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Direct Chaotic Flux Quantification in Perturbed Planar Flows: General
Time-Periodicity∗
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Abstract. Chaotic flux occurring across a heteroclinic upon perturbing an area-preserving planar flow is exam-
ined. The perturbation is assumed to have general periodicity, extending the harmonic requirement
that is often used. Its spatial and temporal parts are moreover not required to be separable. This
scenario, though well-understood phenomenologically, has until now had no computable formula
for the quantification of the resulting chaotic flux. This article derives such a formula, by directly
assessing the unequal lobe areas that are transported via a turnstile mechanism. The formula in-
volves a bi-infinite summation of quantities related to Fourier coefficients of the associated Melnikov
function. These are themselves directly obtainable using a Fourier transform process. An example
is treated in detail, illustrating the relative ease in which the flux computation can be performed
using this theory.
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1. Introduction. This article is concerned with obtaining a computable quantification of
the chaotic flux generated through perturbing an integrable planar system with a perturbation
which has general time-periodicity. The specific setting will be stated first; a description of
its contribution to the broader topic of quantifying chaotic flux will then be easier to present.
The nearby area-preserving integrable flow shall be given by

ẋ = J∇H(x),(1.1)

where x ∈ Ω ⊂ R
2, J = (0

1
−1
0 ), and H ∈ C2 (Ω) is the Hamiltonian function. It is assumed that

(1.1) has a heteroclinic connection x̄(t) between two hyperbolic saddle points a and b (which
need not be distinct). Thus, this heteroclinic is simultaneously a branch of the one-dimensional
unstable manifold of a and the one-dimensional stable manifold of b. The regular phase-space
structure precludes any complicated motion across this heteroclinic, which is therefore a flow
separatrix.

The idea is to assess the chaotic flux across this separatrix under the influence of a per-
turbation to the velocity field in the form

ẋ = J∇H(x) + ε h(x, t),(1.2)

where the function h : Ω × R → R
2 satisfies the following conditions:
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(a) For each fixed t, h(x, t) ∈ C2 (Ω).
(b) For each fixed x ∈ Ω, h(x, t) as a function of t ∈ R is piecewise continuous, has

well-defined left- and right-hand derivatives at all t, and is periodic with period 2π/ω.

Here, 0 < ε � 1, and for nonzero ε the stable and unstable manifolds perturb, thereby
presenting the possibility of chaotic transport occurring across the heteroclinic.

This problem has been solved quite comprehensively for the case where h(x, t) is separable
in the form g(x) θ(t), and the function θ(t) is harmonic. For the purposes of this paper
harmonic will mean that θ(t) = cos (ωt− β) for a given frequency ω and phase β. In this case
the perturbed manifolds intermingle regularly, creating lobes of equal area. One needs to define
a “pseudoseparatrix” [35] for the perturbed flow, and it turns out that only specified lobes
(“turnstiles”) control transport across this pseudoseparatrix. It has been well known for some
time that each lobe area is given by an integral (with appropriate limits) of a quantity called
the Melnikov function [29, 31, 35, 28]. The Melnikov function is related to the signed distance
between the perturbed stable and unstable manifolds [20, 4]. Many theoretical developments
of lobe dynamics (some of which include effects of secondary manifold intersections, nonsmall
ε, very small or very large ω, and nonharmonic θ) have evolved [28, 26, 31, 21, 27, 18, 8], yet as
pointed out in [23] seldom provide methods of actually performing flux calculations. Indeed,
such calculations have been numerically done using lobe dynamics only in a few specific cases
[30, 21]. A theoretical, but computable, quantification of the flux using this idea in this
time-harmonic separable setting was presented in [7, 6]. The former paper is a dynamically
consistent approach to time-harmonically forced Euler flows, while the latter analyzes the best
kinematical harmonic perturbation that could lead to increased chaotic flux.

Even within this separable setting, for θ not necessarily harmonic, a direct chaotic flux
assessment is not available. In the various extensions to Melnikov theory in relation to trans-
port [31, 12, 28, 10, 32, 11, 8], few concentrate on obtaining computable formulae quantifying
the chaotic flux. Among the difficulties are defining a pseudoseparatrix and the fact that the
lobes created need not have equal areas. Obtaining an expression for the chaotic flux from
the lobe areas is also not obvious, since the lobes do not map to other lobes in as obvious
a fashion as occurs in the harmonic case. The Melnikov function, which was itself harmonic
and easily computed for harmonic θ (see [7]; see also Corollary 5.3), is no longer as tractable.
This leaves no easy technique for calculating its integral, which is necessary in determining
lobe areas. Though lobe area formulae are occasionally available in some settings (such as
in [18] in which a mechanical Hamiltonian system is considered), there is normally no direct
method of obtaining the chaotic flux in terms of fundamental quantities of the flow. In other
words, although the process of chaotic transport via turnstile dynamics is well understood
qualitatively, there is no method of quantifying the chaotic flux in a computable fashion.

This article will establish a method of directly quantifying the chaotic flux related to
(1.2) under quite general conditions. The approach is interesting from both theoretical and
computational perspectives. While providing an understanding of the role of Fourier modes
of h(·, t) in the Melnikov development and flux computation, it illustrates an algorithm which
is easy to implement. Importantly, the method requires neither harmonicity nor separability.

