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CONTROLLING TRAJECTORIES GLOBALLY VIA2

SPATIOTEMPORAL FINITE-TIME OPTIMAL CONTROL∗3

LI ZHANG† AND SANJEEVA BALASURIYA‡4

Abstract. The problems of (i) maximizing or minimizing Lagrangian mixing in fluids via the5
introduction of a spatiotemporally varying control velocity, and (ii) globally controlling the finite-6
time location of trajectories beginning at all initial conditions in a chaotic system, are considered.7
A particular form of solution to these is designed, which uses a new methodology for computing a8
spatiotemporally-dependent optimal control. An L2-error norm for trajectory locations over a finite-9
time horizon is combined with a penalty energy norm for the control velocity in defining the global10
cost function. A computational algorithm for cost minimization is developed, and theoretical results11
on global error and cost presented. Numerical simulations (using velocities which are specified, and12
obtained as data from computational fluid dynamics simulations) are used to demonstrate the efficacy13
and validity of the approach in determining the required spatiotemporally-defined control velocity.14
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1. Introduction. In fluid mechanical systems, particles move according to a18

velocity field v which is typically dependent on both space x and time t. This field19

is often known only numerically, through observational data or computational fluid20

dynamics simulations. This has the inevitable consequence that the data is finite-21

time, which has resulted in a preponderance of studies on understanding the flow22

characteristics and important moving flow regions (‘coherent structures’) in finite-23

time nonautonomous flows [28, 8, 54]. Often, there is a desire to control the flow,24

usually in order to enhance or suppress mixing (e.g., in optimizing performance in25

mixing/combustion devices, or reducing the impact of a spreading pollutant). A26

specific example arises in oil recovery, where one might be interested in driving oil27

flows to a target region, by using the control strategy of forcing a secondary flow (a28

chemical slug) in certain locations [35, 62]. Current theoretical developments in the29

area of mixing optimization/suppression area are varied (e.g., parametric investigation30

of flow protocols in specific geometries in zero-flow situations [57, 45, 41], maximizing31

mixing [48, 24], controlling particular trajectories [5, 9] or optimizing fluid mixing32

across flow barriers [7, 4]). Most do not utilize optimal control theory to control33

particle trajectories, but rely on other aspects of optimization, control, or numerical34

methods. (Some exceptions: controlling the Navier-Stokes equations [43, 31] and35

multiobjective mixing control [48].) Here, we specifically examine globally controlling36

trajectories of an existing flow, whose nonautonomous velocities may only know from37
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2 L. ZHANG AND S. BALASURIYA

observational or experimental data. This is ‘one step before’ the issue of controlling38

mixing [41, 45, 48, 24], in which diffusion also needs to be taken into account. In39

this case, we are able to specify the targetted locations of all initial conditions after40

a finite-time flow, and seek an added spatio-temporally dependent control velocity41

which helps achieve this target globally.42

Physically, the flow can be controlled by introducing additional velocities which43

are spatiotemporally-dependent, e.g., by moving a solid or flexible boundary in some44

specified way [19, 58], introducing fluid inlets/outlets at various locations [46, 60, 29],45

displacement by chemical slugs [35, 62], or via microtransducers [32]. Thus, a control46

velocity which is both spatially- and temporally-dependent is achievable physically. In47

this case, since we specify eventual trajectory locations, we build a cost function which48

includes both a distance norm (which captures how closely all particles reached the49

targetted location) and a penalty term (which limits the size of the control velocity).50

Assuming that the original velocity field is given (possibly in terms of data), in this51

paper we develop a method for determining the spatio-temporally varying control52

velocity field which minimizes the cost function. This is achieved by modifying and53

adapting optimal control methods to this setting, while providing both theoretical54

results and computational strategies for using our technique.55

Many methods have been suggested in the fluid mechanics literature for different56

types of flow control. These include turbulence control in various ways by conditioning57

velocity gradients, energy or enstrophy [11, 31, 43, 53], drag forces [11], or boundary58

layers and skin friction [34, 38]. In most of these cases, the issue is to control the59

(Eulerian) velocity field, which evolves according to the Navier-Stokes equation (or60

some approximation/modification). This is a challenging infinite-dimensional situa-61

tion, often requiring geometry-specific methods and projections into finite dimensions62

(e.g, Fourier modes or orthogonal decompositions [34, 53]). Of course, in highly63

turbulent situations in which gradients are large over small scales, achieving such a64

control would require velocity modifications at smaller and smaller scales, which is65

impractical. Moreover, difficulties in achieving control over long-term time-horizons66

are well-established [11]. In contrast to controlling Eulerian velocities which are so-67

lutions to the Navier-Stokes equations, what we study in this paper is the control68

of Lagrangian trajectories associated with such Eulerian velocity field. Given that69

Lagrangian trajectories are solutions to an ordinary differential equation associated70

with the Eulerian velocity, the control problem is now a low-dimensional one, with71

dimensionality given by the spatial dimension of the flow. However, the difficulty72

here is that we seek spatially global trajectory control at a final time, which we are73

able to achieve in a certain way while taking advantage of the low-dimensionality of74

the control problem. Given that control velocities can in reality be achieved only at75

some spatial resolution, our methods are expected to have accuracy if the turbulence76

is moderate, but not excessive.77

While fluid mechanics is the motivation for this paper, our development is in-78

dependent of it. Our methodology applies to general systems of ordinary differential79

equations in any dimension, which are moreover either autonomous or nonautonomous80

and subject to a state equation governed by a vector field v. However—pertinent to81

the fact that fluid mechanical systems are confined to two or three dimensions—we82

only claim efficiency at low dimensions. A particular application is to the control of83

chaos [42, 22, 51, 55]. Generally, chaotic systems have unpredictable trajectories, and84

classical methods for chaos control include the determination of controls which result85

in chaotic synchronization [30, 14] or which locally push trajectories towards unstable86

ones [22, 51, 27, 52]. Since we seek to push trajectories globally over the given time87
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period, our method can be construed as a global control framework, in which we simul-88

taneously specify the required fate of all trajectories in our phase space. Additionally,89

we will not confine attention to equilibria (which generically do not exist anyway for90

nonautonomous systems) or invariant sets such as periodic orbits, and neither will we91

