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a b s t r a c t 

Previous experiments have shown that mature yeast mat biofilms develop a floral morphology, charac- 

terised by the formation of petal-like structures. In this work, we investigate the hypothesis that nutrient- 

limited growth is the mechanism by which these floral patterns form. To do this, we use a combination of 

experiments and mathematical analysis. In mat formation experiments of the yeast species Saccharomyces 

cerevisiae , we observe that mats expand radially at a roughly constant speed, and eventually undergo a 

transition from circular to floral morphology. To determine the extent to which nutrient-limited growth 

can explain these features, we adopt a previously proposed mathematical model for yeast growth. The 

model consists of a coupled system of reaction–diffusion equations for the yeast cell density and nutri- 

ent concentration, with a non-linear, degenerate diffusion term for cell spread. Using geometric singular 

perturbation theory and numerics, we show that the model admits travelling wave solutions in one di- 

mension, which enables us to infer the diffusion ratio from experimental data. We then use a linear 

stability analysis to show that two-dimensional planar travelling wave solutions for feasible experimen- 

tal parameters are linearly unstable to non-planar perturbations. This provides a potential mechanism by 

which petals can form, and allows us to predict the characteristic petal width. There is good agreement 

between these predictions, numerical solutions to the model, and experimental data. We therefore con- 

clude that the non-linear cell diffusion mechanism provides a possible explanation for pattern formation 

in yeast mat biofilms, without the need to invoke other mechanisms such as flow of extracellular fluid, 

cell adhesion, or changes to cellular shape or behaviour. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

l  

i  

r  

e  

t  

b  

p  

n

 

b  

s  

s  

c  

c  
1. Introduction 

In nature, micro-organisms such as bacteria and fungi often

live in large, multi-cellular colonies. Within these, interactions be-

tween cells and their environment can give rise to complex spatio-

temporal structures. In cell biology research, considerable work has

focused on hypothesising mechanisms that could be responsible

for this pattern formation (see for example Asally et al., 2012; Ben-

Jacob et al., 20 0 0; Chen et al., 2014; Giverso et al., 2015; Klapper

and Dockery, 2010; Reynolds and Fink, 2001; Reynolds et al., 2008;

Smith et al., 2016; Tronnolone et al., 2017; Váchová et al., 2011;

Xue et al., 2011 ). Due to the complexity of the biological processes

and interactions, elucidating the extent to which each proposed

mechanism is responsible for the observed patterns can be chal-
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enging even for single-cell organisms such as yeast. Indeed, it is

nconceivable that we can construct a complete description of the

elevant biological processes that is mathematically tractable. How-

ver, we can use simple models that retain relatively few features

o predict whether particular mechanisms can drive the observed

ehaviour. This ability of mathematical models to decouple com-

lex processes provides insight and predictive power that is often

ot possible using experiments alone ( Murray, 2002 ). 

A biofilm is one of the most common structures formed

y communities of micro-organisms. In a biofilm, microbes re-

ide within a self-produced matrix of extracellular polymeric

ubstances (EPS), and adhere to a substrate. Biofilms help mi-

robes to survive in several ways. For example, they contain

hannels that assist the transportation of nutrients and water

 Váchová et al., 2011 ). In addition, the extracellular matrix pro-

ects microbes by preventing penetration of harmful external

ubstances ( Beauvais et al., 2009 ). Indeed, biofilms are notori-

usly resistant to anti-microbial therapy ( Ramage et al., 2010 ),

https://doi.org/10.1016/j.jtbi.2018.04.004
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Fig. 1.1. A time series of images for a S. cerevisiae mat formation experiment. Photographs taken after approximately (a) 68 h, (b) 117 h, (c) 164 h, and (d) 237 h of incubation. 
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hich contributes to the growing problem of anti-microbial re-

istance. Owing to their ubiquity and importance to many in-

ections, biofilms have attracted much attention in cell biology

esearch. 

Although bacterial biofilms have been widely studied, less is

nown about pattern formation mechanisms during biofilm expan-

ion of fungal organisms such as yeast ( Chen et al., 2014 ). This is

espite the fact that the bakers’ yeast, Saccharomyces cerevisiae , is a

ommon model organism in cell biology. As a eukaryotic organism,

ts cellular structure has similar features to more complex human

nd plant cells, such as a distinct nucleus and compartmentalised

ub-cellular organelles, which is not the case for prokaryotic bac-

eria. Due to this, yeast is a useful model for investigating the

echanisms of morphogenesis, which is an important question in

odern developmental biology ( Murray, 2003 ). In addition, the S.

erevisiae genome has been sequenced ( Goffeau et al., 1996 ), with

any more strains being added, and a wide array of genetic tools

uch as mutant libraries are available. Uncovering the mechanisms

f yeast growth is also of interest, for example, because yeasts con-

ain cell division genes that are important in the development of

ancer ( Chen et al., 2014 ). In many situations, it would also be ad-

antageous to develop methods to control yeast growth. For ex-

mple, yeasts are used extensively in food and drink production,

nd in biotechnology. Furthermore, yeast biofilms commonly grow

n indwelling medical devices such as catheters, stents, and pros-

heses. These biofilms are a leading cause of infections in clinical

ettings, and are particularly threatening to immunocompromised

eople ( Martinez and Fries, 2010 ). In all of these cases, understand-

ng of the underlying mechanisms is required to effectively control

he growth. 

In yeast biofilm formation experiments, S. cerevisiae cells

re inoculated on a low density agar-filled Petri dish contain-

ng rich nutrients, including glucose and nitrogen. Initially, cells

orm a thin round biofilm, referred to as a mat ( Fig. 1.1 (a)).

fter growing for several days, mats can undergo a transition

o a spatially non-uniform complex structure, characterised by

he formation of petals ( Reynolds and Fink, 2001 ), as shown in

ig. 1.1 (b)–(d). We seek to understand the mechanisms govern-

ng the formation of this pattern, which we refer to as a floral

orphology. 

Mechanisms hypothesised to contribute to floral morphology

all into two categories ( Chen et al., 2014 ). As yeast cells are non-

otile, mats expand by the growth of new cells at their perime-

er. Cellular growth requires access to nutrients, and therefore con-

umption and diffusion of nutrients may contribute to the pattern.

n addition, mechanical interactions between cells and their en-

ironment are also thought to contribute to floral pattern forma-

ion. For example, fluid in the extracellular matrix is hypothesised

o reduce friction between the cells and substrate, enabling mat

iofilms to grow via a sliding motility ( Reynolds and Fink, 2001 ).

n other experiments, cells adhere strongly to the agar substrate,

nd mats demonstrate wrinkling that is aligned with the floral pat-

ern ( Chen et al., 2014 ). The complexity of these interacting mech-
 m  
nisms makes it difficult to derive a tractable mathematical model

hat includes all features simultaneously. 

In this work, we neglect biofilm mechanics, and focus on

he hypothesis that nutrient-limited growth is the mechanism by

hich petals form. To investigate this, we adopt a minimal math-

matical model for mat growth. Our model takes the form of a

oupled system of reaction–diffusion equations, with a non-linear,

egenerate diffusion term for the spread of cells. The simplicity of

he model ensures that we are able to estimate the relevant pa-

ameters from yeast mat formation experiments. This enables us

o isolate the extent to which nutrient-limited growth alone con-

ributes to the floral morphology. 

The remainder of the article is structured as follows. In

ection 2 , we describe and quantify our mat formation experi-

ents. Analysis of experimental images shows that the mat ex-

ands radially at a roughly constant speed, and that petals emerge

ollowing a period of near-uniform growth. In Section 3 , we

resent the minimal reaction–diffusion model for nutrient-limited

at formation, and estimate all parameters except the diffusion

atio from experimental data. In Section 4 , we exploit the fact

hat mats expand at a roughly constant speed to construct one-

imensional travelling wave solutions to the model. We use a com-

ination of geometric singular perturbation theory and numerics to

how that such solutions exist, and estimate the diffusion ratio us-

ng the speed of mat expansion. In Section 5 , we apply the linear

tability analysis of Müller and van Saarloos (2002) , which shows

hat two-dimensional planar travelling waves are linearly unstable

or the experimental range of parameters. We use this to predict

he characteristic petal width, and verify the analysis by comput-

ng numerical solutions to the full model. We close the paper with

 discussion in Section 6 , and conclusion in Section 7 . 

