x, y, t) generates a potential vorticity field
q(x, y, t) = ∇

2ψ + βy (where β is a constant related to the latitude near which the motion occurs) which is conserved
by the flow. That is, its material derivative Dq/Dt = ∂q/∂t + f · ∇q = 0. An exact solution to this nonlinear PDE in ψ is a
Rossby wave solution [34] ψ(x, y, t) = γ sin [k (x − ct)] sin [ly] for wavenumbers (k, l) and arbitrary constant γ , in which
the travelling wavespeed c satisfies c(k2 + l2) = −β . For γ k(k2 + l2) > β , this forms an idealised model for eastward
flowing meandering oceanic jets such as the Gulf Stream. Setting (X, Y ) = (x− ct, y) to be coordinates in a frame travelling
with the wave enables the removal of the explicit time-dependence, and the flow to be written in terms of the moving
streamfunction Ψ (X, Y ) = ψ(x, y) + cy such that its velocity field is F(X, Y ) = (−ΨY ,ΨX ). The potential vorticity in the
moving frame, Q (X, Y ) can be seen to satisfy −(k2 + l2)Ψ . In this moving frame,

κg = ΨYQX − ΨXQY = −

k2 + l2


[ΨYΨX − ΨXΨY ] = 0.

(Alternatively, since g is time-independent in the moving frame, −∂g/∂t = 0.) Theorem 1 therefore tells us that in the
moving frame, there is degeneracy of potential vorticity flux extremising curves. �

6. Concluding remarks

In this article, we have addressed the issue of determining absolute flux optimising curves connecting points on two
trajectories in two-dimensional autonomous flows in which the flux definition includes for the possibility of a temporally
and spatially varying weight. We considered the possibility of a bounded or unbounded domain, and were able to quantify
locally and globally flux optimising curves at each instance in time. The quantitywhich governed our ability to identify these
curves was the divergence of the vector field which is formed by taking the product of the weight and the flow velocity. The
inclusion of a weight function permitted us to account for naturally advected quantities such as a density (e.g., a chemical
concentration) or a materially-conserved quantity (e.g., a vorticity field); two special situations which were addressed in
more detail in Section 5, in which we showed that in these cases the optimising curves of interest are usually advected by
the flow.
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Appendix. Proofs

A.1. Preliminary lemmas

We state some elementary lemmas which are useful in the subsequent proofs. The proofs will be skipped.

Lemma 4 (Forward–Backwards Flux). Calculating the signed flux along a curvewith the direction along the curve and the normal
direction both reversed, results in negative the original flux.

Lemma 5 (Divergence Theorem). Let C be a simple, closed, piecewise C1 curve lying inΩ , parametrised by r(p)with p increasing
in the clockwise direction. If S is the area enclosed by C and if m2 is two-dimensional Lebesgue measure, then

F s
g(C) =


S
κg dm2.
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Fig. 8. Figure for Lemma 1 in which C ∈ K p and Cτ is in a positive fattening set.

A.2. Proof of Lemma 1 (one-sided flux optimisation)

Suppose thatC is parametrised by the piecewise C1 function r(p)where p ∈ [0, 1]. Consider first the case whereC ∈ K p
g ,

andwhereCτ lies in a permissible positive fattening set ofC. Thus,Cτ is associatedwith a piecewise C1 function τ > 0 onC,
which shall be (with an abuse of notation) considered a function on p ∈ [0, 1]. Since in a permissible fattening set of C, each
point of Cτ has a flow in the same direction as the corresponding point on C, and thus the flow on Cτ is also unidirectional.
Moreover, Cτ is parametrised by s(p) = φ (r(p), τ (p)). Let R be the region bounded by C,Cτ and the trajectory segments
{φ (r(0), t) : t ∈ [0, τ (0)]} and {φ (r(1), t) : t ∈ [0, τ (1)]} emanating from the ends of C. See Fig. 8. Now, since the point
flux across any point along the top and bottom trajectory boundaries is zero, the signed flux around the anti-clockwise
closed loop around R in Fig. 8 is given by F s

g (C, t) − F s
g (Cτ , t), in which we adopt the convention that we proceed along

each curve in the positive direction of the parameter p. However, for the situation pictured in Fig. 8, F s
g = F a

g for both C and
Cτ , since the flux is in the leftwards direction in each case when traversing each curve in the direction of increasing p. Thus,
the signed flux around the closed loop enclosing R is F a

g (C, t)− F a
g (Cτ , t). Applying the divergence theorem (Lemma 5) and

realising that the outward pointing normal is in the negative direction of the point flux,