be concerned about the stability of such sets. Thus, instead of working within this92

realm of ‘classical chaos control,’ our method targets the fate of all trajectories after93

a given finite time.94

Some background to our work comes from optimal control theory. Optimal con-95

trol methods for determining a time-dependent control function for individual tra-96

jectories is a mature research area [33, 49, 2, 61, 1]. One class of this focuses on97

obtaining different laws, e.g., feedback control theory as coverage control with dif-98

fusive term [44], sliding control with mismatched uncertainties [33], synchronization99

for non-autonomous chaotic system using integral control [40], global criteria via lin-100

ear state error equation [17], and via delayed term [15]. Another aspect is that of101

nonautonomous system, e.g., minimum time control [13]. Classically, optimal control102

methods focus on a single trajectory of an autonomous system, and often relate to103

stabilizing unstable equilibria [16, 18, 25, 37]. The theoretical results are usually based104

on the Pontryagin minimum (or maximum) principle and the associated Hamilton-105

Jacobi-Bellman partial differential equations. In this work, we extend optimal control106

to the problem of determining a spatiotemporally-dependent control, to globally control107

trajectories over a finite time. By ‘globally,’ we mean that we can specify the fate of108

initial conditions as a global function on the initial space, rather than, for example,109

insisting that all initial conditions go to one invariant set [22, 51, 52, e.g.]. Moreover,110

the method works for general nonautonomous (unsteady) vector fields, and thus is111

not dependent on the presence of fixed points, periodic orbits or chaotic attractors.112

The reminder of this paper is organized as follows. The problem and its theoret-113

ical solution is outlined in Section 2. We develop both the computational methodol-114

ogy for determining a spatiotemporal optimal control function, as well as theoretical115

results indicating the robustness of the procedure and error analyses on the achieve-116

ment of the finite-horizon target. The algorithm we develop includes novel uses of117

the Newton-Raphson algorithm and an ‘approximant’ [20] method to determine the118

control function spatiotemporally. Section 3 demonstrates the efficacy of the spa-119

tiotemporal optimal control in several examples. We demonstrate the ease of imple-120

mentation of our algorithm, as well as validate the theoretical results concerning the121

target achievement, and the cost function. The proofs of the theoretical results of122

Section 2 are separated out for easy readability of the paper, and given in Section A.123

Finally, in Section 4 we briefly remark on potential extensions of this work.124

2. Spatiotemporal optimal control. Suppose we are given a nonautonomous125

nonlinear state equation126

(2.1) ẋ = v (x, t) ; t ∈ [0, T ] ,127

where x ∈ Ω, and Ω is an open and bounded subset of Rn. We will assume that128

v is smooth, and that solutions to (2.1) exist for all t ∈ [0, T ] (thereby precluding129

issues such as ‘blow-up in finite-time’ [56]). For v obtained on a spatio-temporal grid130

instead, we imagine that v is smoothly extended to the subgrid level (a strategy that131

is usually done when computing trajectories in such cases; see the citations in [8, 28]).132

Since such an extension may give values of v which are in reality inaccurate, we will133

(in Theorem 2.4) establish that our method is robust towards these errors.134

Our goal is to find an additive spatiotemporal control c (x, t) such that initial135
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4 L. ZHANG AND S. BALASURIYA

conditions x0 at t = 0, in a restricted domain Ω0 ⊆ Ω, approach at the final time T136

specified target locations, which are identified via a globally defined target function137

Θ : Ω0 → R
n. This target function must be achievable in that it is generated by a flow138

(i.e., there exists a velocity field u(x, t) such that the flow map of ẋ = u(x, t) from time139

0 to T is Θ(x)). In particular, Θ cannot demand flow trajectories which must cross140

each other, or reverse orientation in other ways. (For example, setting Θ(x) = −x141

if x ∈ R is unachievable, since this requires trajectories to cross each other—which142

is impossible for a flow.) However, we may specify Θ to have jump discontinuities,143

enabling for example steering trajectories into three different target locations. We144

emphasize that there is no restriction to equilibria or other specialized trajectories of145

(2.1), but we rather seek to steer all trajectories globally to any achievable specified146

locations by time T . The controlled nonautonomous state equation will take the form147

(2.2) ẋ = v (x, t) + c (x, t) ; t ∈ [0, T ] ,148

where we use the notation c(x, t) for the control. In the standard language of fluid149

mechanics, this represents the control velocity in the ‘natural’ Eulerian coordinate x,150

based on information from the Lagrangian trajectories of (2.1). We will denote by151

x (x0, t) solutions of (2.2) at time t ∈ [0, T ] subject to the initial condition x0 at time152

0. The optimal control problem globally on the t = 0 spatial domain Ω0 can then153

be posed as the determination of the control c (defined on a spatiotemporal domain154

(x, t)) which minimizes the cost function155

(2.3) G :=

∫

Ω0

[

‖x(x0,T )−Θ(x0)‖2+η

∫ T

0

‖c(x(x0,t),t)‖2dt
]

dx0 ,156

in which ‖�‖ is the standard Euclidean norm and η > 0 encapsulates the penalty for157

the energy contained in c over the time period [0, T ]. This regularizes the problem158

(and hence jump discontinuities are specifiable in Θ; these will be approximately159

achieved when minimizing G for small but nonzero η).160

We will develop a method for solving the minimization problem numerically for161

any given initial domain Ω0, final time T , evolution law v defined on [0, T ], target162

function Θ, and energy parameter η. We will moreover provide theoretical estimates163

on how the error in achieving the target decays with time and η. We also remark164

that within this formulation (specifically attempting to find a control velocity in165

the form c(x, t) for minimizing the spatially-integrated cost function G), proceed-166

ing through the Hamilton-Jacobi-Bellman approach directly is unfeasible because a167

numerical minimization is required within the partial differential equation. We instead168

adopt an approach which uses different established methods (from optimal control,169

fluid mechanics, differential equations theory, computer visualization) in an unusual170

way.171

For x0 ∈ Ω, we define172

(2.4) g(x0) := ‖x(x0,T )−Θ(x0)‖2+η

∫ T

0

‖c(x(x0,t),t)‖2dt ,173

and note that G =
∫

Ω0

g(x0) dx0. Since g ≥ 0 for all x0 ∈ Ω, minimizing G can be174

accomplished by minimizing g at each x0—a canonical optimal control problem—and175

then combining the results. (There is a caveat to this statement, which we will return176

to in describing the process in more detail subsequently.) Now, once minimizing g has177

been achieved for a particular initial condition x0, it will result in a control c defined178
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along the specific trajectory (x (x0, t) , t) of spacetime. Subsequently, we will detail a179

method for concatenating the results for each such x0 to be able to define c across all180