. Mat formation experiments 

To generate and quantify the floral morphology, we produced

wo assays of the S. cerevisiae wine yeast strain L2056, yielding a

otal of thirteen mat biofilms. For each mat preparation, we inoc-

lated 50 0 0 cells on a 90 mm Petri dish filled with Yeast Pep-

one Dextrose (2% Bacto peptone, 1% yeast extract, 2% glucose)

olidified with 0.3% agar. We then incubated each plate at 25 °C.

o capture the progress of mat formation, we took four images

sing the ProtoCOL 3 system (Synbiosis), after approximately 68,

17, 164, and 237 h of incubation. An example series of these

mages is shown in Fig. 1.1 , and the remainder are presented in

ppendix A . Fig. 1.1 illustrates the features of mat growth that

e wish to understand. As shown, the mat initially expands in a

ear uniform circular manner. Eventually, the more complex flo-

al morphology emerges, characterised by the formation of petals

hat become larger over time ( Fig. 1.1 (b)–(d)). Previous mat forma-

ion experiments with yeast, for example those of Reynolds and

ink (2001) and Chen et al. (2014) , demonstrate similar behaviour.

n this work, we investigate the extent to which a mathematical

odel that incorporates nutrient-limited growth alone can explain
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Fig. 2.1. The median radius, R m , of mats computed from experimental images. The crosses indicate data points from individual experiments, and the dots indicate mean data 

for each time. The line is a linear least squares fit to the mean data. The coefficient of determination for the linear regression is r 2 = 0 . 9887 . 
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the speed of mat expansion, and the transition to floral morphol-

ogy. 

2.1. Quantifying spatial patterns 

Before formulating the model, we require a method of pro-

cessing the images and quantifying the experimental patterns.

First, we apply the imbinarize Matlab function to each photo-

graph, which uses Otsu’s method to convert them to binary im-

ages. Where necessary, we manually remove the border of the Petri

dish from the image, so that only the mat remains. The binary im-

age pixels define a two-dimensional square domain D, consisting

of an integer lattice with unit spacing. At any time t , the lattice

sites (x, y ) ∈ D are either occupied by yeast cells, or unoccupied.

This definition enables us to compute the mat centroid ( ̄x , ̄y ) using

Matlab’s regionprops function. This data provides the basis for

quantifying the spatial patterns. 

To quantify the size of a mat, we implement the radial metric of

Binder et al. (2015) , which was previously successful in quantifying

the size of a filamentous yeast colony. This metric is a scaled count

of the number of occupied sites at a given radial distance from the

centroid. We specify three important radii using this metric. First,

we define the inner radius, R i , to be the minimum distance from

the mat centroid at which we find an unoccupied site. We then

define the outer radius, R o , to be the maximum distance from the

centroid at which we find an occupied site. Finally, we define the

median radius, R m 

, to be the maximum distance from the centroid

at which greater than or equal to half of the sites are occupied. The

median radius provides a suitable measure of a mat’s boundary po-

sition, and hence its size. To measure the speed of mat expansion,

we compute R m 

for each binary image, and plot this against time

in Fig. 2.1 . Applying a linear regression model to the mean data

gives an expansion speed of 2.54 × 10 −3 mm min 

−1 
, and the co-

efficient of determination r 2 = 0 . 9887 suggests that this speed is

roughly constant. We note however that there is wide variation

across the experiments, and analysing all consecutive images gives

expansion speeds that lie between 1.09 × 10 −3 mm min 

−1 and

4.67 × 10 −3 mm min 

−1 . 

We compute an angular pair-correlation function (APCF) to

quantify the spatial pattern. The APCF provides a scaled count of

the angle measured from the centroid between two occupied pix-

els in the mat image. As we are only interested in the petals

and not the mat interior, we restrict our attention to the pixels
(x, y ) ∈ D such that R i ≤
√ 

(x − x̄ ) 2 + (y − ȳ ) 2 ≤ R o , i.e. pixels be-

ween the inner and outer radii. Due to the computational cost

f calculating the APCF, we compute it from a random sample of

hese pixels. We then calculate the pair-correlation signal, F �( j ),

sing the method of Binder et al. (2015) , and subsequently com-

ute the discrete cosine transform of F �( j ), 

ˆ f κ = 

2 

Nc κ

N ∑ 

j=0 

F �( j) 

c j 
cos (κθ j ) , κ = 0 , . . . , N, (2.1)

sing N = 100 . The power spectrum 

ˆ f 2 κ indicates the relative con-

ribution of a floral pattern with κ petals to the overall pattern.

eaks in the power spectrum therefore indicate the number of

etals in a mat. We illustrate this by computing the power spec-

rum for experimental mat G, and present the results in Fig. 2.2 . 

Angular pair-correlation analysis predicts a dominant mode of

= 8 petals for mat G, confirming that the floral morphology de-

elops before the end of the experiment. However, as each mat

rows differently, we expect to see a range of possible modes

cross the experiments. Indeed, by analysing all of the images

or t = 237 h , we find that although modes κ ∈ {2, 3, 4} are pre-

ominantly represented, there are significant peaks in the power

pectra for all integer modes between κ = 2 and κ = 12 (see

ig. A.5 in Appendix A ). The median radius at the end of the exper-

ment is in the range R m 

∈ [29.8, 40.3] mm, with a mean of R m 

=
7 . 45 mm . Assuming that the experimental petal width is given

y w = 2 πR m 

/κ, the range of possible petal widths is w ∈ [15.6,

26.6] mm. We use this data to test theoretical and numerical pre-

ictions of our mathematical model. 

. Mathematical model 

We use a mathematical model to investigate whether nutrient-

imited growth alone can explain the floral morphology observed

n experiments. Unlike yeast biofilms, there is significant literature

n the modelling of bacterial biofilms using both discrete and con-

inuous models ( Dockery and Klapper, 2001; Eberl et al., 2001; Pi-

ioreanu et al., 1998; Rahman et al., 2015; Ward and King, 2012;

ard et al., 2003 ). Traditionally, these models describe biofilm

rowth on a non-reactive, impermeable substratum, whereby cells

re immersed in a liquid culture medium which supplies nutri-

nts to the biofilm. The models are commonly used to explain pat-

erns such as fingering in the vertical direction. Past studies have



A. Tam et al. / Journal of Theoretical Biology 448 (2018) 122–141 125 

Fig. 2.2. Image processing results for mat G taken after ( t = 237 h). The number of sampled pixels is n = 25 , 0 0 0 . (a) Mat image. (b) Processed binary image indicating the 

mat centroid (red asterisk), the inner radius R i = 35 . 7 mm (solid orange line), outer radius R o = 41 . 0 mm (dashed blue line), and median radius R m = 38 . 8 mm (dashed green 

line). (c) Power spectrum of the APCF. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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hown that these patterns can depend on the nutrient uptake rate,

iomass decay, or volume filling effects. 

In contrast to these studies, our yeast mats receive nutrients

rom the substratum, which primarily restricts growth to the two-

imensional plane. As yeast cells are non-motile, mat expansion is

overned by the mitosis of living cells at the mat perimeter. When

tarved of nutrients, yeasts have been shown to enter a stationary

hase, whereby cells can begin to reproduce again if nutrient be-

omes available ( Minois et al., 2005 ). In addition, unlike many bac-

eria, yeast does not undergo directed growth in response to nutri-

nt gradients ( Tronnolone et al., 2018 ). These considerations enable

s to adopt simpler models than in previous studies on bacteria. 

As we are interested in the effects of nutrient-limited growth

lone, we neglect the extracellular matrix and interactions be-

ween cells and the substratum. As Fig. 1.1 (d) shows, on low-

ensity agar yeast mats can expand to fill an entire 90 mm Petri

ish, at which time they contain approximately 1 × 10 10 individual

ells. Mats are therefore much larger than their constituent cells,

o it is appropriate to model the mat in terms of continuous vari-

bles. We assume that only yeast cells and nutrients are present

n the Petri dish, and define n ( � x , t) to be the yeast cell density,

nd g( � x , t) to be the nutrient (glucose) concentration. 

