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Approach for maximizing chaotic mixing in microfluidic devices
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This paper uses recent theoretical work to determine the best configurations for cross-channel
micromixers in optimizing mixing between two fluids. Insight into the positioning, widths, and flow
protocols within the lateral channels is provided. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2042507�
Microfluidic devices �in which dimensions are typically
of the order of millimeters, and which handle fluid volumes
of the order of nanoliters� have seen a recent explosion of
interest, with significant potential applications in drug deliv-
ery and monitoring, cell culture, gene profiling, chemical
synthesis, “lab-on-a-chip” printing, and protein analysis.1–6

The inevitable low Reynolds number limit in such devices
means that turbulent mixing is suppressed. Diffusion by it-
self is not sufficiently effective in obtaining well-mixed so-
lutions in some applications, leading to an interest in deter-
ministic chaos as a mixing mechanism �see also the entire
issue of 7–16 Philos. Trans. R. Soc. London, Ser. A 362, 923
�2004��.

A variety of diagnostics are frequently used as measures
of mixing, such as Lyapunov exponents, effective diffusivi-
ties, transition or escape rates, etc. �see, for example, Refs.
15–21�. Nevertheless, these often provide little insight into
the best mixing protocols that enhance mixing, resulting in
very few available investigations on mixing
optimization.12,13,20,22 Recent theoretical work,22,23 which uti-
lizes lobe dynamics and Melnikov techniques24,25 to pre-
cisely quantify flux across flow separatrices, provides a
method to do so. This is particularly relevant to cross-
channel micromixers,7–10 a schematic illustration of which is
presented in Fig. 1. Fluids A and B, entering the micromixer
from two sides, tend not to mix across the dashed line, which
acts as a flow separatrix. How and where should perturbing
fluid channels be placed to maximize mixing?

A brief description of the theoretical basis upon which
this question is to be answered will be first presented. Any
perturbed flow expressible as

ẋ = −
�H

�y
+ �g1�x,y� cos��t − �� ,

�1�

ẏ =
�H

�x
+ �g2�x,y� cos��t − �� ,

is amenable to this analysis. Here H�x ,y� is the Hamiltonian
for the unmixed incompressible flow �such as that in Fig. 1�,
and 0���1. The perturbing term g= �g1 ,g2� is to be chosen
to optimize mixing. The �=0 flow must possess a trajectory
� that connects two hyperbolic stagnation points; it is across
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this that chaotic flux is to be assessed. Suppose � is given by
the heteroclinic trajectory (x̄�t� , ȳ�t��, thereby providing a pa-
rametrization for � with t�R. By determining leading-order
perturbations of this separatrix using a Melnikov
analysis,25,26 computing the area of the lobes created,24,25 and
then rationalizing the chaotic flux directly as a volume of
fluid transferred per unit time,22,23,27 it is possible to express
directly the chaotic flux across � as a perturbative expansion
� s���+O��2� in which

s��� =� 2

�
�F��H · g„x̄�t�, ȳ�t�…����� , �2�

where F is the standard Fourier transform �see Refs. 22 and
23�. For a given g, Eq. �2� is a computationally powerful
method for determining the flux for a given perturbation and
frequency, particularly so given the prevalence of Fourier
transform software.

Given a frequency �, how can one choose g subject to a
given maximum bound �g�x ,y���G, in order to maximize
the flux? Choosing g parallel to �H is incorrect, because of
the phase of F in Eq. �2�. There is, however, a time shift
	�� ,�� that can be applied to the heteroclinic trajectory
(x̄�t� , ȳ�t�) that makes F purely real; this is since a t shift is
equivalent to a rotation in Fourier space, and has no effect on
the modulus in Eq. �2�. Once this shift has been applied,
optimizing Eq. �2� simply requires choosing g on � to be as
close as possible to the unphysical perturbation

gm��� = G sign�cos��t�����
�H���
��H����

, �3�

where � is the arclength parametrization along �, whose
monotonic relationship with t is given by

��t� = 	
−


t

��H„x̄���, ȳ���…�d� , �4�

with t��� being its inverse. The sign flipping is necessary to
ensure that the cosine terms always contribute positively to-
wards the flux. This represents infinitely many streams of
constant speed G flowing perpendicularly across � such that
adjacent streams are exactly out of phase with one another.
Intuitively, this strange form for gm works because the per-
turbed stable and unstable manifolds intersect infinitely often
along �, at points that are � /� apart in t. A particular mani-

fold needs to be pushed in different directions in each of
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these alternating segments in order to make the intersecting
lobes bigger, thereby increasing the chaotic region.

For any perturbation g, the flux s����sm���, where
sm��� is the flux corresponding to gm, given by22

sm��� =
G

�
sup

	��0, �
��
	

−





��H„x̄�t�, ȳ�t�…cos���t + 	���dt .

�5�

In the above, “sup” indicates the maximum value. The
proper choice of 	 is the phase used to make the Fourier
transform real, and taking the maximum compensates for the
lack of knowledge of this phase shift. See Ref. 22 for more
detail on the structure of sm���.

The focus here is to apply these ideas to cross-channel
micromixers to determine the optimal design strategy. Given
a particular base flow geometry and speed, begin by choos-
ing an appropriate Hamiltonian function. One that works for
Fig. 1 is H�x ,y�=−a sin��x /L�sin��y /L� �where a ,L�0�,
an Euler solution familiar from a variety of contexts.23,28–32

Here, the flow separator connects �x ,y�= �0,0� to �0,L�, and
the top and bottom boundaries can themselves be expressed
as H�x ,y�= ±a sin��d /L�, where d=L /5 in this figure.
Modifying the computations in Refs. 22, 23, 29, and 30, it
can be shown that ��H(x̄�t� , ȳ�t�)�= �a� /L�sech�a�2t /L2� for
the symmetric choice of time zero, and ��t�
= �2L /��tan−1�exp�a�2t /L2��. For perturbations of the form
�1�, the leading-order term s��� of the flux is therefore
bounded by

sm��� =
Ga

L
sup

	��0, �
��
	

−





sech
a�2t

L2 ��cos���t + 	���dt .