(relevant) spacetime (x, t).181

Theorem 2.1 (Single-trajectory optimal control). For x0 fixed in Ω, any opti-182

mal control c locally minimizing (2.4) is representible as183

(2.5) c (x (x0, t) , t) = − 1

2η
p(t) ; t ∈ [0, T ] ,184

in which the conjugate momentum p obeys the coupled system185

(2.6)
ẋ = v (x, t)− 1

2ηp

ṗ = − [∇v (x, t)]
⊤

p

}

186

subject to the implicitly-defined initial and end conditions187

(2.7)
x(0) = x0

p(T ) = 2 (x(T )−Θ(x0))

}

.188

Here, [�]⊤ denotes the matrix transpose, and ∇v is the n × n matrix derivative of v189

with respect to the spatial variable x.190

Proof. See Section A.1; this is an elementary application of optimal control.191

The fact that the condition on p in (2.7) is an end condition (while that of x192

is an initial condition), and moreover depends on the unknown value x(T ), neces-193

sitates some care when solving (2.6)-(2.7) numerically. Methods such as indirect194

shooting, multiple shooting, collocation approaches, as well as sequential, simultane-195

ous or direct transcription have been suggested for this well-known problem. While196

indirect methods suffer difficulties in acquiring a good initial guess and in repeated197

differentiation, the discretization associated with direct methods tends to obtain less198

accurate solutions. Here, we opt for a Newton-Raphson based (indirect) method199

which, as we demonstrate, has quick convergence. Having guessed an initial condition200

q := p(0) ∈ R
n, we implement (2.6) in forward time (in this case, we use the built-201

in ordinary differential equation solvers in MatlabTM), and consequently, determine202

x(T ) and p(T ) for that initial choice. Given that these depend on the initial guess q,203

we use the notation x(T,q) and p(T,q) respectively, and define204

(2.8) F(q) := p(T,q)− 2x(T,q) + 2Θ(x0) .205

If we find a root q of F, this is a correct initial condition p(0) to use to generate c206

from (2.5). To find such a q, we make an initial guess q0, and choose a small quantity207

δ. We then take the 2n ‘nearest neighbors’ of q0, i.e., q0 ± δei for i = 1, 2, · · · , n208

where the eis are the rectangular basis elements on R
n. Given x(0) = x0 and each209

of these initial conditions for p, we then advect (2.6) numerically forward to time T .210

We can now calculate the value of F using q = q0, and can use the results of all the211

nearest neighbor advections to numerically evaluate each of the values F (q0 ± δei),212

and hence estimate the matrix ∇F(q0) using standard finite-differencing. We then213

make an improved guess for the root q (which we call q1) using the Newton-Raphson214

method. More concretely, we go from our jth guess to the (j + 1)st guess by215

(2.9) qj+1 = qj −
(

[∇F (qj)]
−1
)⊤

F (qj) ,216
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6 L. ZHANG AND S. BALASURIYA

and stop the process once ‖F(qj)‖ is smaller than a specified threshold. The corre-217

sponding solution p(t) then gives us the required (single-trajectory) control c using218

(2.5).219

Thus, for any x0 ∈ Ω0, we can determine the solution trajectories x (x0, t). To220

quantify how we approach the target at time T , we define the global target error221

(2.10) E(t) :=

(∫

Ω0

‖x (x0, t)−Θ(x0)‖2 dx0

)1/2

222

for times t ∈ [0, T ]. We note that E(0) is the L2(Ω0)-norm of the function x0−Θ(x0),223

and can be assumed known from the problem statement. We now characterize, in224

terms of ‘given’ quantities (i.e., information about v, Ω, T , η and Θ), the rate at225

which E(t) approaches its final value E(T ). We first require to define some norms for226

functions h : Ω× [0, T ] → Ω. If ‖�‖ is the standard Euclidean norm in R
n, let227

‖h‖a := sup
(x,t)∈Ω×[0,T ]

‖h (x, t)‖ , and(2.11)228

‖h‖b := sup
(x,t)∈Ω×[0,T ]

sup
y∈Ω,y 6=0

∥

∥∇h⊤ (x, t)y
∥

∥

‖y‖ .(2.12)229

Theorem 2.2 (Global error decay). If there exists constants A and B such that230

‖v‖a ≤ A < ∞ and ‖v‖b ≤ B < ∞, then the rate of decay of E(t) to E(T ) obeys231

(2.13) |E(t)−E(T )| ≤
√
2

[

A
√

µ(Ω0)(T−t)+
E(T )

η

(

eB(T−t)−1
)

B

]

,232

where µ(Ω0) is the standard Lebesgue measure on Ω0.233

Proof. See Section A.2.234

As t approaches T , E(t) approaches E(T ) due to two effects: a linear rate which235

is characterized by ‖v‖a, and an exponential rate which is characterized by ‖v‖b. We236

emphasize that these results hold even if Θ is discontinuous (as we will demonstrate237

in Section 3).238

Next, we address η-dependence in the cost and global error. By choosing η smaller239

and smaller, since the penalization of the control velocity c is reduced in (2.3), one240

can achieve a target Θ with infinitesimal accuracy by choosing c closer and closer to241

the exact value u − v, where u is the velocity field which engenders the flow map Θ242

when considering the flow from time 0 to T . Thus, E(T ) decreases with η. We now243

establish a relationship with the decay of the total cost G.244

Theorem 2.3 (Comparative η-dependence). Suppose the hypotheses of Theo-245

rem 2.2 are satisfied. If there exists α > 1/2 such that246

lim
η↓0

E(T )