Reaction–diffusion equations provide a simple framework to de-

cribe the features of nutrient-limited growth. Reaction–diffusion

ystems have been used extensively as prototype models in studies

n pattern formation since the pioneering work of Turing (1952) .

uch models also commonly admit travelling wave solutions

n which fronts advance at a constant speed ( Grindrod, 1991 ),

hich matches our experimental observations. Specifically for

east colonies, a useful basis is the Gray–Kirwan model ( Edelstein-

eshet, 1988; Gray and Kirwan, 1974 ), which was the first use of

 reaction–diffusion system to model yeast growth. In one spatial

imension, their model is 

∂n 

∂t 
= D n 

∂ 2 n 

∂x 2 
+ png, (3.1a) 

∂g 

∂t 
= D g 

∂ 2 g 

∂x 2 
− cpng, (3.1b) 

here D n and D g are the diffusion coefficients for yeast cells and

lucose respectively, p is the cell proliferation rate, i.e. the rate of

ncrease in colony area per unit of nutrient, and c is the quantity

f glucose consumed per new cell. 

However, experimental mats expand by growth of new cells at

he perimeter, and not by traditional Fickian diffusion. To account

or this, a more suitable model would incorporate a non-linear

iffusion term for cell spread, whereby the rate of spread is di-

ectly proportional to the local cell density. Similar systems have
een previously proposed by Chen et al. (2014) (for yeast), and

awasaki et al. (1997) (for bacteria). However, as yeast cannot grow

n response to nutrient gradients, we expect that the cell spread

erm will depend only on the cell density n . A simple reaction–

iffusion system that captures this behaviour is 

∂n 

∂t 
= D n ∇ · ( n ∇n ) + png, (3.2a) 

∂g 

∂t 
= D g ∇ 

2 g − cpng. (3.2b) 

This non-linear diffusion model has been shown to produce

ompactly supported solutions whereby cell density is only non-

ero in a finite envelope ( Müller and van Saarloos, 2002 ), unlike

he Gray–Kirwan model ( Billingham and Needham, 1991 ). The sys-

em (3.2) is therefore more suitable for modelling finite-sized ex-

erimental mats, for which we need to track the boundary posi-

ion. We investigate this model for the remainder of the article. 

.1. Non-dimensionalisation and scaling 

To non-dimensionalise the model, we introduce the dimension-

ess variables 

ˆ 
 = Gpt, ˆ x i = 

√ 

Gp 

D g 
x i , ˆ n ( � ˆ x , ̂  t ) = 

n ( � x , t) 

N 

, and 

ˆ g ( � ˆ x , ̂  t ) = 

g( � x , t) 

G ,

(3.3) 

here N is the measured mean final cell density, and G is the

nitial glucose concentration. In terms of these new dimensionless

ariables (3.3) , the model (3.2) becomes (dropping carets) 

∂n 

∂t 
= D ∇ · ( n ∇n ) + ng, (3.4a) 

∂g 

∂t 
= ∇ 

2 g − ϒng. (3.4b) 

n writing (3.4) , we have introduced the dimensionless parameters

 = 

˜ D n 

D g 
, and ϒ = 

cN 

G , (3.5)

here ˜ D n = N D n is the effective cell diffusion coefficient. 

As this analysis shows, to scale the model to experimental data,

e need estimates for D g , N , G, p, c , and D n . We use the empir-

cal relationship of Slade et al. (1966) to estimate D g , and we can

stimate each of N , G, and p , directly from experimental data. To

stimate c , we assume that ϒ = 1 , i.e. that all of the consumed nu-

rient is involved in the generation of new cells, and that all of the
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Table 3.1 

Experimental values for relevant dimensional parameters. 

Parameter Value Units Source 

D g 4.01e −2 mm 

2 min −1 Slade et al. (1966) , Longsworth (1955) 

G 9.24e −5 g mm 

−2 Experimental design 

N 3.34e6 cells mm 

−2 Mat images 

p 15.28 mm 

2 g −1 min −1 Experimental data 

c 2.77e −11 g cell −1 Assumption 
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nutrient is consumed by the end of the experiment. Our parame-

ter estimates are listed in Table 1 . Further details on how each is

calculated are provided in Appendix B . 

Knowledge of D g , p , and G is sufficient to determine the ex-

perimental length and time scales. Using (3.3) , the time scale is
ˆ 
 = (1 . 412 × 10 −3 ) t, for t in minutes, and the radial length scale is

ˆ r = 0 . 1933 r, for r given in millimetres. Given that we estimate the

mat to expand at a constant speed of 2.54 × 10 −3 mm min 

−1 
, this

gives a mean dimensionless expansion speed of v = 0 . 348 , while

all results lie within the range v ∈ [0.150, 0.639]. The median radii

at the end of the experiment corresponds to a dimensionless ra-

dius of ˆ r ∈ [5 . 71 , 7 . 54] , with a mean of ˆ r = 7 . 02 , and the dimen-

sionless range of possible petal widths is ˆ w ∈ [2 . 99 , 23 . 68] . We use

these dimensionless quantities when comparing the model and ex-

periments. 

In Section 4 , we exploit the finding that mats appear to expand

at a constant radial speed by constructing travelling wave solutions

to the model (3.4) . We apply geometric singular perturbation the-

ory to prove the existence of such solutions for D = 0 , and pro-

vide an analytical approximation of the slow manifold on which

dynamics for small D occur. We then exploit the fact that sharp-

fronted solutions are only possible for a unique minimum speed to

estimate the diffusion ratio D . 

4. Travelling wave solutions 

A travelling wave solution to a partial differential equation is

a solution that advances at a constant speed while retaining its

shape. Previous studies have used travelling wave solutions to esti-

mate parameters in experiments containing cell density fronts that

advance at a constant speed ( Johnston et al., 2014; Maini et al.,

2004 ), similar to those observed in our experiments. We seek a

travelling wave solution to (3.4) that is valid for large mats. To

do so, we write the model in polar co-ordinates, and following

Gallegos et al. (2006) assume that r � 1, which yields the system 

∂n 

∂t 
= D 

∂ 

∂r 

(
n 

∂n 

∂r 

)
+ ng, (4.1a)

∂g 

∂t 
= 

∂ 2 g 

∂r 2 
− ng. (4.1b)

To search for a travelling wave solution to (4.1) , we make the

ansatz that solutions advance radially at constant speed. To fa-

cilitate this, we introduce the Galilean co-ordinate z = r − v t ∈
(−∞ , ∞ ) , where v > 0 is the constant wave speed. This yields the

ordinary differential equations, 

D 

d 

dz 

(
n 

dn 

dz 

)
+ v 

dn 

dz 
+ ng = 0 , (4.2a)

d 2 g 

dz 2 
+ v 

dg 

dz 
− ng = 0 . (4.2b)

The yeast cell density is zero in the far-field, and we assume that

the far-field glucose concentration remains constant at the initial

level. We also assume that the experiment continues until the glu-

cose concentration is zero, at which point the yeast cell density
emains constant. The boundary conditions associated with the di-

ensionless system (4.2) are therefore 

lim →∞ 

n (z) = 0 , lim 

z→−∞ 

n (z) = 1 , lim 

z→∞ 

g(z) = 1 , and lim 

z→−∞ 

g(z) = 0 ,

(4.3)

ith all derivatives of n and g with respect to z vanishing as

 → ±∞ . Now, if we add (4.2a) and (4.2b) , integrate once with re-

pect to z , and apply the boundary conditions (4.3) , we obtain the

onserved quantity 

n 

dn 

dz 
+ v n + 

dg 

dz 
+ v g = v . (4.4)

o construct the travelling wave solution, it is convenient to intro-

uce the new variables 

 (z) = n 

dn 

dz 
, and w (z) = 

dg 

dz 
, (4.5)

hereby 

lim →−∞ 

u (z) = lim 

z→∞ 

u (z) = 0 , and lim 

z→−∞ 

w (z) = lim 

z→∞ 

w (z) = 0 . 