The problem as stated is one aspect of a global interest in quantifying transport in chaotic
systems. Techniques such as Lyapunov exponents [20], effective diffusivities [5, 16, 3, 1, 15],
width of stochastic layers [16, 3, 15], entropy and other measures on tracer distribution [17,
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5, 26, 15], escape rates or transit times [17, 22, 25, 26, 14], asymptotic directionality [19], or
intermaterial contact surfaces [2] are commonly used (see [23, 24, 15] for reviews). Many of
these quantities are heuristically motivated and often need to be determined numerically or
experimentally. It must be mentioned that these techniques, however, enjoy several advantages
over the current approach: (i) they do not require a perturbative (i.e., near integrable) setting,
(ii) separatrices (pseudo or otherwise) need not always be defined, and (iii) time-periodicity is
not always necessary. Their shortcoming is that they often provide only indirect assessments
(or diagnostics) of the chaotic flux, as opposed to the current approach, which quantifies the
amount of phase-space area transported across a separatrix in unit time. This quantity is
clearly by definition the flux. Although the current theory is limited by its perturbative and
time-periodic nature, it is felt to be a substantial contribution, given the paucity of computable
theoretical tools for direct definitions of flux.

This paper approaches the topic as follows. First, it is shown in section 2 that the Mel-
nikov function can be obtained from h(x, t) in terms of a filtering in Fourier space. This
unusual (though not difficult) approach permits a quantification of the leading-order chaotic
flux in terms of Fourier coefficients of h (·, t), certain properties of the unperturbed hetero-
clinic trajectory, and the zeros of the Melnikov function; this is presented in section 4. The
flux formula has an infinite summation, but it will be argued that this usually converges
rapidly. This formula can be evaluated relatively easily if the unperturbed flow is sufficiently
well understood—a significant improvement on extant methods. The simplifications to the
formula under a separability assumption on h(x, t) are then presented in section 5, which also
addresses several additional special cases for which simple formulae arise. In deriving all these
flux formulae, an understanding of the appropriate pseudoseparatrices and turnstile structure
for the general time-periodic case is necessary and is provided in section 3.

An example which has been used as a kinematical model for Rayleigh–Bénard convection
is examined closely in section 6. The leading-order flux between cells is explicitly obtained for
many different forms for h(x, t). This includes square-wave-like time dependence, an instance
in which h(·, t)’s Fourier series has poor convergence, yet in which the flux computation is
shown to converge rapidly. Illustrative computations are also performed for nonseparable h,
for example, when h is generated from a traveling triangular wave. The flux computation is
shown to converge quickly in a gross sense (to around two significant figures) in this instance,
and more careful numerical investigation is presented on its detailed convergence. A general
procedure for doing the leading-order flux calculation is a relatively easy exercise in comparison
with other direct flux quantifying techniques, which may require numerical integration of the
Melnikov function. Hence, the flux formula derived herein is a powerful tool in obtaining
direct assessments of chaotic flux in near-integrable two-dimensional systems with general
time-periodic perturbations.

2. Melnikov function. In computing the lobe areas in general, one usually takes the
following approach. The heteroclinic manifold can be parametrized by t ∈ R by association
with the point x̄(−t). The leading-order (signed) distance between the perturbed stable and
unstable manifolds near a point t can be represented by [20, 4, 35]

Distance = ε
M(t)

|∇H (x̄(−t))| + O(ε2),
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where M(t) is called the Melnikov function, for which an expression will be presented shortly.
More precisely, one first takes a specific “time-slice” of the (2 + 1)-dimensional phase-space
of (1.2) and defines on this slice a Poincaré map which samples the flow every 2π/ω time
units. The fixed points a and b perturb but exist as fixed points of this Poincaré map, and
these retain their stable and unstable manifolds with respect to this map. It is the signed
distance between these perturbed manifolds, measured in the direction normal to the original
heteroclinic manifold at the point x̄(−t), that the above distance expansion represents.

Given the periodicity hypothesis on h (·, t), it can be represented for each x in terms of a
complex Fourier series

h(x, t−) + h(x, t+)

2
=

∞∑
n=−∞

gn(x) exp (i n ω t) ,

where the functions gn : Ω → C
2 satisfy

gn(x) =
ω

2π

∫ 2π/ω

0
h(x, t) exp (−i n ω t) dt .

Define for each n ∈ Z the function λn : R → C by

λn(t) := ∇H (x̄(−t)) · gn (x̄(−t)) .

Now, ∇H (x̄(t)) exponentially decays to zero as t → ±∞ given the hyperbolicity of the
endpoints a and b. Since gn is bounded on the closure of the heteroclinic manifold (it is
continuous, and this set is compact), λn ∈ Lp (R) for any p ∈ [1,∞]. This enables the
definition of λn’s Fourier transform

λ̂n(r) :=

∫ ∞

−∞
λn(t) exp (−i r t) dt,

which exists classically for all n ∈ Z.
Proposition 2.1. The Melnikov function M(t) has a complex Fourier series representation

M(t) =
∞∑

n=−∞
dn exp (i n ω t) , where dn = λ̂n (nω) .

Proof. The Melnikov function associated with (1.2) is well known to be [20, 4, 35]

M(t) =

∫ ∞

−∞
∇H (x̄(τ − t)) · h (x̄(τ − t), τ) dτ .(2.1)

Utilizing h (·, t)’s complex Fourier series,

M(t) =

∫ ∞

−∞

∞∑
n=−∞

∇H (x̄(τ − t)) · gn (x̄(τ − t)) exp (i n ω τ) dτ

=
∞∑

n=−∞

∫ ∞

−∞
λn (t− τ) exp (i n ω τ) dτ

=
∞∑

n=−∞
exp (i n ω t)

∫ ∞

−∞
λn (τ) exp (−i n ωτ) dτ ,
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from which the result follows. The dominated convergence theorem has been used to inter-
change the infinite summation and improper integral.

Remark 2.1. Since h is (2π/ω)-periodic in t, this formulation shows that M must be as
well.