F a
g (C, t)− F a

g (Cτ , t) = −


R
κg dm2 < 0

since κg > 0 in K p
g . Thus, F a

g (C, t) < F a
g (Cτ , t), as needed. This same result remains valid if the parametrisation on C is

reversed (with the signed fluxes acquiring negative signs from those in Fig. 8), since the absolute flux does not change when
traversing a curve in the reverse direction.

Proofs of the other three statements in Lemma 1 are exactly analogous, and will be skipped. �

A.3. Proof of Lemma 2 (uni-directional flux)

There can be no fixed points on C+ by the definition of K+
g (12), since f · ∇κg > 0 on C+, it must be true that f ≠ 0

and ∇κg ≠ 0 on C+. Moreover, ∇κg is normal to C+ since C+ ⊂ Kg . Let r+(p) parametrise C+. Now from Definition 4,
L1 (r+(p)) = f (r+(p)) · Jr′

+
(p). Consider a point on C+ at which r′

+
(p) is defined. It is not clear whether L1 > 0 or L1 < 0

here, because of the ambiguity in determining whether Jr′
+
(p) is in the direction of ∇κg or −∇κg .

Suppose first that the flow direction along Ia in Fig. 2 near the point at which Ia intersects C+ is from left to right; that
is, that L1 (r+(0)) < 0. Then the flow across C+ near to r+(0)must also be left to right by the rectification theorem (see for
example [4]), and by continuity L1 (r+(p)) continues to be negative for small p. Now, by definition (12), it is necessary that
∇κg also point to the right on C+. As one progresses upwards along C+,∇κg must continue to point from the left to the
right, since C+ is part of a level set of κg , and such a reversal is only possible if going across a point at which∇κg = 0, which
cannot lie on C+ by the definition (12). Thus, ∇κg will continue to point from left to right as one progresses upwards along
C+ in Fig. 2. But since C+ lies on K+

g , this ensures that f must also point from left to right on C+. This is true all the way up
to r+(1), and thus the flow along the integral set Ib is also from left to right.

The above argument works similarly if the flow along Ia is from right to left, that is, if L1 (r+(p)) > 0. In this case, the
flow across C+,∇κg on C+, and the flow along Ib must all point from right to left as well. Thus, the flow across C+ is uni-
directional, i.e., the point flux is sign definite. �

A.4. Proof of Lemma 3 (existence of non-degenerate fattening set)

Condition (a) of the non-degeneracy definition (that the flow across Cτ is in the same direction as that across C+) is true
almost by definition. The rectification theorem [4] ensures the presence of a ‘‘flow-box’’ in the vicinity of each point on C+,
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Fig. 9. Flux-minimising for C+-generated curves.

in which the flow is diffeomorphic to that of the two-dimensional system ẋ = 1, ẏ = 0. By following the flow from a point
r+(p) on C+ along a trajectory fibre, one arrives at a point s(p) at which the flow continues to be in the same direction along
the trajectory fibre. Since Cτ is formed by collecting together all such culmination points, the flow across Cτ (at any point)
must be in the same sense as that across C+. The only potential violation to this (keeping in mind that τ is a piecewise
differentiable function) occurs if the culminating curve Cτ in the diffeomorphic system has a finite number of ‘‘cusp points’’
or ‘‘inflection points’’ as indicated in Fig. 11. The corresponding values of p correspond respectively to s′(p) being undefined
or momentarily parallel to f (s(p)) — exactly the situations for which ‘‘essential uni-directionality’’ weakens the definition
for ‘‘uni-directionality’’ (Definition 9). So one can choose a tubular region around C+ based on the largest size of the flow
box associated with the rectification theorem, and define the corresponding functions T+ and T− accordingly.