ηα
< ∞ , then lim

η↓0

G

η2α−1
< ∞ .247

Proof. See Section A.3.248

If we know that the global error decays as O(ηα), then the total cost will decay249

as O(η2α−1). We note that if α = 1, Theorem 2.3 implies that E(T )’s O(η) decay250

implies that G also has O(η) decay. We will demonstrate this particular behavior in251

our numerical simulations.252
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Next, we address the issue of how to determine c as a spatiotemporal function.253

By the process associated with using Theorem 2.1 and the Newton-Raphson method254

(2.9), given any initial condition x0 ∈ Ω, we can find the optimal control function255

c’s values along the spacetime curve (x(x0, t), t). By doing this for a grid of initial256

conditions x0 ∈ Ω0, we generate a collection of such spacetime curves along which we257

know the value of c. We now seek c as a spatiotemporal function (i.e., as a function on258

(x, t)). In doing so, we make the assumption that the generated spacetime curves are259

consistent, that is, should any two curves intersect in spacetime, the determined values260

of c at the point of intersection by following along either of the curves should give the261

identical value. (Since numerical approximation is being used, exactly identical is not262

necessary, but rather these should agree to within the resolution sought.) This is the263

caveat necessary to ensure that minimizing g and then extending to all spacetime is264

equivalent to minimizing the global cost G.265

Now, performing numerical interpolation proves to be ineffective and difficult be-266

cause the spacetime curves do not uniformly traverse spacetime. Moreover, given the267

possibility that the function Θ is nonsmooth (e.g., if different collections of initial con-268

ditions are steered towards, say, two different points—this example shall be shown in269

our simulations in Section 3), the consequent roughness of c results in wild oscillations270

in the interpolants. Thus, we instead use an approximant for c based on knowledge271

of the values of c along the collection of nonuniformly distributed spacetime curves.272

This is achieved easily in two-dimensions in MatlabTM by using the package gridfit273

[20], which regularizes the interpolation problem in seeking a smoother surface fitting274

for c = c (x, t). (The basic idea, described in detail in [20], is to fit an elastic plate275

approximately through the given points, with a stiffness parameter which penalizes276

deviation from the points.) Throughout this work we use the Laplacian as the regu-277

larizer (the Laplacian integrated over the fitted surface is to be kept small [20]). An278

N -dimensional version of this, regularizeNd, has also been developed [47], and is279

what we use when we consider higher-dimensional situations in our examples.280

Using our theoretical results, we can comment on the robustness of the process281

in the following sense. Suppose that instead of v, the true governing vector field is ṽ,282

where while ṽ is unknown, we know that it is ‘close’ to v (for estimates on Lagrangian283

trajectory uncertainty resulting from this, see [6]). This is inevitable if v were known284

from data; even if know exactly at the gridpoints, v would need to be interpolated285

in some way at the subgrid level when performing trajectory calculations. Moreover,286

the values at the gridpoints, if obtained from experimental or observational data, will287

carry their own measurement errors. Thus, there will always be an error in v when288

considered over the domain Ω× [0, T ].289

Theorem 2.4 (Robustness to uncertainties in v). Suppose there exists ǫ > 0290

such that ‖v − ṽ‖a < ǫ and ‖v − ṽ‖b < ǫ. If the ‘tilde’ variables are the quantities291

associated with using ṽ rather than v in calculations of the control velocity, global292

error, and cost, then293

(2.14)

c(x, t) = c̃(x, t) +O(ǫ) in Ω× [0, T ] ,

E(T ) = Ẽ(T ) +O(ǫ) and

G = G̃+O(ǫ) .







294

Proof. See Section A.4.295

Theorem 2.4 ensures that, since we follow our procedure by using v rather than296

the unknown (but O(ǫ)-close) ṽ, all relevant computed quantities are similarly O(ǫ)-297

close to the ‘true’ values. This suggests a (specific type) of robustness of the procedure:298
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Fig. 1. Spatiotemporal control for (3.1). (a) uncontrolled, (b) controlled to approach two points,
(c) cost distribution, and (d) spatiotemporal control function.

results will be correct to the same order of uncertainty as in v.299

We have thus developed a methodology for determining a spatiotemporal control300

in finite-time, in relation to globally defined targets, by a process of utilizing an301

unusual viewpoint and methodology to the optimal control discipline. Our algorithm302

is summarized below.303

1. Reduce the spatiotemporal minimization problem (2.3) to individual single-304

trajectory optimal control problems related to minimization of (2.4);305

2. Solve the resulting initial/end-condition problem (as identified in Theorem 2.1)306

by using the Newton-Raphson algorithm detailed in (2.9) for each initial con-307

dition, thereby determining the trajectory x(x0, t) and the control c (x(x0, t), t);308

3. Amalgamate the results for each initial condition by applying the gridfit309

[20] or regularizeNd [47] method to approximate the spatiotemporal control310

c as a function of (x, t);311

4. This algorithm is supported by the theoretical conditions on the decay of312

|E(t)− E(T )|, and the η-dependence of E(T ) and G, and robustness towards313

deviations in v.314

3. Simulations. In this Section, we present several simulations which demon-315

strate the ease at which the spatiotemporal control can be computed, and moreover316

validate the theoretical results on η-dependence and decay rates.317
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3.1. A one-dimensional example. For x ∈ R, and t ∈ [0, 1], let318

(3.1) v(x, t) = x sin (7t+ 0.3)w1(t)− 4x3 cos (5t)w2(t) ,319

in which some roughness to the velocity is obtained by implementing on a time-scale320

∆t = 0.02 a specific realization of stochasticity via w1(t) = 3U1(t) + 0.5 and w2(t) =321

2U2(t)−2, where the Ui(t) are independently chosen from the uniform distribution on322

[0, 1]. We show in Fig. 1(a) the result of implementing (2.1) for x0 ∈ Ω0 = [−0.4, 0.5].323

We first define Θ(x0) = 0.2 for x0 ≥ 0.3 and Θ(x0) = −0.3 for x0 < 0.3, which324

separates Ω0 at 0.3, and aims to send each segment of initial conditions towards a325

different target point. By using η = 0.01 and δ = 10−5 and implementing part (2)326

of our algorithm, we obtain excellent approach to our targets (red lines near t = 1),327

as shown in Fig. 1(b). The desired separation point at x0 = 0.3 is shown by the red328

line near t = 0. The distribution of the required costs for each initial condition x0329