Remark 2.2. If h(·, t) has a phase-shift (say, t is replaced by t − β), then M inherits the
same phase-shift. Alternatively, if a shifted time parametrization is chosen for the heteroclinic
trajectory x̄(t), then each λn has such a phase-shift, which again is inherited by M .

Remark 2.3. Since λ̂n(r) → 0 as r → ±∞ (by the Plancherel theorem λ̂n is square in-
tegrable over R because λn is), this formulation also indicates that high frequencies present
in h (·, t) undergo increased damping. Thus, the function M(t) has muffled oscillations in
comparison to h(·, t). This often results in M(t) being smoother, and having fewer zeros, than
h(·, t).

Remark 2.4. Trivial manipulations of the above can be used to represent M(t) as a bi-
infinite summation over the functions αn(t), where αn(t) is the convolution between the func-
tions λn(t) and exp (i n ω t).

Remark 2.5. Expressing the Melnikov function in a Fourier series is not a new idea [14, 18];
determining formulae for its Fourier coefficients as done in Proposition 2.1, however, has not
been done.

Lemma 2.2. Suppose h(x, t) is an even function in t for all x ∈ Ω. Then, the Melnikov
function’s Fourier coefficients dn satisfy

d∗n = d−n for n ∈ N,

where the star denotes the complex conjugate.
Proof. For even functions h(·, t), the complex Fourier coefficient functions gn(x) = g−n(x)

and are moreover real. Therefore, λn(t) = λ−n(t), which are also real functions. Using
Proposition 2.1 for n ∈ N,

d−n = λ̂−n (−nω) =
[
λ̂−n (nω)

]∗
=
[
λ̂n (nω)

]∗
= d∗n ,

where the fact that λ̂∗(r) = λ̂(−r) for any real r is used for real functions λ(t).

3. Flux definition. This section will provide a rationalization for the chaotic flux defi-
nition, and establish its connection with the Melnikov function, for general periodic h. A
discursive approach will be followed, since it is necessary to motivate the concept of the flux
as a transfer of area per unit time. The flux mechanism is well understood in the standard
instance in which h(x, t) is both separable and harmonic. It helps to describe the transport
mechanism in this case first; see also [29, 31, 35]. Some detail will need to be provided to
understand Lemma 3.1, which extends the ideas to the present context.

Suppose then that h(x, t) = g(x) cos (ωt− β), where β is a constant phase and g : Ω → R
2.

One can then use trigonometric identities [7, 6] to express

M(t) = |γ̂(ω)| cos {ωt− β + Arg [γ̂(ω)]} ,

where γ(t) = ∇H (x̄(−t)) · g (x̄(−t)) (see also Corollary 5.3). Transverse zeros of M occur
every π/ω, which correspond to transverse intersections between the perturbed stable and
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Figure 3.1. Lobes and pseudoseparatrix (heavy red curve) for harmonic perturbations.

unstable manifolds given that M represents the leading-order distance between these. Fig-
ure 3.1 shows this structure; a and b are the perturbed versions of the fixed points. What
emerges is a heteroclinic tangle which is a signature of chaotic trajectories in its vicinity. Pick
a primary intersection point [31, 29, 26, 35] between these manifolds and call it p. Define the
pseudoseparatrix by combining the part of the unstable manifold of a, which lies between a
and p, with the stable manifold of b, which lies between p and b; this is indicated with a heavy
curve in the figure. This is O(ε)-close to the original heteroclinic trajectory and will be used
as the “boundary” across which flux is to be computed.

Upon iteration of the Poincaré map of period 2π/ω, the point p maps to p+, and the point
p− maps to p. Notice that there are two distinct discrete heteroclinic orbits which exist in this
perturbed case: one follows . . . , p−, p, p+ . . . , and the unlabeled set of manifold-intersection-
points alternate with this set. By the (2π/ω)-periodic Poincaré map, this means that the
lobe L1 maps to L3, and L2 maps to L4 (it turns out that in this special case, all these lobes
have the same area). If one thinks of what crosses the pseudoseparatrix per iteration of the
Poincaré map, the area of L1 crosses in one direction, whereas the area of L2 crosses in the
other. No other lobes cross the pseudoseparatrix, since they retain their relative positions
with respect to the manifolds. This structure of four lobes L1, L2, L3, and L4 adjacent to
the chosen primary intersection point p is called a turnstile [35]; the defining endpoints of the
turnstile are the preimage and image of p (p− and p+, respectively) under the Poincaré map.
The total area exchanged across the pseudoseparatrix per iteration of the Poincaré map can
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Figure 3.2. Two Melnikov functions: Harmonic case (dashed purple curve) and a more general case (solid
red curve).

then be defined to be the sum of the areas of L1 and L2.
Now, if τ1 and τ2 are adjacent transverse zeros of the Melnikov function, then the lobe

area (of the lobe defined with τ1 and τ2 as endpoints) is given by

Area = ε

∫ τ2

τ1
|M(t)| dt + O(ε2) ;

see [29, 35]. In this case, the Melnikov function is harmonic and, modulo a shift, takes the
form of the dashed curve in Figure 3.2. The two areas (one positive and the other negative)
subtended by this dashed curve correspond to the two lobes L1 and L2 of Figure 3.1. Indeed,
these areas are identical, since M(t) takes the form |λ̂(ω)| cos (ωt + β), the integral of whose
absolute value between any two adjacent zeros is the same. This is so even if the spatial part
of the perturbation g is not area-preserving, and is a consequence of harmonicity. The relevant
area exchanged is the sum of these two areas, which can also be expressed as

Area = ε

∫ 2π/ω

0
|M(t)| dt + O(ε2).(3.1)

Most of what has been described so far in this section can be found in the literature
for harmonic separable h [29, 35]. The next issue is the extension to general time-periodic
functions of period 2π/ω, which are not necessarily separable. The corresponding Melnikov
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Figure 3.3. Turnstile mechanism for the nonharmonic case.

function, computed through Proposition 2.1, need not be harmonic. A possible form for M(t)
is illustrated as the solid curve in Figure 3.2. This particular example has four transverse zeros
(which are labeled); notice also the presence of a nontransverse zero between t1 and t2. Now,
since the Melnikov function corresponds to the leading-order signed distance between the per-
turbed stable and unstable manifolds associated with the Poincaré map of period 2π/ω, the
Melnikov function does give important information on the topology of manifold intersections.
If the solid curve in Figure 3.2 gives the Melnikov function, then Figure 3.3 illustrates a pos-
sible scenario for the manifold intersections—the Melnikov function is essentially repeatedly
reproduced.