(4.6)

sing these variables, we write (4.2) as the four-dimensional dy-

amical system 

 

dn 

dz 
= u, (4.7a)

dg 

dz 
= w, (4.7b)

 

du 

dz 
= −v u 

n 

− ng, (4.7c)

dw 

dz 
= ng − v w. (4.7d)

wing to the conserved quantity (4.4) , there is a three-dimensional

nvariant surface on which the dynamics of (4.7) occur. Replacing

he variable u with (4.4) allows us to reduce (4.7) to the three-

imensional system, 

 

dn 

dz 
= 

1 

D 

( v − v n − w − v g ) , (4.8a)

dg 

dz 
= w, (4.8b)

dw 

dz 
= ng − v w. (4.8c)

inally, we use the technique first proposed by Aronson (1980) to

emove the singularity as n → 0 in (4.8a) , while still giving a sys-

em that is topologically equivalent to (4.8) . In our problem, this

nvolves introducing a new independent variable ζ defined as 

dζ

dz 
= n 

−1 ⇒ ζ = 

∫ z 

0 

n 

−1 ds, (4.9)
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nd re-writing the variables as 

(ζ ) = n (z) , G (ζ ) = g(z) , and W (ζ ) = w (z) . (4.10)

n terms of the new variables (4.10) , the three-dimensional system

ecomes 

dN 

dζ
= 

1 

D 

( v − v N − W − v G ) , (4.11a) 

dG 

dζ
= W N, (4.11b) 

dW 

dζ
= N 

2 G − v W N. (4.11c) 

 travelling wave solution to the model (4.1) exists if there is a

eteroclinic connection between the equilibria (N, G, W ) = (1 , 0 , 0)

nd (0, 1, 0), which correspond to the boundary conditions as z →
∞ and z → ∞ , respectively. We therefore use the system (4.11) to

nvestigate the existence of such solutions. In doing so, we employ

eometric singular perturbation theory to exploit the singular limit

s D → 0. 

.1. Dynamics for small D 

We anticipate that glucose diffusion will occur much faster than

he spread of yeast cells. As a result, we expect that N D n = 

˜ D n 

 g . It is therefore appropriate to consider the behaviour of the dy-

amical system (4.11) for small diffusion ratio, which we facilitate

y letting 0 < D = ε 
 1 . This allows us to recast (4.11) as a slow-

ast system, which provides a framework for which to investigate

he existence of travelling wave solutions ( Balasuriya et al., 2007;

arley et al., 2014; Marchant et al., 2001 ). Introducing the small

arameter, we can re-write the system (4.11) as 

dN 

dζ
= v − v N − W − v G, (4.12a) 

dG 

dζ
= W N, (4.12b) 

dW 

dζ
= N 

2 G − v W N, (4.12c) 

nd we refer to this as the slow subsystem . If we then introduce

 new independent variable γ = ζ /ε, we can rewrite (4.12) as the

ast subsystem , 

dN 

dγ
= v − v N − W − v G, (4.13a) 

dG 

dγ
= εW N, (4.13b) 

dW 

dγ
= ε

(
N 

2 G − v W N 

)
. (4.13c) 

An advantage of formulating the problem as a slow-fast system

s that taking the singular limit in either subsystem yields a regular

roblem of lower dimension than the full system. For example, if

e take the limit as ε → 0 in the slow subsystem (4.12) , we obtain

 two-dimensional problem with an algebraic constraint, 

 = v − v N − W − v G, (4.14a) 

dG 

dζ
= W N, (4.14b) 
u  
dW 

dζ
= N 

2 G − v W N. (4.14c) 

e refer to the system (4.14) as the reduced problem . Similarly,

aking the limit as ε → 0 in the fast subsystem yields a one-

imensional problem with two parameters, 

dN 

dγ
= v − v N − W − v G, (4.15a) 

dG 

dγ
= 0 , (4.15b) 

dW 

dγ
= 0 , (4.15c) 

hich we refer to as the layer problem . 

Using geometric singular perturbation theory ( Fenichel, 1979 ),

e analyse the reduced and layer problems (4.14) and (4.15) inde-

endently to investigate the existence of solutions to the full sys-

em (4.11) . In doing so, we verify the theoretical result that there

s an invariant surface on which the dynamics of the full system

ccur for non-zero ε, and prove the existence of travelling wave

olutions for ε = 0 . 

.1.1. Layer problem 

We begin the analysis by considering the layer problem. In the

ystem (4.15) , the plane S 0 : v − v N − W − v G = 0 consists entirely

f fixed points, and is the centre manifold of these equilibria. We

efer to S 0 as the critical manifold . For ε = 0 , solution trajectories

f the full system are attracted exponentially quickly to S 0 along

ines of constant G and W , as governed by the layer problem (4.15) .

s the equation for S 0 is also the algebraic constraint (4.14a) , the

ynamics of the reduced problem (4.14) are confined to this criti-

al manifold. According to geometric singular perturbation theory,

hen ε is small but non-zero, the dynamics of the full system

 4.12 , 4.13 ) will occur on an invariant curved entity O(ε) away

rom S 0 ( Jones, 1995 ). We refer to S ε as the slow manifold . 

We can approximate the shape of S ε analytically by considering

he dynamics of the fast subsystem (4.13) . Assuming that S ε is an

nvariant surface O(ε) away from S 0 , we can write 

 ε : N = 1 − G − W 

v 
+ ε f (G, W ) + O(ε2 ) , (4.16)

or some function f . Differentiating this with respect to the fast

ariable γ , we obtain 

dN 

dγ
= − dG 

dγ
− 1 

v 
dW 

dγ
+ ε

(
∂ f 

∂G 

dG 

dγ
+ 

∂ f 

∂W 

dW 

dγ

)
+ O(ε2 ) . (4.17)

ubstituting relevant terms from the fast subsystem (4.13) , we ob-

ain 

 ε : W ε = v (1 − N − G ) + ε
N 

2 G 

v 
+ O(ε2 ) , (4.18)

hich is an asymptotic approximation to the shape of the slow

anifold as ε → 0. As expected, the equation for S ε (4.18) gives

he critical manifold S 0 at O(1) . 

Knowledge of the shape of S ε enables us to estimate the paths

aken by trajectories for ε � = 0. To test this, we neglect O(ε2 ) terms

nd compute the slow manifold S ε numerically. To compare this

urface with solution trajectories, we integrate the fast subsystem

4.13) numerically using a fourth-order Runge–Kutta scheme, with 

 γ = 25 , 0 0 0 points, and �γ = 1 . As there is a one-dimensional

nstable manifold associated with the equilibrium (1, 0, 0), we take

ur initial condition to be a small distance from this point in the

nstable direction. An example of these computations is shown in
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Fig. 4.1. Two views of the critical manifold S 0 (yellow), and approximate slow manifold S ε (green), for v = 0 . 348 , and ε = 0 . 1 . A trajectory of the numerical solution to the 

fast subsystem (4.13) is shown with the dashed blue line, and the equilibria of (4.13) are shown in orange. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 4.2. A logarithmic plot of d ε ( W, W ε ) for ε ∈ [0.001, 0.1], computed for the bio- 

logically relevant wave speeds v ∈ {0.150, 0.348, 0.639}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

a  

t  

l

 

 

A  

f  

t  

s  

1  

 

w

 

 

L  

v  

t  

F  

i

{  

a  

t  

t  

t  

e  

h  

t  

s

 

i  

fl  
Fig. 4.1 , where as predicted the fast subsystem trajectory closely

follows the slow manifold. 

To test the accuracy of our formula (4.18) , we compute the met-

ric 

d ε (W, W ε ) = 

√ √ √ √ 

N γ∑ 

i =1 

(W − W ε ) 2 i 
, (4.19)

which is the L 2 -norm of the vector of distances between points

along the fast subsystem trajectory ( N, G, W ) i , and the slow man-

ifold ( N, G, W ε ) i , for i = 1 , . . . , N γ . We compute this quantity for

the minimum, mean, and maximum wave speeds, and plot the re-

sults in Fig. 4.2 . As the presented data follows straight lines on a

logarithmic scale, we deduce that d ε (W, W ε ) ∼ O(εm ) , where m is

the slope of the graph. For the minimum, mean, and maximum

wave speeds, we find m = 2 . 06 , m = 2 . 03 , and m = 2 . 01 , respec-

tively, which verifies the slow manifold approximation (4.18) . As

predicted by the theory, this justifies the existence of an invariant

slow manifold on which the dynamics of (4.12) and (4.13) occur for

non-zero ε. We combine this result with analysis of the reduced

problem to investigate the existence of travelling wave solutions to

the full system (4.11) . 
.1.2. Reduced problem 

Unlike the layer problem, the reduced problem (4.14) contains

n algebraic constraint in addition to differential equations. Due to

his algebraic constraint (4.14a) , we can rewrite the reduced prob-

em (4.14) as the two-dimensional system 

dG 

dζ
= W 

(
1 − W 

v 
− G 

)
, (4.20a)

dW 

dζ
= 

(
1 − W 

v 
− G 

)2 

G − v W 

(
1 − W 

v 
− G 

)
. (4.20b)

 heteroclinic connection between (1, 0, 0) and (0, 1, 0) in the

ull system (4.11) corresponds to a heteroclinic connection be-

ween (G, W ) = (0 , 0) and (1, 0) in the two-dimensional reduced

ystem (4.20) . To investigate the dynamics away from the line

 − W/ v − G = 0 , we perform a second co-ordinate transformation,

d ̄ζ

dζ
= 1 − W 

v 
− G ⇒ ζ̄ = 

∫ ζ

0 

(
1 − W 

v 
− G 

)
ds, (4.21)

hich yields the system 

dG 

d ̄ζ
= W, (4.22a)

dW 

d ̄ζ
= 

(
1 − W 

v 
− G 

)
G − v W. (4.22b)

inearising about the fixed points of (4.22) , we find that for any

 > 0 the point (0, 0) has a one-dimensional unstable manifold in

he direction (v / 2 + 

√ 

v 2 + 4 / 2 , 1) , and that (1, 0) is a stable node.