Condition (b) is easily achievable because of the C1-smoothness of κ . Since f · ∇κg > 0 for any point r+(p) ∈ C+, the
directional derivative

dκg
dℓ


ℓ=0

=
f (r+(p))
|f (r+(p))|

· ∇κg (r+(p)) > 0

in which ℓ is an arclength parametrisation of the trajectory fibre through r+(p) in the direction of the flow, chosen so that
ℓ = 0 at r+(p). Since κg = 0 when ℓ = 0 and but has a strictly positive derivative at this point, there exists ϵp > 0 such
that for ℓ ∈


−ϵp, ϵp


, κ(ℓ) is zero only at ℓ = 0. Using this argument for each p, one can define a fattening of C+ such that

within this fattening, κ is only zero on C+. Now, choose the intersection of the fattening chosen for condition (a) with the
fattening chosen for condition (b) to obtain the needed non-degenerate fattening. �

A.5. Proof of Proposition 1 (flux minimising C+-generated curve)

Choose a non-degenerate fattening set ST , and letCτ be aC+-generated curve lying in ST , such thatCτ ≠ C+. Such a curve
is shown in Fig. 9. Note that in this configuration, the set K p

g must lie to the right of C+, since by the definition of K+
g (the

weighted compressibility increasing subset of the weighted incompressible set Kg ), the flow must be in the same direction
as ∇κg . Let xi ∈ C+, i = 1, 2, 3, . . . ,m be the finite number of zeroes of the function τ based on which Cτ was generated
from C+ (if there are no zeroes, this step is unnecessary; Fig. 9 shows a situation in which m = 2). Define x0 = r+(0) and
xm+1 = r+(1), such that the sequence {xi}m+1

i=0 is an ordered set of points along C+. For i = 0, 1, 2, . . . ,m, let C i
+

⊂ C+

be the curve segment with endpoints xi and xi+1, and let C i
τ be the part of Cτ obtained by applying τ to C i

+
. Since C i

τ lies
exclusively on one side of C+, it will be either in K p

g or K n
g . Consider the problem of determining a minimum absolute flux

curve among C i
+
-generated curves. Now, if C i

τ ∈ K p
g , then C i

τ is in a positive fattening set of C i
+
, whereas if C i

τ ∈ K n
g , then

C i
τ is in a negative fattening set of C i

+
. In either case, by Lemma 1, a curve of smaller absolute flux than C i

τ can be found
by deforming C i

τ closer and closer towards C i
+
. Thus, among all C i

+
-generated curves in ST ,C i

+
is the one with the smallest

absolute flux. By applying this argument to each of the curve segments, C+ must be the C+-generated curve lying in ST with
strictly the smallest absolute flux. �

A.6. Proof of Theorem 2 (flux minimising curve)

It has already been established (Proposition 1) that of all C+-generated curves lying in a non-degenerate fattening
set ST ,C+ has strictly the smallest absolute flux. This will be extended to all continuous, piecewise differentiable curves
connecting Ia and Ib, by first extending to an intermediate class of curves.
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x1

x2

Fig. 10. A piecewise C+-generated curve (heavy curve), corresponding to τ having two jump discontinuities.

Definition 16 (Piecewise C+-Generated Curves). Let τ be in the class of piecewise differentiable functions on C+, which are
continuous except possibly at a finite number n of points x1, x2, . . . , xn ordered along C+ in the direction of increasing p.
(The case n = 0 corresponds to the situation in which there are no such points of jump discontinuity, in which case τ is
continuous.) At each xi, τ has jump discontinuities, i.e.,

τ iL := lim
x→x−

i

τ (x) and τ iR := lim
x→x+

i

τ (x)

are both defined for i = 1, 2, . . . , nwhen the limit is taken along C+. Define

Dτ := {y ∈ Ω : y = φ (x, τ (x)) for x ∈ C+ \ {x1, x2, . . . , xn}} ,

which forms a finite number of disconnected curve segments, and

E i
τ :=


φ (xi, t) : t ∈


τ iL, τ

i
R


or t ∈


τ iR, τ

i
L


,

with the appropriate interval for t being chosen depending onwhether τ iL < τ iR or τ
i
L > τ iR respectively. The class of piecewise

C+-generated curves are those curves given by

Cp
τ := Dτ


n

i=1

E i
τ


.