A subtle issue related to the presence of a nontransverse zero in the Melnikov function
needs to be stated. Given that M(t) provides only leading-order (in ε) information on the
distance between manifolds, the presence of a nontransverse zero in M(t) tells us nothing
about intersections nearby. In this case, O (ε2

)
terms are relevant in the distance function,

and the nontransverse zero of M may be associated with either two, one, or no actual inter-
sections between the manifolds. Thus, if nontransverse zeros exist, the Melnikov function is
not necessarily topologically equivalent to the manifold intersections. This fact is irrelevant
in the leading-order flux, since any lobes created through such higher-order effects have size
O (ε2

)
.

In Figure 3.3, the situation where the nontransverse zero perturbs to no intersections is
pictured. The points associated with t1, t2, t3, and t4 in the Melnikov function of Figure 3.2
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are also indicated. A primary intersection point p has been chosen arbitrarily; in this case, it
is the one corresponding to t2 of the nonharmonic Melnikov function pictured in Figure 3.2.
The fundamental turnstile is the set of lobes which lie between p− (the preimage of p) and
p+ (its image). Lobes beyond this turnstile have not been pictured (these structures simply
repeat). The pseudoseparatrix (displayed by a heavy curve) is as before; it is the portion of
the unstable manifold of a lying between a and p, combined with the portion of the stable
manifold of b lying between p and b. One lobe is vertically hatched in Figure 3.3; this maps
to the horizontally hatched lobe upon iteration of the Poincaré map of period 2π/ω. The
mapping behavior of the other lobes can also be deduced from this figure. Basically, all the
lobes in the turnstile interchange their position with respect to the pseudoseparatrix. This
argument shows that the amount of phase-space area which exchanges across the separatrix
per iteration of the Poincaré map can therefore be expressed by (3.1) even in this nonharmonic
case.

Since this occurs over a time of 2π/ω, one can define the chaotic flux by

Flux :=
ω

2π
[Area exchanged across the pseudoseparatrix per iteration] .

This is a common rationalization of the instantaneous chaotic flux [30, 7, 6], which incorporates
the average amount of phase-space area transported per unit time. Since the lobe areas are
O(ε), so is the flux. It can therefore be expanded in powers of ε as

Flux = ε s + O(ε2),

where s is the leading-order chaotic flux. Using this as a definition, the following has been
argued.

Lemma 3.1. In the case where the Melnikov function has 2m (m ≥ 1) transverse zeros in
each (2π/ω)-period, the leading-order flux is given by

s =
ω

2π

∫ 2π/ω

0
|M(t)| dt.

Remark 3.1. The leading-order flux is the average value of the absolute value of the Mel-
nikov function. A shift in the argument of M has no effect in evaluating this quantity.

Remark 3.2. By virtue of Remark 2.2, a phase-shift in h(·, t) or a different choice of time-
zero of the heteroclinic x̄(t), does not affect the leading-order flux.

Remark 3.3. The Melnikov function must have an even number of transverse zeros in its
fundamental period by topological considerations (it is periodic). If this number is zero, there
is no consequent leading-order chaotic transport (though a channel-like nonchaotic mechanism
[10, 32, 9] occurs).

Lemma 3.1 may be considered a definition of the leading-order chaotic flux related to
mixing of fluid across the separatrix. This incorporates fluid exchange in both directions. One
may be interested in the directional flux and require separate expressions for each direction.
In order to quantify this, note that ∇H, which is orthogonal to the heteroclinic at all points,
preserves its directionality with respect to the heteroclinic. Denote by s+ the leading-order
chaotic flux that is generated across the pseudoseparatrix in the direction defined by +∇H.
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The analogous flux in the opposite direction shall be denoted s−. Recall the sign convention:
a positive Melnikov function corresponds to the vector drawn from the (perturbed) stable
manifold to the unstable one having the same directionality as +∇H [20]. Hence, the vertically
hatched lobe in Figure 3.3 would correspond to a positive Melnikov function if ∇H were
increasing in the downward direction. Notice that this lobe is in fact transferred in exactly
the downward direction across the separatrix. On the other hand, if ∇H pointed in the upward
direction in Figure 3.3, the lobe of interest would correspond to the Melnikov function being
negative, and this lobe is then seen to transfer in the direction of −∇H.

Hence, lobes corresponding to positive M transfer in the direction of +∇H, whereas those
with negative M transfer in the direction of −∇H. Upon defining the “positive part” and
“negative part” functions,

[ξ]+ =

{
ξ if ξ > 0,
0 if ξ ≤ 0

and [ξ]− =

{
−ξ if ξ < 0

0 if ξ ≥ 0,

it is clear that the leading-order directional fluxes are then given by

s± =
ω

2π

∫ 2π/ω

0
[M(t)]± dt .

The fluxes s+ and s− are equal for harmonic separable perturbations but not necessarily so
in the general setting.