urthermore, a trajectory leaving (0, 0) along the unstable direction

s confined to the forward-invariant triangular region 

 (G, W ) | 0 ≤ G ≤ 1 , 0 ≤ W ≤ v (1 − G ) } , (4.23)

s we notice that flow on the boundaries of this region is never in

he outward direction. Therefore, as (0, 0) and (1, 0) are the only

wo equilibria of (4.22) , the Poincaré–Bendixson theorem guaran-

ees that the equilibrium (1, 0) is the ω-limit set of a trajectory

manating from (0, 0) ( Alligood et al., 1996 ). This proves that a

eteroclinic connection between (0, 0) and (1, 0) exists for the sys-

em (4.22) , and therefore that travelling wave solutions to the full

ystem (4.11) exist for D = 0 . 

However, if W > v (1 − G ) , the transformation (4.21) scales the

ndependent variable negatively. Therefore, when W > v (1 − G ) ,

ow of the reduced problem (4.20) is in the opposite direction
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Fig. 4.3. Direction field of the reduced problem (4.20) with v = 0 . 348 (black ar- 

rows). The equilibria, including the line W = v (1 − G ) and the point (0, 0) are 

shown in orange, and the dashed blue line is a trajectory computed numerically. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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o (4.22) . A heteroclinic connection between (0, 0) and (1, 0) in

he reduced problem (4.20) is therefore impossible if the trajectory

nters the region W > v (1 − G ) , as Fig. 4.3 illustrates. Although

ow along the critical manifold always remains in the region W ≤
 (1 − G ) , the slow manifold approximation (4.18) is only accurate

o O(ε2 ) as ε → 0. It may be possible for a trajectory of the full

ystem to intersect the ( G, W ) plane such that W > v (1 − G ) , in

hich case Fig. 4.3 suggests that no biologically relevant travelling

ave solution is possible. Numerically integrating (4.11) allows us

o determine whether this occurs, giving results that enable us to

stimate the diffusion ratio. 

.2. Estimating the diffusion ratio 

Solving the full system numerically allows us to explore the

xistence of travelling wave solutions in the biologically relevant

 � = 0 regime. Integrating (4.11) , also using a fourth-order Runge–

utta scheme, for constant D we observe three different types

f qualitative behaviour depending on v . First, if the wave speed

s sufficiently small, the solution trajectory intersects the ( G, W )

lane at a point ( G i , W i ) such that δ := W i − v (1 − G i ) > 0 . How-

ver, as we continuously increase the wave speed, δ decreases and

ventually reaches zero. If we increase v further, the trajectory in-

ersects the ( G, W ) plane at the equilibrium (N, G, W ) = (0 , 1 , 0) .

hese possibilities are illustrated for D = 0 . 47 in Fig. 4.4 , and the

orresponding travelling wave profiles are given in Fig. 4.5 . 

The wave speed v = 0 . 25 is such that δ > 0. As the reduced

roblem direction field predicts, no biologically relevant travel-

ing wave solution exists. Fig. 4.5 (a), in which N ( ζ ) and G ( ζ ) be-

ome negative, illustrates this. In contrast, for v = 0 . 5 the trajec-

ory eventually enters (1, 0, 0), giving rise to the biologically valid

ravelling wave solution in Fig. 4.5 (c). The minimum wave speed

hat gives a valid travelling wave solution is v = 0 . 348 , in which

ase the solution trajectory reaches an equilibrium along the line

 = v (1 − G ) , such that N(ζ ) = 0 and G ( ζ ) � = 1. This corresponds

o the z < 0 region of the solution to (4.8) found by Müller and

an Saarloos (2002) , who used a shooting argument to numeri-

ally demonstrate the existence of sharp-fronted travelling wave

olutions in one dimension. As part of their analysis, they also

ound that the minimum wave speed v min ( D ) is unique, and de-

ends only on D . If we compute solutions to the one-dimensional

odel (4.1) with arbitrary initial conditions, we find that a sharp-
ronted profile emerges and propagates at v min . Due to this, we

dopt v min as the experimental mat expansion speed. In doing so,

e can determine the effect of D on the speed of mat expansion. 

As Fig. 4.6 shows, there is a monotonic relationship between

he diffusion ratio and the minimum wave speed. Observing the

xpansion speed in an experiment therefore allows us to uniquely

nfer the diffusion ratio. In Section 3.1 , we found a mean experi-

ental expansion speed of v = 0 . 348 , and that across all experi-

ents the expansion speed lay within the range v ∈ [0.150, 0.639].

omputing travelling wave solutions numerically, we find these

alues correspond to a mean diffusion ratio of D = 0 . 470 , and that

he experimental range is D ∈ [0.181, 1.02]. This completes our pa-

ameterisation of the model, allowing us to proceed to predicting

wo-dimensional floral pattern formation. 

. Predicting two-dimensional floral pattern formation 

So far, we have used the fact that a mat expands at a roughly

onstant speed to parameterise the model. We now switch our at-

ention to investigating whether the model can predict the floral

orphology. In experiments, there are small deviations to the mat

hape, cell density, and nutrient concentration as cells grow and

onsume nutrient. We investigate whether these small perturba-

ions can grow into a floral pattern, driven only by nutrient-limited

rowth. To do this, we use a combination of linear stability analysis

nd numerical solutions to the model. 

.1. Linear stability analysis 

To investigate pattern formation in a large circular mat with

egligible perimeter curvature, we consider the model in two di-

ensional Cartesian co-ordinates, 

∂n 

∂t 
= D 

[
∂ 

∂x 

(
n 

∂n 

∂x 

)
+ 

∂ 

∂y 

(
n 

∂n 

∂y 

)]
+ ng, (5.1a) 

∂g 

∂t 
= 

∂ 2 g 

∂x 2 
+ 

∂ 2 g 

∂y 2 
− ng. (5.1b) 

ssentially, this introduces the y co-ordinate normal to the radial

irection in the one-dimensional model (4.1) considered in Section

 . To account for perturbations in the mat shape, we introduce the

o-ordinate transformation 

= x − v t + εe iqy + ωt , η = y, τ = t, (5.2)

here 0 < ε 
 1 is the small amplitude of perturbations, q > 0 is

he perturbation wave number, and ω is the growth rate ( Horváth

t al., 1993; Sivashinsky, 1977 ). The new independent variable, ξ , is

 co-ordinate that follows the perturbed wave front as it advances.

o account for variations in the cell density and nutrient concen-

ration, we expand the cell density and nutrient concentration as 

 (ξ , η, τ ) = n 0 (ξ ) + εn 1 (ξ ) e iqη+ ω τ + O(ε 2 ) , (5.3a) 

(ξ , η, τ ) = g 0 (ξ ) + εg 1 (ξ ) e iqη+ ω τ + O(ε 2 ) , (5.3b) 

s ε → 0. Substituting (5.3) into the partial differential equations

5.1) , at O(1) we recover the travelling wave equations (4.2) for

 0 ( ξ ) and g 0 ( ξ ). Linearising about these solutions yields a spectral

roblem at O(ε) , consisting of two second-order ordinary differ-

ntial equations. Solving this problem for the first-order correction

unctions n 1 ( ξ ) and g 1 ( ξ ) enables us to investigate the spectral sta-

ility of planar travelling wave solutions to (5.1) . Specifically, we

re interested in finding instabilities, whereby an eigenvalue of the

pectral problem has positive real part. Since the spectral problem

s posed on an infinite-dimensional space, we also consider dis-

ersion relations that locate the essential, or continuous spectrum.
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Fig. 4.4. Numerical solutions of the full dynamical system (4.11) for D = 0 . 47 and different v . 