(i.e., (2.4) is shown in Fig. 1(c); the trajectory beginning near −0.15 requires hardly330

any adjustment, and there is a sharp transition in the cost near x0 = 0.3 because331

it is necessary to split the trajectories in different directions. The computed control332

c for each trajectory is shown in spacetime as the green curves in Fig. 1(d). The333

red surface—which approximates c(x, t) across the spacetime domain based on the334

information at the green values—is obtained by applying gridfit with its default335

parameters. We note from Figs. 1(b) and (d) that although this process allows us to336

determine c on a connected spatiotemporal domain (i.e., the domain associated with337

the red surface in Fig. 1(d)), in reality its values on the wedge into which trajectories338

do not enter (because of the separation achieved by the process) are irrelevant.339

In Fig. 2(a), we show by the red circles the cost G as η is varied. Performing linear340

regression on the 10 smallest values of η yields the green line, whose slope indicates341

that G ∼ η1.0782. We similarly analyze the final target error E(T )’s decay with η in342

Fig. 2(b), and regression reveals that E ∼ η0.9447. Thus, these are consistent with343

choosing α ≈ 1 in Theorem 2.3. We next demonstrate the error decay with time in344

Fig. 2(c). Rapid decay as t → T is displayed, and in all other implementations (not345

shown), as predicted by (2.13).346

We finally briefly illustrate the impact of choosing different target functions Θ347

in Fig. 3, noting that Θ must be a monotonic function to avoid trajectories having348

to cross each other. Excellent results are achieved with these parameters, with costs349

G ∼ 10−3 in both instances.350

3.2. A two-dimensional example. For x = (x, y) ∈ R
2, suppose that351

(3.2) v(x, t) =

(

v1(x, y, t)
v2(x, y, t)

)

=

(

2x+ ty
sin y − t

)

,352

and let the initial time set be Ω0 = [−1, 1]× [0, 1], to be advected to time T = 1. We353

specify as our target function354

(3.3) Θ(x0) =

(

x2

0

4 + y0
cosx0 − 2x0y0

)

.355

There is no difficulty in implementing our methodology in this two-dimensional situa-356

tion (once again, our default values are η = 0.01 and δ = 10−5). We show in Fig. 4(a)357

and (b) the uncontrolled and controlled trajectory evolution respectively; this imple-358

mentation incurs a cost of G = 0.0317, and the target error E(T ) = 0.0069. As a359
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Fig. 2. Analysis for the optimal control associated with Fig. 1: (a) dependence of cost on η,
(b) decay of E(T ) as η is reduced, and (c) error decay as per Theorem 2.2.
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Fig. 3. Different target functions applied to (3.1). (a) Θ(x0) = x2
0
/4 (G = 0.00134), and (b)

Θ(x0) = x0 + 1 (G = 0.00477).
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Fig. 4. (a) Flow associated with (3.2); (b) the controlled flow from our algorithm subject to the
target function (3.3); (c) target x-value surface [orange], and achieved values [green crosses].
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Fig. 5. The distribution of contributions to (a) the cost G, and (b) the total error E(T ), over
points (x0, y0) ∈ Ω for the two-dimensional example.

sample to demonstrate the achievement of the target locations, we shown in Fig. 4(c)360

how the controlled final location (green crosses) is close to the target x-coordinate361

(orange surface) for (x0, y0) ∈ Ω0.362

The total cost G and final target error E(T ) are composed by integrating over363

Ω0. The distribution of the contributions to each of these integrals with (x0, y0) ∈ Ω0364

are shown in Fig. 5. The largest contributions to each of these occurs along the sides365

of Ω0; this is since the middle regions require the least effort to control for this chosen366
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Fig. 6. Computed control function c = (c1, c2) illustrated by green crosses, with the orange
surfaces indicating its approximant: (a) c1(x, y, t = 0.58) and (b) c2(x, y, t = 0.78). Different
viewing angles are used for better visibility.
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Fig. 7. The variation of (a) the cost G and (b) the error E(T ) with η for the two-dimensional
example.

target function.367

Visualizing the control c = (c1, c2) as a function of (x, y, t) requires higher-368

dimensions. Instead, in Fig. 6, we show computed values of c1 and c2 at different369

instances in time. The green crosses are the computed values based on our algorithm370

for single-trajectory optimal control, while the orange surface indicates the result of371

applying gridfit [20] to obtain approximating functions. While visualizing the full372

control is difficult, the computations did not present any significant difficulty.373

Finally, we validate η → 0 behavior in Fig. 7. The fitted regression lines (green)374

give the facts that G ∼ η0.990 and E(T ) ∼ η0.975. Thus, both the cost G and the final375

error E(T ) demonstrate the behavior as intimated in Theorem 2.3 with α ≈ 1.376

3.3. ABC flow. Having validated our theorems in several elementary flows, we377

next investigate the flow associated with an exact solution to the three-dimensional378

steady Euler equations of fluid motion: Arnold-Beltrami-Childress (ABC) flow, whose379

velocity field is given by [3, 21]380

(3.4) v(x) =





v1(x, y, z)
v2(x, y, z)
v2(x, y, z)



 =





A sin z + C cos y
B sinx+A cos z
C sin y +B cosx



 ,381
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Fig. 8. ABC-flow trajectories from time 0 to 0.4: (a) uncontrolled, and (b) controlled using
η = 0.00001, all with a target destination (π, π, π) for all trajectories.

where x = (x, y, z). When considered on the cell [0, 2π) × [0, 2π) × [0, 2π) with382

triply-periodic boundary conditions, the resulting trajectories are well-known to be383

chaotic [21]; Arnold’s criterion for generic integrability of trajectories arising from384

steady Euler flow [3] fails in this instance because the velocity and vorticity fields are385

collinear. The ABC velocity field (3.4) is also an exact solution to the Navier-Stokes386

equation under a particular choice of body force [21]. We use the parameter values387