4. Flux formula. This section presents formulae for the flux and directional flux, in the
case when h(·, t) has general time-periodicity (period 2π/ω), and need not be separable. This
extends the results available in [7, 6].

Suppose that M(t) has 2m transverse zeros in its fundamental period (it may have
nontransverse zeros as well, but these play no part in what follows). Label these as tj ,
j = 0, 1, 2, . . . 2m− 1, in an ordered fashion; since shifts in the Melnikov function’s argument
have no effect on the flux, one can choose any of the zeros to be t0. This labeling creates 2m
intervals; the jth (j = 1, 2, . . . 2m) of these is Ij = (tj−1, tj). Let Lj be its length and Tj its
midpoint. Define

Ξj =

{
1 if M(t) ≥ 0 in Ij ,

−1 if M(t) ≤ 0 in Ij .

Note that Ξj is either (−1)j or (−1)j+1 depending on the particular choice of t0. The leading-
order flux can then be expressed as an operation on the Fourier series of M , as follows (see
also Corollary 1.2 in [18], in which a similar theme appears in a much more restrictive setting).

Theorem 4.1. Suppose the Melnikov function M(t) has complex Fourier coefficients {dn},
and it also has 2m transverse zeros in each 2π/ω period, where m ≥ 1. Using the definitions
above, the leading-order flux is then expressible as

s =
∞∑

n=−∞
en, where e0 =

ω d0

2π

2m∑
j=1

Ξj Lj

and en =
dn
π n

2m∑
j=1

Ξj exp (i n ω Tj) sin

(
nω Lj

2

)
for n 
= 0.
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Proof. The result of Lemma 3.1 gives

s =
ω

2π

2m∑
j=1

∫
Ij

ΞjM(t) dt.

Replacing M with its Fourier series,

s =
ω

2π

∞∑
n=−∞

dn

2m∑
j=1

Ξj

∫ tj

tj−1

exp (inωt) dt

=
∞∑

n=−∞,n�=0

dn
2πin

2m∑
j=1

Ξj exp (inωt)
∣∣∣tj
tj−1

+
ω d0

2π

2m∑
j=1

Ξj (tj − tj−1) .

Now Ij has midpoint Tj = (tj + tj−1) /2 and length Lj = tj − tj−1, and so

exp (inωtj) − exp (inωtj−1) = 2 i exp (inωTj) sin

(
nωLj

2

)
,

and the result follows.
Remark 4.1. An advantage to this formulation is that the Melnikov function need not be

integrated—only its distribution of transverse zeros is necessary. The Fourier coefficients are
also known directly from dn = λ̂n(nω). Any convenient phase-shift φ can also be used in the
Melnikov function by virtue of Remark 3.2; this would correspond to the Tj ’s shifting by φ in
addition to a rotation exp (inωφ) being assessed in each dn.

Remark 4.2. Theorem 4.1 gives the flux as an operation on the Fourier series of M : its
Fourier coefficients need to be modulated by a quantity related its distribution of zeros, and
then summed. Given that the dn’s (and consequently the en’s) are damped for large |n|
because of the presence of λ̂n(nω) (which decays as n → ±∞), keeping only a few terms in
this summation will often suffice. (This property is well illustrated in the example presented
in section 6.)

Corollary 4.2. Suppose the conditions for Theorem 4.1 are satisfied and moreover that h(·, t)
is an even function. Then, following the notation of Theorem 4.1, e∗n = e−n for n ∈ N, and
moreover

s = e0 + 2
∞∑
n=1

Re (en) .

Proof. Fix n ∈ N. Since h(·, t) is even, it is known from Lemma 2.2 that the Melnikov
function’s Fourier coefficients satisfy d∗n = d−n. Using the definition for en given in Theo-
rem 4.1,

e−n = −d−n

πn

2m∑
j=1

Ξj exp (−inωTj) sin

(
−nωLj

2

)

=
d∗n
πn

2m∑
j=1

Ξj exp (−inωTj) sin

(
nωLj

2

)

= e∗n .
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The expression for the leading-order flux is obtained by utilizing this in the bi-infinite sum-
mation of Theorem 4.1.

Proposition 4.3. Suppose the Melnikov function M(t) has complex Fourier coefficients {dn},
and it also has 2m transverse zeros in each 2π/ω-period, where m ≥ 1. The leading-order
directional fluxes are then expressible as

s± =
∞∑

n=−∞
e±n , where e±0 = ± ω d0

2π

2m∑
j=1

[Ξj ]
± Lj

and e±n = ± dn
π n

2m∑
j=1

[Ξj ]
± exp (i n ω Tj) sin

(
nω Lj

2

)
for n 
= 0.

Proof. Using the definitions of section 3,

s± =
ω

2π

2m∑
j=1

∫
Ij

[Ξj ]
± (±M(t)) dt .

Now simply mimic the proof of Theorem 4.1, noting that only the intervals corresponding to
positive (or negative) M need to be summed over.

Remark 4.3. Let L+ and L− be the lengths of the partition of the fundamental interval
[0, 2π/ω) in which M is, respectively, positive and negative. Then e±0 is given explicitly by

e±0 = ± ω d0 L±
2π

.

Remark 4.4. If d0 = 0, the Melnikov function has zero average, and hence s+ = s− = s/2.
This could occur, for example, if the perturbation were either harmonic or area-preserving. If
d0 
= 0, there is a directional imbalance in the flux which shall be defined by ŝ := s+ − s−.

Corollary 4.4. Under the conditions of Proposition 4.3, the directional imbalance ŝ := s+ −
s− can be represented by

ŝ =
∞∑

n=−∞
ên, where ê0 = d0 and

ên =
dn
nπ

2m∑
j=1

exp (i n ω Tj) sin

(
nω Lj

2

)
for n 
= 0 .