Fig. 4.5. Travelling wave profiles for D = 0 . 47 and different v . 

Fig. 4.6. Effect of the diffusion ratio on the speed at which a large yeast mat biofilm 

expands. 
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We refer the reader to Kapitula and Promislow (2013) for further

details. For the model (5.1) , Müller and van Saarloos (2002) com-

pute the dispersion relations using a numerical shooting method.

In doing so, they show that for a given D , there is a unique growth

rate ω( D, q ) that corresponds to each wave number q . We compute

these dispersion curves for the minimum, maximum, and mean D

predicted by the experimental data in Fig. 5.1 . 

A travelling wave solution is linearly stable to all perturba-

tions with wave numbers that give ω < 0, and linearly unstable to

perturbations with wave numbers that give ω > 0. Fig. 5.1 shows

that there is a range of wave numbers for which the travelling

wave solution is linearly unstable for all experimentally feasible

values of D . For example, for D = 0 . 47 , we observe instability for

q ∈ (0, 0.672). Owing to the sinusoidal form of the perturbations

(5.3) , the characteristic petal width is given by ˆ w = 2 π/q. There-

fore, for D = 0 . 47 we could theoretically observe petals with any

width ˆ w > 9 . 35 . This overlaps the feasible experimental range ˆ w ∈
[2 . 99 , 23 . 68] , which suggests that the combination of nutrient-

limited cell proliferation and non-linear diffusion is a potential

mechanism for floral pattern formation. 
In addition, we expect the wave number corresponding to the

astest growth rate ω to eventually dominate the experimental pat-

ern. The dispersion curves of Fig. 5.1 therefore allow us to predict

he number of petals in an experimental mat. The most unstable

ave numbers for D = 0 . 181 , D = 0 . 47 , and D = 1 . 02 are q = 0 . 420 ,

 = 0 . 358 , and q = 0 . 232 , respectively. Using the mean final radius

ˆ  = 7 . 02 , the predicted number of petals is given by κ = q ̂ r . The

ost unstable wave number range therefore corresponds to κ ∈ {2,

}, which agrees well with the dominant modes of experimental

mages (see Fig. A.5 in Appendix A ). However, the linear stability

nalysis presented here is only valid for large mats with negligible

urvature, and for short times after the onset of instability. Pre-

ious studies have shown that curvature can have a significant ef-

ect on the wave speed ( Francisco Leyva et al., 2013; Hilhorst et al.,

008 ). Therefore, to investigate pattern evolution beyond the linear

egime, and in finite-sized circular mats, we compute numerical

olutions to the partial differential equations (5.1) . 

.2. Two-dimensional numerical solutions 

In this section, we compute numerical solutions to the two-

imensional model (5.1) . Our numerical scheme incorporates

econd-order accurate finite differences for spatial derivatives, and

 Crank–Nicolson scheme for time integration. At each time step,

e solve the resulting linear system iteratively using the gener-

lised minimal residual (GMRES) method ( Saad and Schultz, 1986 ).

ased on a grid convergence study, we find that a grid spacing of

x = �y = 0 . 1 , and time step size of �t = 0 . 001 produces accu-

ate solutions that are independent of both grid spacing and time

tep size. We employ these in all of our numerical solutions. For

ull details of the numerical scheme and convergence tests, see

ppendix C . 

We first use our numerical method to validate the linear sta-

ility analysis of Müller and van Saarloos (2002) . This allows us

o resolve an apparent discrepancy in the numerical solutions of

itsunezaki (1997) , who tested two theoretically unstable cases us-

ng a discrete model, but only observed the instability in one case.
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Fig. 5.1. Dispersion curves showing the dependence of the growth rate ω on the wave number q and diffusion ratio D , for three experimentally feasible values of D . 

Fig. 5.2. Numerical cell density solutions n ( x, y, t ) to the two-dimensional model (5.1) , showing the predicted instability. Solutions computed using the ansatz (5.4) for the 

initial condition, and parameter values D = 0 . 470 , q = 0 . 3770 , and ε = 0 . 1 . 
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o compute our solutions, we omit O(ε 2 ) terms and impose per-

urbations of the form 

 (ξ , y, t) = n 0 (ξ ) + εn 1 (ξ ) cos (qy ) e ωt , (5.4a) 

(ξ , y, t) = g 0 (ξ ) + εg 1 (ξ ) cos (qy ) e ωt . (5.4b) 

he functions n 0 ( ξ ) and g 0 ( ξ ) are the travelling wave solutions,

nd n 1 ( ξ ) and g 1 ( ξ ) are the first-order correction functions, both

f which we have computed. Using (5.4a) , we obtain 

t = log 

[
1 + 

n (ξ , y, t) − n (ξ , y, 0) 

εn 1 (ξ ) cos (qy ) 

]
, (5.5) 

hich we can use to compute the growth rate ω in numerical re-

ults. 

We compute the dispersion relation numerically for the mean

xperimental value of D = 0 . 470 . To do so, we solve (5.1) numeri-

ally, and compute the quantity (5.5) for t ∈ [0, 100] in increments

f ten. We then employ least squares linear fitting to obtain an es-

imate for the growth rate ω( D, q ), and repeat this process for five

heoretically unstable wave numbers. In each case, our numerical

ethod reproduces the predicted instability, an example of which

s shown in Fig. 5.2 . In addition, the growth rate predictions show

ood agreement with the theory, as illustrated in Fig. 5.3 . These

esults validate the linear stability analysis of Müller and van Saar-

oos (2002) . 
In addition to validating the linear stability analysis for planar

ronts, we are also interested in whether the model captures petal

ormation in the circular geometry relevant to yeast colony growth.

o investigate this, we compute solutions using a perturbed circu-

ar front as the initial condition. We impose perturbations of the

orm 

r = r − v t + ε f p (θ ) , (5.6a) 

 (ξr , θ, 0) = n 0 (ξr − R 0 ) + εn 1 (ξr − R 0 ) f p (θ ) , (5.6b) 

(ξr , θ, 0) = g 0 (ξr − R 0 ) + εg 1 (ξr − R 0 ) f p (θ ) , (5.6c) 

here θ ∈ [0, 2 π ], R 0 is the initial radius of the unperturbed

olony, and correction functions n 1 and g 1 correspond to the the-

retically most unstable wave number. The perturbation function

akes the form 

f p (θ ) = 

12 ∑ 

κ=2 

ακ cos (κθ ) , (5.7)

hich represents perturbations with κ petals of amplitude ακ

or κ = 2 , . . . , 12 . We draw each of the coefficients ακ randomly

rom the continuous uniform distribution U(−1 , 1) , and then nor-

alise them such that f p (θ ) ∈ [ −1 , 1] . This ensures that ε repre-

ents the maximum perturbation amplitude. Based on the experi-

ental length and time scales calculated in Section 3.1 , the end of



132 A. Tam et al. / Journal of Theoretical Biology 448 (2018) 122–141 

Fig. 5.3. Calculation of the growth rate and dispersion relation for D = 0 . 470 , and ε = 0 . 1 . 

Fig. 5.4. Numerical solutions to (5.1) using the initial condition (5.6) , for D = 0 . 47 , ε = 0 . 5 , and R 0 = 5 . 
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the experiment corresponds to a dimensionless time of ˆ t = 20 . 1 , at

which time the mean dimensionless mat radius is ˆ r = 7 . 02 . To en-

sure that the numerical solutions are on an appropriate scale, we

choose R 0 = 5 and compute solutions for t ∈ [0, 10]. We then com-

pare these solutions with experimental results and linear stability

analysis predictions. 

To determine whether we observe petal formation in the so-

lutions, we compute the spectrum (2.1) of the angular pair-

correlation function of images of the numerical solutions. For a

given κ , if the amplitude of the power spectrum 

ˆ f 2 κ increases over

time, we conclude that the wave number corresponding to κ petals

is unstable. Alternatively, if the amplitude of ˆ f 2 κ decreases, we con-

clude that the relevant mode is stable. To illustrate this process,

we plot a numerical solution, binary images, and the correspond-

ing power spectrum for D = 0 . 47 , and t ∈ {0, 5, 10} in Figs. 5.4, 5.5

and 5.6 , respectively. 

As Fig. 5.6 shows, the magnitude of the power spectrum in-

creases for the modes κ ∈ {2, 3, 4}, and decreases for modes κ ≥ 5.