A = 1, B = 2/3 and C = 1/3 (also considered in [21]) for our simulations. In the388

spirit of chaos control [42, 22, 51, 55], we seek here to make trajectories all approach389

the same final destination (π, π, π).390

In using our algorithm, since the problem is spatially three-dimensional, we need391

to use a seven-point stencil at each point p (the central point, plus points adjacent392

to this in all three coordinate directions) in conjugate momentum space to estimate393

the gradient of the flow map with respect to p, and then have to invert the 3 × 3394

matrix in the Newton-Raphson step. Additionally, we require the usage of the higher-395

dimensional regularizeNd [47] rather than gridfit [20] in determining the control396

velocity globally. We demonstrate in Fig. 8(a) the trajectories in (x, y, z)-space for a397

grid of initial conditions, evolved from time 0 to T = 0.4 using the ABC velocity (3.4),398

using an Euler method with ∆t = 0.001. Our control algorithm is then applied with399

the identical time-spacing, and with η = 0.0001, thereby desiring the achievement of400

the target at a high level of accuracy. The controlled trajectories are displayed in401

Fig. 8(b) with each trajectory shown in a different color. All trajectories are seen to402

approach (π, π, π) as required.403

The control velocity c = (c1, c2, c3) has three components, with each component404

being a function of (x, y, z, t). Illustratubg the computed control in a complete way is405

therefore difficult. We show several time-slices, in several z = constant planes, for one406

of the components in Fig. 9. These are shown as contour fields. We note that since407

these are computed based on where trajectories are at each time-instance (i.e., from408

the trajectory data in Fig. 8(b)), we can only obtain reliable nformation in sets which409

are within a convex domain of the existing data points. That is, extrapolation in the410

(xy)-plane beyond the available data points is unreasonable. Hence, the information411

at each time is confined to the current locations of the controlled trajectories. At412

each time-frame, for the demonstration of the control c2(x, y, z, t) in Fig. 9, we choose413

a z-plane which is exactly in the middle of the z-range of all the current trajectory414
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Fig. 9. Displaying the control velocity component c2(x, y, z, t) for the ABC-flow control at
several time- and z-slices: (a) t = 0.1 and z = 2.3106, (b) t = 0.2 and z = 2.599, (c) t = 0.3 and
z = 2.869, and (d) t = 0.4 and z = 3.139.

locations. At t = 0.4, since the trajectories have all closely approached (π, π, π),415

information is only available in a small neighborhood near this.416

3.4. A Navier-Stokes data example. Finally, we demonstrate applicability417

when velocities are genuinely given by data, by generating them from a computa-418

tional fluid dynamics simulation of the Navier-Stokes equations. The spatial do-419

main [0, 1]× [0, 1] is used, with periodic boundary conditions in both directions. The420

Reynolds number is moderate at 5000, and 100 equally spaced intervals are used421

in each direction to define a spatial grid. The Navier-Stokes equations are solved422

in this case using the vorticity formulation, with a specified forcing function and a423

randomly generated initial vorticity distribution. A pseudo-spectral code is used:424

discrete Fourier transforms in space, and a Crank-Nicholson algorithm in time, with425

∆t = 0.01. The equations are numerically solved from an initial time t = 0 to a final426

time T = 2. Thus, the two components of the velocity field v = (v1, v2) are generated427

on a spatiotemporal grid. To get a sense of the computed velocity, we show in Fig. 10428

the components v1 and v2 at a couple of instances in time.429

The velocity data from the Navier-Stokes simulation is then stored, and used as430

input into a spatiotemporal control strategy. We take an equally-spaced grid of 25431

initial points (x0, y0), and first plot their evolution under the uncontrolled unsteady432

velocity data in Fig. 11(a). Our control aim in this instance is to have these approach433
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Fig. 10. The velocity components v1 (left) and v2 (right), computed at times 0.5 (top row) and
2.0 (bottom row), as generated from the Navier-Stokes computational fluid dynamics solver.
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Fig. 11. The (a) uncontrolled, and (b) controlled, trajectories from the Navier-Stokes example.
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Fig. 12. The (a) x-coordinate, and (b) the y-coordinate, of the controlled trajectories at the
final time T = 2 (green crosses), along with the relevant target surface (3.5) (orange planes).

the target destination function434

(3.5) Θ(x0) =

(

x0 − y0
y0

)

.435

by the final time (T = 2), and we choose η = 0.0001. Applying the methodology that436

we have described is now straightforward. Even though the velocity is given purely in437

terms of data on a discrete grid, it is possible to approximate quantities such as∇v (as438

needed for implementation of (2.6) by standard finite-differencing, and interpolating439

as needed when trajectories are off the grid. The controlled trajectories derived from440

this process are shown in Fig. 11(b). To verify that the desired targets have been441

achieved, in Fig. 12 we illustrate with green crosses the x- and y-coordinates of the442

final locations as functions of the initial location (x0, y0). The planes displayed are443

the exact target functions given in (3.5). Clearly, the targets have been achieved to444

excellent accuracy. It turns out that the global error E(T ) in (2.10) is 0.00184, and445

the total cost (2.3) is 4.26× 10−6.446

Finally, we demonstrate the computed control velocity c(x, y) = (c1, c2) at several447

intermediate time-instances in Fig. 13. As before, the green crosses indicate the448

computed value of the control velocity from the integration along trajectories, while449

the orange surface (the global control velocity) is obtained by applying the gridfit450

technique. In all cases, the (x, y) domain is automatically limited here to the spatial451

regions the relevant trajectories traverse, and not the full domain of the Navier-Stokes452

simulation (which would entail spurious extrapolation). We have thus demonstrated453

the applicability of our optimal control technique to computational fluid dynamics454

data as well.455

4. Discussion and conclusions. By combining and adapting different tech-456

niques (Hamiltonian formulation of optimal control, Newton-Raphson method, ap-457

proximating surfaces using gridfit [20] and/or regularizeNd [47] and the applied458

analysis of differential equations), we have developed a methodology for determining459

a spatiotemporal optimal control function for a finite-horizon globally-specified tar-460

get achievement. With this specific focus in mind, the cost function we chose takes461

the most amenable convex form (2.3); however, the algorithm we propose can be ex-462

tended to more general forms of G. For this cost function, we were able to provide463

theoretical estimates which show the rate of decay of the error, and the comparative464
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Fig. 13. The control velocity components c1 (left) and c2 (right), computed at times 0.5, 1.0
1.5 and 2.0 (in order of rows). The green crosses are computed from the controlled trajectories,
while the orange surface extends these globally using gridfit.
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η-dependence on the error and cost, in elementary ways, avoiding elaborate functional465