Proof. A straightforward subtraction of the expression for s− from that for s+ in Propo-
sition 4.3 gives the result.

Considerable simplifications to the flux formula of Theorem 4.1 occur if the Melnikov
function’s transverse zeros are equally spaced. Such simplifications occur, for example, in the
standard case of a harmonic separable perturbation [6, 7]; this case is additionally simple since
m = 1 [7]. As shown through examples in section 6, equal spacing of zeros is likely to occur
under less stringent conditions. If so, a “resonance” phenomenon emerges, as is apparent in
the following result.
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Proposition 4.5. Suppose the Melnikov function has 2m equally spaced transverse zeros in
each 2π/ω-period, where m ≥ 1. Shift the Melnikov function such that t = 0 is a midpoint
between two adjacent transverse zeros of M between which M ≥ 0; let {dn} be the Fourier
coefficients associated with this shifted M . Then, the leading-order fluxes are given by

s =
2

π

∞∑
k=−∞

(−1)k d(2 k+1)m

2 k + 1
and(4.1)

s± =
1

π

∞∑
k=−∞

(−1)k d(2 k+1)m

2 k + 1
± d0

2
.

Proof. For this choice of shift,

Lj =
π

ωm
, Tj =

j π

ωm
, and Ξj = (−1)j .

Using Theorem 4.1,

s =
∞∑

n=−∞,n�=0

dn
πn

2m∑
j=1

(−1)j exp

[
inω

(
jπ

mω

)]
sin

(
nω

2

π

mω

)
+

ωd0

2π

2m∑
j=1

(−1)j
π

ωm
.

The final summation vanishes, and thus

s =
∞∑

n=−∞,n�=0

dn
πn

sin

(
nπ

2m

) 2m∑
j=1

[
− exp

(
inπ

m

)]j
.

However,

2m∑
j=1

[
− exp

(
inπ

m

)]j
= − exp

(
inπ

m

)
1 − (−1)2m exp (2inπ)

1 + exp
(
inπ
m

) ,

whose numerator vanishes. This term can therefore contribute only if its denominator vanishes
as well, i.e., if exp (inπ/m) = −1, or if

n

m
= 2k + 1 ; k ∈ Z.

Therefore, the summation can be limited to the values where n = (2k + 1)m for integers k:

s =
∞∑

k=−∞

d(2k+1)m

π(2k + 1)m
sin

(
(2k + 1)π

2

) 2m∑
j=1

(−1)j exp [i(2k + 1)jπ]

=
∞∑

k=−∞

d(2k+1)m

π(2k + 1)m
(−1)k

2m∑
j=1

(−1)j (−1)j ,

from which the result for s follows. In order to compute s+, note that one needs only to sum
over even j intervals and follow exactly the same sort of argument as above; details will not
be provided. The formula for s− can then be obtained from s− = s− s+.



CHAOTIC FLUX QUANTIFICATION 295

Remark 4.5. For equally spaced zeros, it is only the Fourier coefficients n such that n/m is
an integer and, moreover, is odd, which contribute to the leading-order (nondirectional) flux.
The directional fluxes also require d0—the Melnikov function’s average value—but nothing
else. Other coefficients have no effect whatsoever. For example, should h(x, t) have a term of
the form p(x) cos 2ωt in its Fourier series, this does not contribute. The number of transverse
zeros in M picks out only those frequencies nω from h(·, t) which “resonate” in this specific
sense.

Remark 4.6. This formula, and the resonance behavior, is essentially still valid even if M
were not represented in this particular shifted form. More generally, dn above would have an
additional multiplicative factor of the form exp(inωφ) associated with a phase shift φ. Care
needs to be taken to ensure that positive areas are added, but the odd resonances are still the
only ones which survive.

Remark 4.7. If h(·, t) has equally spaced zeros, the decays associated with the dns for
large |n| may result in M also having equally spaced zeros (this is since by Remark 2.3 higher
oscillations are likely to be damped). This effect will be illustrated in the example in section 6.

5. Separable perturbation. The chaotic flux formulae are particularly easy to use if the
perturbation is separable, i.e., if

h(x, t) = g(x) θ(t),

where g : Ω → R
2 is such that g ∈ C2 (Ω), and θ : R → R is (2π/ω)-periodic, piecewise

continuous, and has well-defined left- and right-hand derivatives at all t. Suppose that θ’s
complex Fourier coefficients are {cn}, and define

γ(t) = ∇H (x̄(−t)) · g (x̄(−t)) .

The following preliminary results on the Melnikov function are easily obtainable.
Lemma 5.1. The Melnikov function can be expressed as a convolution between γ and θ;

i.e.,

M(t) =

∫ ∞

−∞
γ(t− τ) θ(τ) dτ =

∫ ∞

−∞
θ(t− τ)γ(τ) dτ .

Proof. A direct application of the well-known equation (2.1) immediately gives the
result.

Lemma 5.2. The Melnikov function has the complex Fourier representation

M(t) =
∞∑
−∞

dn exp (i n ω t) , where dn = cn γ̂ (nω) .

Proof. One can use Lemma 5.1 directly, or notice that gn(x) = cn g(x) in this case, and
apply Proposition 2.1.

Remark 5.1. The Fourier coefficient of M associated with a frequency nω is obtained by
combining the quantity of this frequency present in θ (cn), with the “amount” of the same
frequency available in γ (γ̂(nω)).
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Remark 5.2. One can think of obtaining M(t) from θ(t) as a low-pass filter operation in
the Fourier domain, since higher frequencies are damped more.