As we impose random perturbations, we repeat these computa-

tions several times for D = 0 . 181 , D = 0 . 47 , and D = 1 . 02 to en-

sure that all modes are adequately represented. Analysing repeated

solutions, we find that modes for κ ∈ {2, 3, 4, 5, 6} are unstable

for D = 0 . 181 , the modes κ ∈ {2, 3, 4} are unstable for D = 0 . 47 ,

and the modes κ ∈ {2, 3} are unstable for D = 1 . 02 . Qualitatively,

this agrees well with the dispersion relations computed in Fig. 5.1 ,

where there is a range of unstable modes for all of D = 0 . 181 ,

D = 0 . 47 , and D = 1 . 02 . Furthermore, the widest range of unsta-

ble modes occurs for D = 0 . 181 , and the narrowest for D = 1 . 02 ,

which also agrees with the theory. The results for mean data with

D = 0 . 47 also agree well with the experimental power spectra in

Fig. A.5 , in which the modes κ ∈ {2, 3, 4}, are predominantly repre-

m  
ented. This provides evidence that our proposed nutrient-limited

rowth mechanism is a plausible explanation for the experimen-

ally observed floral pattern formation in circular geometry. 

. Discussion 

In this work, our objective was to determine the extent to

hich nutrient-limited growth alone could explain pattern forma-

ion in mat biofilms of the yeast S. cerevisiae . To test this hy-

othesis, we used experimental data to parameterise a reaction–

iffusion model with non-linear cell diffusion. We showed that the

odel predicts that the small perturbations inherent to experi-

ents can grow into petal-like structures. This, and supporting nu-

erical solutions, provided evidence that nutrient-limited growth

s a plausible mechanism for petal formation in yeast mat biofilms.

owever, it is important to consider some limitations of our study

hen interpreting the results. 

A common issue with cell growth experiments is that wide bi-

logical variation is possible, which can render them difficult to

eproduce. Indeed, although all of the quantities measured remain

f the same order of magnitude across the thirteen experiments,

hese variations make determining the experimental parameters

ifficult. We have therefore adopted several assumptions to obtain

stimates. These include assuming that cell density is constant at

he end of the experiment, and calculating the proliferation rate by

ssuming the absence of diffusion. In our numerical solutions, we

lso only perturb prescribed modes at a single radius, whereas in

n experiment the mat is continually subjected to perturbations as

t grows. Owing to these difficulties, we can only claim that the

odel provides mechanistic insight into yeast mat pattern forma-
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Fig. 5.5. Processed binary images of the numerical solutions in Fig. 5.4 , indicating the mat centroid (red asterisk), the inner radius (solid orange line), and the outer radius 

(dashed blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5.6. Corresponding power spectra of the numerical solutions in Fig. 5.4 . 
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ion, as it cannot recreate the observed patterns with complete fi-

elity. 

Due to the nature of our experiments, we are able to employ a

impler modelling framework than in traditional models of bacte-

ial biofilms, which consider growth on an immersed, non-reactive

ubstratum ( Dockery and Klapper, 2001; Eberl et al., 2001; Piciore-

nu et al., 1998; Rahman et al., 2015; Ward and King, 2012; Ward

t al., 2003 ). For example, as yeast mats receive nutrients readily

rom the substratum, we do not consider nutrient uptake from a

iquid culture medium, which these studies show can affect pat-

ern formation ( Dockery and Klapper, 2001; Eberl et al., 2001; Pi-

ioreanu et al., 1998 ). Also, as mats expand due to budding of

iving cells at their perimeter, we do not consider cell decay, or

olume filling effects ( Rahman et al., 2015 ). However, yeast mat

iofilms are still highly complex systems, and we cannot hope to

ave captured all of the mechanisms that contribute to their pat-

ern formation in our minimal model. Although we showed that

t is not necessary to invoke other mechanisms to explain the flo-

al pattern, the model considered here provides a framework onto

hich additional features can be added. In particular, there are

echanical interactions between cells and their environment that

re also hypothesised to contribute to the floral patterns. For ex-

mple, flow of extracellular fluid may provide another means of

at expansion, in addition to the non-linear diffusion and prolifer-

tion mechanisms ( Lega and Passot, 2003; Ward and King, 2012 ).

ell adhesion to the agar substrate also causes wrinkling within

he agar, which appears to be aligned preferentially with the petals

 Chen et al., 2014 ). We defer investigation of these mechanical ef-
ects to future work. 
. Conclusion 

Yeast biofilms have a myriad of effects on human life. In many

pplications, it would be advantageous to develop methods to con-

rol their growth. For example, yeast biofilms are often found on

mplanted medical devices, which makes them a leading cause of

ersistent hospital-acquired infections. There is also strong interest

n controlling growth to improve outcomes, for example, in food

nd drink production and biotechnology, where yeasts are widely

sed. Furthermore, as a simple eukaryotic organism, yeast is of-

en used as a model for investigating the behaviour of more com-

lex plant and animal cells. It is therefore of interest to develop

ethods to quantify the growth of yeast biofilms, and to under-

tand the mechanisms that govern their morphology. In this work,

e contribute to both of these objectives. Using a radial metric,

e show that a mat expands radially at a roughly constant speed,

nd quantify the transition to floral morphology using an angu-

ar pair-correlation function. Using geometric singular perturbation

heory and numerics, we demonstrate that a minimal reaction–

iffusion model for nutrient-limited yeast growth admits travel-

ing wave solutions, with a minimum speed dependent only on

he ratio of diffusion coefficients. Linear stability analysis shows

hat such travelling wave solutions are unstable to transverse per-

urbations for experimentally feasible parameters. We find good

greement between this analysis, numerical solutions, and exper-

mental data, allowing us to conclude that nutrient-limited growth

s a possible mechanism by which yeast mats attain their floral

orphology. 
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Fig. A.2. Photographs of the mat formation experiments, taken t = 7013 min ≈ 117 h after inoculation. 
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Fig. A.3. Photographs of the mat formation experiments, taken t = 9866 min ≈ 164 h after inoculation. 
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Fig. A.4. Photographs of the mat formation experiments, taken at the end of the experiment, t = 14208 min ≈ 237 h after inoculation. The approximate cell count for each 

mat is given in the caption. 
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Fig. A.5. Power spectra of the angular pair-correlation functions computed from the mat images in Fig. A.4 , taken at the end of the mat formation experiment. 
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Appendix B. Estimation of dimensional parameters 

Here, we describe the methods of estimating D g , G, N , c , and p ,

the relevant dimensional parameters in the model. 

B1. Glucose diffusion coefficient 

To estimate the glucose diffusivity in agar, we use the empirical

relationship given by ( Slade et al., 1966 ), 

D g 

D 0 

= 1 − 0 . 023 w, (B.1)

where D 0 = 4 . 04 × 10 −2 mm 

2 min 

−1 is the diffusivity of glucose in

water ( Longsworth, 1955 ), and w is the weight percentage of the

agar. The agar concentration of the medium in which the glucose

is placed was 0.3% in each experiment, and therefore the estimate

of glucose diffusivity is 

−2 2 −1 

D g = 4 . 01 × 10 mm min . (B.2) w  
2. Initial glucose concentration 

In our scaling, we use the initial concentration of glucose as

he reference glucose concentration, G. The initial mass of glucose

dded to each plate was 0.5 g, and the agar medium occupies a cir-

ular area with diameter of approximately 83 mm. From this, we

etermine that the initial concentration of glucose in each experi-

ent was 

 = 9 . 24 × 10 

−5 g mm 

−2 . (B.3)

3. Final cell density 

In each experiment, we could only measure the cell density

t the end of the experiment, as doing so destroyed the biofilm.

herefore, we use the mean cell density at the end of the exper-

ment as the reference cell density, N . At the conclusion of each

xperiment, we estimated the total number of cells by washing the

at from the medium, and counting the number of cells in a small

ample of the washed material. From this, we obtained a mean of

.46 × 10 10 cells per mat. By analysing processed images in Matlab,

e found that the mats have a mean area of 4.46 × 10 3 mm 

2 at
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he conclusion of the experiment. The mean reference cell density

rom the experiments was therefore 

 = 3 . 34 × 10 

6 cells mm 

−2 . (B.4) 