analytic arguments.466

We have highlighted that our formulation is particularly relevant to fluid mechan-467

ical systems in which v is a observed/computationally-determined velocity field, and468

then the spatiotemporal control c will be something physically realizable by imposing469

additional flow conditions such as boundary vibration [19, 58], or sinks/sources posi-470

tioned at strategic locations [11, 53, 46, 60, 29]. Often, fluid mixing is to be controlled471

or enhanced by pushing fluid trajectories in some specified way over a time duration;472

our assumptions in this paper (i.e., that Θ is specified) is particularly suited to this473

situation. Significant future applications of this method in fluid mechanical systems474

is therefore anticipated.475

Controlling the Navier-Stokes equations of fluid mechanics is mature research476

field (see the reviews [11, 31]), in which principal difficulties arise in the infinite-477

dimensionality of the control problem, finite-dimensional projections also being of478

sufficiently large dimension to make the control procedure computationally expensive,479

highly turbulent situations requiring highly resolved information, and unpredictability480

over longer time-horizons. Generally, the task is to control the Eulerian velocity by481

limiting its ‘turbulence level’ as measured in terms of its gradients, vorticity, enstropy,482

etc. Controllability is usually via the boundary, thereby restricting the nature of483

the control. Our approach is different, instead targeting the eventual Lagrangian484

locations of trajectories, while seeking a spatiotemporally distributed control velocity.485

Consequently, our control problem has a dimensionaliity equal to that of the physical486

space in which the fluid resides (i.e., no more than three), allowing the effective usage487

of a Hamiltonian formulation of optimal control. We recover the spatiotemporal488

nature of the control velocity by using an approximant based on the control algorithm489

applied to an ensemble of trajectories. Of course, we would expect the method to face490

greater difficulties when the turbulence or the time-horizon is large; these require491

higher resolutions spatially and temporally.492

Our framework can also be thought of as an interesting approach for controlling493

chaotic systems which may be autonomous or nonautonomous [10, 59, 63]. We have494

the ability to steer trajectories globally over some finite time using our method. We495

have demonstrated the application of this to an example from fluid mechanics—ABC496

flow. Thus, this provides a contribution to chaos control theory which is different497

from standard ones such as chaotic synchronization [50, 12, 36] and local control near498

chaotic saddles [23, 26]. The smoothness our theorems require in v is consonant499

with chaotic systems; the unpredictability of corresponding Lagrangian trajectories500

because of sensitivity to initial conditions is apparently not an impediment to our501

theory and algorithm. As in the turbulent flow situation, the difficulty will be that502

the control velocity would need to be specified on finer and finer scales, and the503

control will be achievable for times which are not too large. We also note that the504

criteria we have developed apply even for nonsmooth Θ allowing, for example, the505

separation of trajectories into specified clusters. Thus, we expect this methodology506

to be a promising new approach for chaos control.507

The numerical simulations we presented in Section 3 demonstrated the power of508

the method. We have illustrated the usage in both analytically-defined velocities, and509

velocities on a spatio-temporal grid obtained from a computational fluid dynamics510

simulation of the Navier-Stokes equation. While we showed one- two- and three-511

dimensional examples, the method works in any spatial dimension. However, the512

computational complexity does increase with the dimension, rendering the method513

impractical in large dimensions. Moreover, in instances in which the initial velocity514
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field is highly turbulent, the presence of large velocity gradients will mean that the515

control velocities may become difficult to compute. Put another way, highly turbu-516

lent situations will have large ‖�‖b norms in the velocity fields, and thus our theorems517

which provide decay rates and rubustness of the optimal control methodology have518

less value because the size of this norm is relevant. There is also a subtle issue which519

requires further exploration: the implicit assumption that an optimal control c exists520

as a function of (x, t). Should different trajectories give different predictions for c at521

a point of intersection of spacetime curves, determining c as a genuine spatiotemporal522

function becomes problematic. We plan to explore this issue, and seek an alternative523

formulation which is both analytically and physically reasonable, in future work. Ad-524

ditionally, we are seeking improvements in computational efficiency of the algorithm,525

for improved performance on densely defined and/or higher-dimensional data.526

Appendix A. Proofs of theorems.527

Here, we provide the proofs of the theorems of Section 2.528

A.1. Proof of Theorem 2.1. This is a result emerging from classical optimal529

control theory [39], which works even when the evolution law is nonautonomous. We530

first use the following standard result (e.g., see Sections 2.5–2.6 in [39]), and written531

here in our notation. The notation ∇y represents the n × n matrix derivative with532

respect to the variable y ∈ R
n.533

Theorem A.1 (Nonautonomous optimal control). Consider for x ∈ R
n a system534

ẋ = f (x, c, t) ; t ∈ [0, T ]535

in which c is the control, and the optimization of a quantity536

g = h1 (x(T )) +

∫ T

0

h2 (x(t), c, t) dt537

is sought. Upon definition of the Hamiltonian538

H(x, c,p, t) := h2(x, c, t) + f (x, c, t)
⊤
p ,539

a necessary condition for c to be a local optimizer of g is ∇cH = 0, in which x = x(t)540

and p = p(t) are solutions to the system541

ẋ = ∇pH
ṗ = −∇xH

}

, where
x(0) = x0

p(T ) = ∇xh1(x(T ))

}

.542

Moreover, the solution corresponds to a minimizer if ∂2

∂c2H is positive definite.543

To prove Theorem 2.1, we apply TheoremA.1 with the choice f (x, c, t) = v (x, t)+544

c, h1(x) = ‖x−Θ(x0)‖2 and h2(x, c, t) = η ‖c‖2. Then, the Hamiltonian is545

H(x, c,p, t) = η ‖c‖2 + (v(x, t) + c)
⊤
p .546

The condition ∇cH = 0 yields η2c + p = 0, and thus c (x(x0, t), t) = −1/(2η)p(t).547