�6�

Since the sech function is even and unimodal, the correct
choice to maximize the effect of the cosine term above is
	=0 �independent of ��. A numerically computed graph of
sm appears as the heavy curve in Fig. 2. Also illustrated in
this graph are curves resulting from incorrect choices in Eq.
�6�: 	=� / �4�� �dashed curve� and 	=� / �2�� �dotted

FIG. 1. A microdevice as a basis for a cross-channel micromixer.
curve�. Such choices correspond to constant shifts in the time
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parametrization along �, or equivalently, constant t shifts
applied to gm���t��.

For maximum flux sm, the lateral channels need to
change directions at

xn =
2 L

�
tan−1�exp
a�3�2n − 1�

2�L2 �
, n an integer, �7�

resulting in channels whose widths differ from one another.
Identify the jth channel as having endpoints xj and xj+1, with
width Wj =xj+1−xj, whose variation with � is shown in Fig.
3. The middle channel �j=0� is wider than j= ±1, which is
wider than j= ±2, etc. Differences are more pronounced for
small frequencies, with channels approaching uniformity for
large �.

An illustration of how to set up these channels in the
micromixer of Fig. 1, keeping in this case only the middle
five of the infinitely many lateral channels that the theory
describes, is presented in Fig. 4. This figure is exactly com-
puted and to scale, with the choice �=50, d=0.1 and L
=0.5. The channel numbering is also shown. The arrows to-
wards the bottom of the figure indicate that the lateral chan-
nel flow is to be exactly out of phase in adjacent channels.
This perturbing flow can be set up through the time-
harmonic variation of �i� imposed pressure gradient, �ii�
pumping of Fluid A �from the top� and Fluid B �from the
bottom�, or �iii� vibration of horizontal walls in reservoirs
just above and below the picture. The resulting fluid emerg-
ing from the right outlets of the apparatus is as well mixed as
possible with respect to perturbations satisfying �g��G.

FIG. 2. Graph of sm �	=0� with G=1, a=1/ �2�� , L=1/2 �several incor-
rect choices of 	 are also shown�.

FIG. 3. Lateral channel length scale variation with frequency, with G=1,

a=1/ �2��, and L=1/2.
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Fitting in more channels in Fig. 4 requires a smaller
choice of d, effectively using streamlines closer to � as top/
bottom boundaries. Indeed, the maximum number of chan-
nels N that is possible is given by

N �
2�L2

a�3 ln�cot
 d�

2 L
�
 , �8�

which is linear in the frequency, and inversely proportional
to the flow speed parameter a. To quantify this inevitability
of a finite number of lateral channels, define the mixing qual-
ity factor Q by s /sm, where the flux s is computed either
from Eq. �2� or by integrating over the suitable finite domain
in Eq. �6�. Figure 5 shows the quality factor as a function of
the number of lateral channels �always chosen to be an odd
number for symmetry� when �=50, and assuming that d is
chosen such that this number of channels can be fitted in.
The stars correspond to choosing the optimum channel struc-
ture similar to Fig. 4. In order to address more familiar mi-
cromixer arrangements that have separated lateral
channels,7–10 the diamonds give the result of using only the
even-indexed channels. In this instance, the fluids in all the
channels oscillate in phase with one another. The quality
factor is considerably worse than in the previous case. It may
be thought that having such �even-indexed� channels oscil-
lating out of phase with adjacent channels �channels
±2, ±6, ±10, etc, being out of phase with channels 0,
±4 , ±8, etc.� may produce greater mixing. The triangles in

FIG. 4. An exact, to scale, diagram of the cross-channel micromixer with
�=50, d=0.1, L=0.5, and five channels.

FIG. 5. Mixing quality factor as a function of the number of lateral channels

when �=50.
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Fig. 5 show that this is not the case, and even more disturb-
ingly, the quality factor decreases with increasing channels.
While the positioning of these channels in this instance is
contrived �it is the “worst” lateral forcing to use, which
pushes manifolds together�, this should be thought of as a
caution—the positioning and the directions of motion along
the lateral channels needs to be carefully managed to opti-
mize mixing. For example, using channels −5,−2, +1, +4,
+7, etc., with adjacent channels being exactly out of phase,
is flux enhancing.

There are clearly many practical difficulties in designing
micromixers as outlined here. Infinitely many lateral chan-
nels �eventually of vanishing width� are indicated by the
theory, yet this number is further limited by Eq. �8�. There
need to be channel walls of zero thickness between the lat-
eral channels. Moreover, the value of 	 implicit in Eqs. �3�
and �5� may not be easily obtainable �except in cases of
symmetry�.

While the unphysical perturbation gm is not realizable,
an approximation is clearly possible through the approach
described. This is probably the first insight into the best con-
figuration of lateral channels in cross-channel micromixers.
It can be readily applied in geometries other than the para-
digmatic situation shown in Fig. 1; all that needs to be done
is to determine a Hamiltonian function for the base flow that
conforms to the geometry and flow velocities relevant to the
required device. The analysis technique described here can
then be applied. It is hoped that this paper will stimulate the
development of experimental devices to test the results.
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