A direct application of Lemma 5.2 yields the known fact [30, 6, 7] that if θ is harmonic, then
so is M with the same frequency ω. The following corollary gives additional information on
how the modulus and the argument of the complex entity γ̂(ω) affect the Melnikov function’s
amplitude and phase.

Corollary 5.3. Suppose θ consists of only one harmonic, i.e., θ(t) = cos (ω t− β) for some
constant β. Then the Melnikov function is itself harmonic and takes the form

M(t) = |γ̂(ω)| cos [ω t− β + Arg (γ̂(ω))] .(5.1)

Proof. The complex Fourier coefficients of θ are c1 = (cosβ − i sinβ)/2 = (1/2) exp(−iβ)
and c−1 = (1/2) exp(iβ), and hence by Lemma 5.2,

M(t) =
1

2
exp(−iβ)γ̂(ω) exp (iωt) +

1

2
exp(iβ)γ̂(−ω) exp (−iωt)

=
1

2
γ̂(ω) exp (iωt− iβ) +

[
1

2
γ̂(ω) exp (iωt− iβ)

]∗

= 2 Re

[
1

2
γ̂(ω) exp (iωt− iβ)

]
= Re [γ̂(ω)] cos [ωt− β] − Im [γ̂(ω)] sin [ωt− β]

= |γ̂(ω)|
{

Re [γ̂(ω)]

|γ̂(ω)| cos [ωt− β] − Im [γ̂(ω)]

|γ̂(ω)| sin [ωt− β]

}
= |γ̂(ω)| cos [ωt− β + Arg (γ̂(ω))] .

Remark 5.3. The form (5.1) is particularly easy to analyze. The Melnikov function has
equally spaced zeros and a zero average and is trivial to integrate to determine lobe areas.
See [6, 7].

Return once again to general periodic θ. The procedure for performing flux calculations is
quite simple, since Lemma 5.2 shows that only one Fourier transform γ̂ needs to be computed.
It then needs to be sampled at the discrete values nω to determine the Melnikov coefficients
dn. This is far simpler than the more general nonseparable instance of section 4, in which
infinitely many Fourier transforms were necessary. Having determined the Melnikov function
relatively easily, and having found its distribution of zeros, Theorem 4.1 can then be employed
to compute the flux. An instance in which a direct formula for this flux is obtainable is
presented in the following proposition.

Proposition 5.4. Suppose θ(t) = a0 + a1 cosωt + b1 sinωt, for some real constants a0, a1,

and b1. If |a0γ̂(0)| > |γ̂(ω)|
√
a2

1 + b21, no chaotic flux results. If equality occurs, then there is
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no O (ε) chaotic flux. If |a0γ̂(0)| < |γ̂(ω)|
√
a2

1 + b21, then the leading-order fluxes are

s =
2

π

√(
a2

1+b21
)|γ̂(ω)|2− a2

0 |γ̂(0)|2 +
2a0γ̂(0)

π
cos−1

⎛
⎝ −a0γ̂(0)

|γ̂(ω)|
√
a2

1+b21

⎞
⎠− a0γ̂(0) ,

s+ =
1

π

√(
a2

1+b21
)|γ̂(ω)|2− a2

0 |γ̂(0)|2 +
a0γ̂(0)

π
cos−1

⎛
⎝ −a0γ̂(0)

|γ̂(ω)|
√
a2

1+b21

⎞
⎠ , and

s− = s+ − a0 γ̂(0) .

Proof. First, rewrite θ(t) as

θ(t) = a0 +
√
a1

2 + b1
2 cos [ωt + β]

for some phase angle β, and then set β = 0 since a phase-shift has no bearing on the final flux
computation. Thus,

c0 = a0 and c1 =

√
a1

2 + b1
2

2
= c−1

with all other Fourier coefficients being zero. By Lemma 5.2, this leads to M ’s Fourier
coefficients

d0 = a0

∫ ∞

−∞
γ(t) dt = a0 γ̂(0),

d1 = c1 γ̂(ω) =

√
a1

2 + b1
2

2
γ̂(ω), and

d−1 = c−1 γ̂(−ω) =

√
a1

2 + b1
2

2
γ̂∗(ω) = d∗1,

and with all unspecified dns vanishing. The Melnikov function is then

M(t) = a0γ̂(0) + 2 Re
(
d1e

iωt
)

= a0γ̂(0) +
√
a1

2 + b1
2 |γ̂(ω)| cos [ω (t− φ)]

for some value φ(ω, a1, b1) (see the proof of Corollary 5.3 if additional details of this reformu-
lation are required). Set φ = 0 to define a new Melnikov function

M(t) = a0γ̂(0) +
√
a1

2 + b1
2 |γ̂(ω)| cosωt,

where M(t) is retained by an abuse of notation. (Recall that a phase-shift in M also does not

affect the leading-order flux.) While d0 does not change, now d1 = d−1 =
√
a1

2 + b1
2 |γ̂(ω)| /2.

Transverse zeros are only permissible if

|a0 γ̂(0)| <
√
a1

2 + b1
2 |γ̂(ω)| ,
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in which case two such zeros exist (and so m = 1). In the event that equality occurs above,
there are two nontransverse zeros, and the leading-order flux is therefore zero (the actual flux
may not be zero, but it will be of higher order). Given the evenness of the new Melnikov
function, it is convenient here to think of the base interval as [−π/ω, π/ω). There are only
two intervals of interest here: M > 0 in an interval of length L+ with midpoint T+ = 0 and
M < 0 in an interval of length L− = 2π/ω − L+ centered at T− = −π/ω. Here,

L+ =
2

ω
cos−1

⎛
⎝ −a0γ̂(0)√

a1
2 + b1

2 |γ̂(ω)|

⎞
⎠ .