4. Quantity of glucose consumed per new cell 

To estimate c , we assume that all of the consumed glucose is

sed for the creation of new cells, giving the dimensionless pa-

ameter ϒ = 1 . In addition, we assume that all of the glucose is

onsumed by the end of the experiment. An estimate of the quan-

ity of glucose consumed per new cell is therefore 

 = 

G 
N 

= 2 . 77 × 10 

−11 g · cell −1 . (B.5) 

5. Cell proliferation rate 

The cell proliferation rate, p , is not directly measurable, and is

herefore the most difficult parameter to estimate from the exper-

ments. To obtain an order of magnitude estimate, we isolate p by

onsidering the dimensional model equations (3.2) in the absence

f diffusion, 

∂n 

∂t 
= png, (B.6a) 

∂g 

∂t 
= −cpng. (B.6b) 

If we add multiply equation (B.6a) by the constant c , add the

esult to (B.6b) , and integrate once with respect to t , we obtain the

onserved quantity cn + g = cN 0 + G, where N 0 = n (0) is the initial

ell density. Hence, we can rewrite the equation for the number of

ells as 

∂n 

∂t 
= pn (cN 0 + G − cn ) . (B.7)

q. (B.7) is a first-order, non-linear, Bernoulli ordinary differential

quation, which has the solution 

 (t) = 

N 0 (cN 0 + G) e pt(cN 0 + G) 

cN 0 e pt(cN 0 + G) + G 
. (B.8) 

n each experiment, 50 0 0 cells were initially placed in the Petri

ish, concentrated in circular regions with a mean diameter of

.75 mm. We therefore estimate the initial cell density as N 0 =
44 . 5 cells mm 

−2 . The final cell density, n ( t ), is the mean cell den-

ity at the end of the experiment, N . We can then obtain an esti-

ate for the cell proliferation rate by rearranging (B.8) to give 

p = 

N 

14208 G(N 0 + N ) 
log 

(
N 

2 

N 

2 
0 

)
. (B.9) 

sing the experimental parameters already determined, our cell

roliferation rate estimate is 

p = 15 . 28 m m 

2 g −1 min 

−1 
. (B.10) 

e note that as this model neglects diffusion, this value is likely

o over-estimate the true proliferation rate, and should therefore

e considered to be an upper bound for p . 

ppendix C. Numerical method 

Here, we describe the numerical method we use to solve the

odel equations (5.1) in two-dimensional Cartesian co-ordinates.

e compute solutions on an equispaced discrete domain, where

x and �y are the constant x and y grid spacing, respectively,

nd �t is the constant time step size. We denote the cell den-

ity n k 
i, j 

= n (x i , y j , t k ) and nutrient concentration g k 
i, j 

= g(x i , y j , t k ) ,
here i = 1 , . . . , N x , j = 1 , . . . , N y , and k = 1 , . . . N t are indices of

rid points x i and y j , and time steps t k , respectively. To discre-

ise the equations, we employ a second-order accurate central fi-

ite difference scheme in space, and a Crank–Nicolson scheme for

ime stepping. We linearise the equations by approximating the

on-linear terms using known data from the previous time step.

nder this scheme, discretising the model equations (5.1) yields 

n 

k +1 
i, j 

− n 

k 
i, j 

�t 
= 

D 

2 

[
n 

k 
i, j 

+ n 

k 
i +1 , j 

2�x 2 
n 

k +1 
i +1 , j 

−
n 

k 
i +1 , j 

+ 2 n 

k 
i, j 

+ n 

k 
i −1 , j 

2�x 2 
n 

k +1 
i, j 

+ 

n 

k 
i, j 

+ n 

k 
i −1 , j 

2�x 2 
n 

k +1 
i −1 , j 

+ 

n 

k 
i, j 

+ n 

k 
i +1 , j 

2�x 2 
n 

k 
i +1 , j 

−
n 

k 
i +1 , j 

+ 2 n 

k 
i, j 

+ n 

k 
i −1 , j 

2�x 2 
n 

k 
i, j + 

n 

k 
i, j 

+ n 

k 
i −1 , j 

2�x 2 
n 

k 
i −1 , j 

]

+ 

D 

2 

[
n 

k 
i, j 

+ n 

k 
i, j+1 

2�y 2 
n 

k +1 
i, j+1 

−
n 

k 
i, j+1 

+ 2 n 

k 
i, j 

+ n 

k 
i, j−1 

2�y 2 
n 

k +1 
i, j 

+ 

n 

k 
i, j 

+ n 

k 
i, j−1 

2�y 2 
n 

k +1 
i, j−1 

+ 

n 

k 
i, j 

+ n 

k 
i, j+1 

2�y 2 
n 

k 
i, j+1 

−
n 

k 
i, j+1 

+ 2 n 

k 
i, j 

+ n 

k 
i, j−1 

2�y 2 
n 

k 
i, j + 

n 

k 
i, j 

+ n 

k 
i, j−1 

2�y 2 
n 

k 
i, j−1 

]

+ 

1 

2 

[
n 

k +1 
i, j 

g k i, j + n 

k 
i, j g 

k 
i, j 

]
, (C.1a) 

g k +1 
i, j 

− g k 
i, j 

�t 
= 

1 

2 

[ 

g k +1 
i +1 , j 

− 2 g k +1 
i, j 

+ g k +1 
i −1 , j 

�x 2 
+ 

g k 
i +1 , j 

− 2 g k 
i, j 

+ g k 
i −1 , j 

�x 2 

] 

+ 

1 

2 

[ 

g k +1 
i, j+1 

− 2 g k +1 
i, j 

+ g k +1 
i, j−1 

�y 2 
+ 

g k 
i, j+1 

− 2 g k 
i, j 

+ g k 
i, j−1 

�y 2 

] 

−1 

2 

[
n 

k 
i, j g 

k +1 
i, j 

+ n 

k 
i, j g 

k 
i, j 

]
. (C.1b) 

e enforce periodic conditions on all spatial boundaries by defin-

ng ghost points such that n k 
0 , j 

= n k 
N x , j 

, n k 
N x +1 , j 

= n k 
1 , j 

, and so on,

pplying these in (C.1) at the relevant boundary points. 

The discretised equations (C.1) define a problem that we can

olve implicitly for the 2 N x N y unknowns n k +1 
i, j 

and g k +1 
i, j 

, given

nowledge of the solution at the previous time step, n k 
i, j 

and g k 
i, j 

.

e use the generalised minimal residual (GMRES) method to solve

his system of equations at each time step. GMRES is an iterative

ethod for solving linear systems A 

�
 x = 

�
 b , whereby the exact so-

ution is approximated by the vector in the n th Krylov subspace,

  n ∈ K n = span { � b , A 

�
 b , A 

2 �
 b , . . . , A 

n −1 �
 b } , (C.2)

hat minimises the Euclidean norm of the residual � r n = A 

�
 x n − �

 b

 Saad and Schultz, 1986 ). An advantage of the method is that there

s no need to define the matrix A explicitly, and we instead pro-

eed by defining the matrix-vector product A 

�
 x , and the known vec-

or � b at each time step. At each time step, we accept the solution

f the residual 
→ 

r n < 1 × 10 −6 
. 

To determine an appropriate grid spacing and time step size, we

erform a grid convergence study using the test value of D = 0 . 47 ,

hich has a theoretical wave speed of v = 0 . 34794 . In our tests, we

olve (5.1) for t ∈ [0, 100] using the theoretical travelling wave pro-

les as initial conditions, and compute the mean speed at which

he front advances in the numerical solution. In these tests, the

umerical method produces a solution with the theoretical wave

peed when �x = �y = 0 . 1 , and �t = 0 . 001 . Convergence results

sing these values are shown in Fig. C.1 . The numerical scheme

xhibits approximately quadratic convergence with grid spacing
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Fig. C.1. Numerical convergence results for the scheme (C.1), solved with the GMRES iterative method. For each data point, we plot the mean wave speed computed at 

t = 100 . 
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M  
and linear convergence with time step size. By fitting an appro-

priate polynomial to the data in Fig. C.1 (a) and (b) and extrap-

olating, we can estimate the numerical wave speed in the zero

grid spacing and time step limit respectively. Doing so, we find

that when �t = 0 . 001 , the estimated wave speed as �x i → 0 is

v = 0 . 34778 . When �x i = 0 . 1 , the estimated wave speed as �t → 0

is v = 0 . 34809 . As these are both accurate to within 0.05% of the

theoretical value, we adopt �x = �y = 0 . 1 and �t = 0 . 001 in all

numerical solutions. 
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