Essentially, piecewiseC+-generated curves are generated as follows. The curveC+ is broken into a finite number of curve
segments, and the function τ is continuous on each such segment, which maps to a continuous curve segment within each
region in which τ is continuous. These segments are then connected together along the trajectory fibres using the curve
segments E i

τ , generating a curve Cp
τ which is continuous and piecewise smooth. Fig. 10 is an example of such a piecewise

C+-generated curve, associatedwith a function τ having jump discontinuities at x1 and x2. The sets E1
τ and E2

τ in this case are
those parts of the heavy curve going along the dotted trajectory fibres passing through these two points. It is obvious that
piecewise C+-generated curves have essentially uni-directional flow, since the flux is uni-directional in all C1-segments
while it is zero along the parts lying along trajectories, with the potential of being undefined at points corresponding to
cusps or endpoints in the τi.

Lemma 6 (Flux-Minimising Piecewise C+-Generated Curve). Let ST be a non-degenerate fattening set of C+, as guaranteed
by Lemma 3. Then, for all piecewise C+-generated curves Cp

τ ≠ C+ in ST , C+ has the smallest absolute flux, i.e.,

F a
g (C+) < F a

g


Cp
τ


.

Proof. Let Cp
τ be a piecewise C+-generated curve lying in ST . Suppose the points of discontinuity of the piecewise differen-

tiable function τ on C+ based on which Cp
τ is generated has points of jump discontinuity xi, i = 1, 2, . . . , n ordered along

C+. Now, we partition Cp
τ into curve segments demarcated by these values (exactly as in the proof of Proposition 1 given

in Appendix A.5), and argue (exactly as we did there) that in each segment the corresponding part of C+ is an absolute flux
minimiser. The details will be omitted for brevity. �

Now, suppose C is an arbitrary piecewise differentiable, continuous curve lying in ST which connects a point on Ia to a
point on Ib. For each p ∈ [0, 1], consider the trajectory fibre φ (r+(p), t) passing through r+(p). Now, C must ‘‘cross’’ this
at least at one point, since C must proceed from Ia to Ib in a continuous fashion. When using the word ‘‘cross’’ here, it is
permitted for C to continue along the trajectory for a while, before moving on to trajectories corresponding to different p
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Fig. 11. Points of compromised uni-directionality in a curve C due to Lg being zero at a point (an ‘‘inflection point’’), zero in an interval (when following
a trajectory) or undefined (a cusp); trajectories are indicated with dotted curves.

values. IfC crosses all such fibres exactly once, thenC is piecewiseC+-generated, and no newwork is needed. The difficulty
arises if C crosses a fibre more than once, in other words, if C reverses its direction in relation to the trajectory fibres at a
point, and then has to cross that trajectory fibre later on in the opposite direction. This can be prohibited by insisting on the
flow across C being essentially uni-directional, as in Definition 9, and is similar to the idea of ‘‘sneaky returns’’ defined by
MacKay [27].

Lemma 7 (Essentially Uni-directional and PiecewiseC+-Generated Curves). Let C be a piecewise differentiable continuous curve
segment in ST , parametrised by s(q) for q ∈ [0, 1] such that s(0) ∈ Ia and s(1) ∈ Ib. Then, the flow across C is essentially uni-
directional if and only if C is piecewise C+-generated.

Proof. The backwards direction of this lemma will be handled first. Points on a C+-generated curve are either obtained by
following the flow from C+ (in which case the point flux is in the same direction as that of C+), or by points which follow a
trajectory segment (in which case the point flux is zero). It is thus never possible to have two points which have the opposite
sign of point flux.