Now, since548

∇xH = [∇xv]
⊤
p and ∇pH = v(x, t) + c ,549

the differential equations (2.6) emerge immediately. Moreover,∇xh1 (x(T )) = 2 (x(T )−Θ(x0)),550

which gives the end condition for p in (2.7). To establish that this critical c corre-551

sponds to a minimizer of g, we observe that ∂2

∂c2H = 2ηI, where I is the n×n identity552

matrix. Since η > 0, this is positive definite. (More simply, the convexity of H in c553

in fact ensures that this is a global minimizer.)554
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A.2. Proof of Theorem 2.2. By taking the t-derivative of E(t)2, we get555

d

dt

[

E(t)2
]

= 2

∫

Ω0

d

dt
[x(x0, t)]

⊤
[x(x0, t)−Θ(x0)] dx0556

Now, using the fact that (d/dt)x = v + c, and subsequently applying the Cauchy-557

Schwarz inequality on the right-hand side, we get558

∣

∣

∣

∣

d

dt

[

E(t)2
]

∣

∣

∣

∣

≤ 2

(∫

Ω0

‖v + c‖2 dx0

)1/2

E(t)559

≤ 2

(

2

∫

Ω0

‖v‖2 dx0 + 2

∫

Ω0

‖c‖2 dx0

)1/2

E(t)560

≤2
√
2

[

(
∫

Ω0

‖v‖2 dx0

)1/2

+

(
∫

Ω0

‖c‖2 dx0

)1/2
]

E(t)561

≤2
√
2

[

A
√

µ(Ω0) +

(∫

Ω0

‖c‖2 dx0

)1/2
]

E(t) .(A.1)562

In the above, we have suppressed the arguments (x(x0, t), t) in both v and c for563

brevity, and at the last step used the bound on ‖v‖a. Now from Theorem 2.1, for any564

fixed x0, we know that c = −p/(2η) with p obeying (2.6) with condition for p(T )565

given in (2.7). Using the abuse of notation c(t) := c (x(x0, t), t), this means that566

ċ = − [∇v (x(x0, t), t)]
⊤
c567

subject to the condition c(T ) = − [x (x0, T ))−Θ(x0)] /η. We rewrite this in a new in-568

dependent variable τ = T − t, and let ĉ(τ) = c(t). Setting L(τ) := [∇v (x(x0, t), t)]
⊤,569

we have570
∂

∂τ
ĉ = L(τ)ĉ ; ĉ(0) = −x (x0, T )−Θ(x0)

η
.571

Premultiplying the differential equation above by ĉ⊤, we obtain572

1

2

∂

∂τ
‖ĉ‖2 = ĉ⊤L(τ)ĉ ,573

and consequently574

∂

∂τ
‖ĉ‖2 ≤ 2

∥

∥ĉ⊤
∥

∥ ‖L(τ)ĉ‖575

≤ 2
∥

∥ĉ⊤
∥

∥B ‖ĉ‖ = 2B ‖ĉ‖2576

using the bound on ‖v‖b. Separating variables and integrating from τ = 0 to a general577

τ value in [0, T ], we have578

ln
‖ĉ(τ)‖2

‖ĉ(0)‖2
≤ 2Bτ ,579

and applying the value of ĉ(0) we acquire the bound580

‖ĉ(τ)‖2 ≤ ‖x(x0, T )−Θ(x0)‖2
η2

e2Bτ .581

Reverting to t ∈ [0, T ] as the independent variable, this means that582

(A.2) ‖c(t)‖2 ≤ ‖x(x0, T )−Θ(x0)‖2
η2

e2B(T−t) .583
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Inserting this bound into (A.1) yields584

∣

∣

∣

∣

d

dt

[

E(t)2
]

∣

∣

∣

∣

≤ 2
√
2

[

A
√

µ(Ω0) +
E(T )eB(T−t)

η

]

E(t) .585

This means that586

(A.3)

∣

∣

∣

∣

d

dt
[E(t)]

∣

∣

∣

∣

≤
√
2

[

A
√

µ(Ω0) +
E(T )eB(T−t)

η

]

,587

and integrating from a general time t to T results in588

E(T )−E(t) ≤
√
2

[

A
√

µ(Ω0)(T−t)−E(T )
(

1−eB(T−t)
)

Bη

]

.589

Similarly working with the fact that (d/dt)E(t)2 is greater than negative the term on590

the right of (A.3) enables591

E(T )−E(t) ≥ −
√
2

[

A
√

µ(Ω0)(T−t)−E(T )
(

1−eB(T−t)
)

Bη

]

.592

Combining these two results gives us the required equation (2.13).593

A.3. Proof of Theorem 2.3. We can write (2.3) as594

(A.4) G = E(T )2 + η

∫

Ω0

∫ T

0

‖c (x(x0, t), t)‖2 dt dx0 .595

Using (A.2) we have596

∫

Ω0

∫ T

0

‖c (x(x0, t), t)‖2 dt dx0 ≤ E(T )2(e2BT − 1)

2Bη2
,597

and so598

G ≤ E(T )2
[

1 +
e2BT − 1

2Bη

]

.599

Now if E(T ) = O(ηα) for some α > 1/2, then600

G ≤ O(η2α)

[

1 +
e2BT − 1

2Bη

]

= O(η2α−1)601

as required.602

A.4. Proof of Theorem 2.4. If we consider the initial system (2.1) with ṽ603

instead of v, the procedure outlined will then generate a control c̃, a global error Ẽ(t)604

at a general time t, a global error Ẽ(T ) at the final time T , and the minimizing cost605

G̃. Now, since ṽ is O(ǫ)-close to v in both the norms ‖�‖a and ‖�‖b, this Theorem is606

a simple consequence that every step in the previous theorems inherits this closeness607

because Ω0 is bounded, and the time-interval [0, T ] over which integration is performed608

is finite. Specifically, x̃(x0, t) and p̃ must be O(ǫ)-close to the variables x(x0, t) and609

p generated via Theorem 2.1. Since c̃ = −p̃/(2η), this property transfers to c̃. Then610

(2.10) ensures that Ẽ(t) is O(ǫ)-close to E(t), and furthermore, (A.4) ensures that611

G̃ = G+O(ǫ) as well. The decay expression in Theorem 2.2 also remains valid, with612

of course the replacements A → Ã and B → B̃, thereby only perturbing the results613

by O(ǫ).614
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