Now suppose the flow acrossC is essentially uni-directional. Consider the function Lg (s(q)). This is only undefinedwhen
s(q) fails to be differentiable, so this is a piecewise C1 function, which takes the same sign (or zero) at all points at which it
is defined. Define the sets

Qs :=

(q1, q2) : Lg (s(q)) is sign definite for q ∈ (q1, q2)


,

Q0 :=

[q3, q4] : Lg (s(q)) = 0 or is undefined for q ∈ [q3, q4]


,

in which q1 < q2 and q3 ≤ q4. Together, Qs and Q0 form alternating intervals which span [0, 1]. Each open interval in
Qs can be mapped to C+ by following the flow. Closed intervals in Q0 corresponding to an isolated point are those at
which either there is an ‘‘inflection point’’ (when the point flux is momentarily zero), or when there is a cusp (at which
the flux is undefined). Closed intervals of finite length in which Lg is zero correspond to situations in which C is following
a trajectory. See Fig. 11 for illustrations on these three situation of compromised uni-directionality, corresponding to Lg
equalling zero at a point, in an interval, or being undefined at a point. Thus, each interval in Q0 can be mapped to one point
in C+ by following the corresponding trajectory. This defines a mapping between C and C+ which follows the piecewise
C+-generated definition. �

Now consider a general piecewise differentiable, continuous curve C which connects Ia to Ib while remaining in ST . This
is the general situation in Theorem 2. Suppose C is not piecewise C+-generated (note that this includes non-simple curves,
which will automatically be dealt with by the process to be described). A simple example of such a curve is shown by the
heavy curve C in Fig. 12. Suppose C is parametrised by s(p) in which s(0) ∈ Ia and s(1) ∈ Ib. Since C is not C+-generated,
the flow across it is not essentially uni-directional. Consider going along C until reaching the first point s (p̄) at which the
flow reverses; that is, define p̄ by

p̄ = inf
p>0


p : Lg (s(0)) Lg (s(p)) < 0


.
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Fig. 12. Reduction of general curves using piecewise C+-generated curves.

Consider drawing a curve along the trajectory fibre Ty passing through s(p̄); see Fig. 12, in which this trajectory fibre is that
associated with the point y ∈ C+. Now, Ty must intersect C at at least one other point, by the fact the curve C must cross
all trajectory fibres emanating from C+ in proceeding to go from Ia to Ib. Pick the point s(p̂) at which p̂ is chosen to be the
largest value associated with such a point, i.e.,

p̂ = sup
p≤1


p : φ(Ty, t) = s(p) for some t ∈ R


.

This ensures that s(p) never crosses Ty for p > p̂. Note that p̂ > p̄ (since p̄ was chosen as the first point along C at which
C turns around on itself in relation to the streamlines), and also that s(p̄) and s(p̂) both lie on Ty. Now consider instead of
C the connected curve generated by s(p) where 0 ≤ p ≤ p̄ and p̂ ≤ p ≤ 1, with the ‘‘link’’ between s(p̄) and s(p̂) formed
along Ty. This curve now has now cut out the multi-valued segment of C which lies between the two points; see Fig. 12. It is
possible to find a continuous function from the part of C+ which lies between Ia and y to the part of C in which 0 ≤ p ≤ p̄,
by following trajectory fibres. Now, continue along C from s(p̂) in the direction of increasing p until reaching another point
at which Lg changes sign. Do the same construction at this point, once again cutting out a segment which intersects the
trajectory fibres at more than one point. Continue this process until Ib is reached (only a finite number of such constructions
will be necessary, since C is piecewise C1). Now, this piecewise C+-generated curve, along with a union of closed loops,
comprises C. Referring to Fig. 12, for example, the new curve along with one anti-clockwise loop gives C. Thus, the absolute
flux along the new piecewise C+-generated curve has strictly a smaller absolute flux that across C. By invoking Lemma 6,
this implies that C+ has a strictly smaller absolute flux than C. �

A.7. Proof of Proposition 2 (flux maximising C−-generated curve)

This proof is similar to that of Proposition 1, and its details will be skipped. The main difference is that the inequalities
become reversed since here f and ∇κg point in opposite directions on C−. �
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