Substituting into the flux formula of Theorem 4.1,

s =
d1

π

[
sin

(
ωL+

2

)
− e−iπ sin

(
ω

2

[
2π

ω
− L+

])]

+
d−1

−π

[
− sin

(
ωL+

2

)
− eiπ sin

(
−ω

2

[
2π

ω
−L+

])]
+

ωd0

2π

[
L+−

(
2π

ω
− L+

)]

=
4 d1

π
sin

(
ωL+

2

)
+

ω d0 L+

π
− d0.

However,

sin

(
ωL+

2

)
=

√(
a1

2 + b1
2
)
|γ̂(ω)|2 − a2

0 |γ̂(0)|2√
a1

2 + b1
2 |γ̂(ω)|

,

and substitution yields the formula for s. In computing s+, notice that all terms which have
the term [2π/ω − L+] can be omitted from the calculation used for s, and the result is easily
obtained. Once again, s− is calculated by subtracting s+ from s.

Remark 5.4. The directional imbalance in instantaneous flux transfer in this case is given
by

ŝ := s+ − s− = a0 γ̂(0) = a0

∫ ∞

−∞
∇H (x̄(t)) · g (x̄(t)) dt .

Corollary 5.5. Suppose θ(t) = a1 cosωt + b1 sinωt. The directional chaotic fluxes s+ and
s− are equal, and the leading-order chaotic flux is

s =
2

π
|γ̂(ω)|

√
a2

1 + b21 .

Proof. Simply set a0 = 0 in the result of Proposition 5.4.
This result is consistent with that previously obtained in [7, 6], in which the leading-order

flux is proportional to a modulus of a Fourier transform. It can also be directly obtained by
integrating the harmonic Melnikov function that can be derived using Corollary 5.3. If the
harmonic θ(t) of Corollary 5.5 is perturbed slightly with a small vertical shift a0, the flux
turns out to increase, as given below.
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Corollary 5.6. Suppose θ is as given in Proposition 5.4, and moreover |a0| �
√
a2

1 + b21.
Then the leading-order flux is

s =
2

π
|γ̂(ω)|

√
a2

1 + b21 + a2
0

⎛
⎝ |γ̂(0)|2

π |γ̂(ω)|
√
a2

1 + b21

⎞
⎠+ O

(
a4

0(
a2

1 + b21
)2
)
.

Proof. A straightforward Taylor expansion does the trick but will be skipped.

6. An example. An example which has been used as a kinematical model for Rayleigh–
Bénard convection [13, 33, 34] will be considered. This model has also been analyzed in a
variety of different instances from a dynamical systems perspective [3, 7, 6, 1]. In this section,
(x, y) represent rectangular coordinates in R

2. The unperturbed flow is

ẋ = − sin (2πx) sin (2πy) , ẏ = − cos (2πx) cos (2πy) ,

for which H(x, y) = − sin (2πx) cos (2πy) /(2π) serves as a Hamiltonian. The phase space
structure is that of a periodic lattice of square cells of alternating rotation, as shown in
Figure 6.1. The chaotic flux occurring across the heteroclinic trajectory indicated with a heavy
blue line in Figure 6.1 will be assessed, under the influence of a time-periodic perturbation. As
can be seen, this measures the leading-order intercellular transport. It can be shown [7, 6, 3]
that for the symmetric time-parametrization along this heteroclinic, x̄(t) ≡ 0 and

ȳ(t) =

{
1
2π cos−1 [−sech (2πt)] if t ≤ 0,
1 − 1

2π cos−1 [−sech (2πt)] if t > 0.

This enables ∇H to be expressed along the heteroclinic by

∇H (x̄(t), ȳ(t)) = (sech (2πt) , 0) .

Now imagine perturbing the vector field J∇H through the addition of the time-periodic
perturbation ε h(x, t). Seven different forms for h will be considered, essentially in order of
increasing complexity, in order to highlight the roles of nonharmonicity and nonseparability.

6.1. Case (i). Begin with the simplest case in which the perturbation is separable and
its spatial part is trivial. That is, h(x, t) = g(x) θ(t), in which g is constant. Following the
notation of section 5,

γ(t) = [∇H · g] (x̄(−t), ȳ(−t)) = K sech (2πt)

for some real constant K (assumed nonzero). The Fourier transform of γ(t) is

γ̂(ω) =
K

2
sech

(
ω

4

)
.

If θ is (2π/ω)-periodic with Fourier coefficients {cn}, Lemma 5.2 tells us that the Fourier
coefficients of the Melnikov function are

dn =
K cn

2
sech

(
nω

4

)
.
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(-1/2,1/4) (0,1/4) (1/2,1/4)

(1/2,3/4)

(1/2,5/4)(0,5/4)(-1/2,5/4)

(-1/2,3/4)

Figure 6.1. Phase-space for the unperturbed flow of section 6.

The computations in this instance will focus on the case in which θ contains only one mode
plus a constant term, as given in Proposition 5.4. The leading-order flux is then

s =
|K|
π

√(
a2

1 + b21
)
sech2ω

4
− a2

0 +
K

2

⎡
⎣2a0

π
cos−1

⎛
⎝−a0 |K| coshω

4

K
√
a2

1 + b21

⎞
⎠− a0

⎤
⎦

providing the argument of the first square-root above is positive. A sufficient condition for
chaotic transport is therefore that

ω < 4 sech−1 |a0|√
a2

1 + b21

,(6.1)

which relates the frequency with the ratio of the amplitudes of the constant and harmonic
terms. Thus, chaotic transport will always occur for small enough frequencies for perturbations
of this sort. For investigation of the flux within this regime, adopt the attitude that the

amplitude of the modal term in θ (i.e.,
√
a2

1 + b21) is fixed, as is K, and investigate the flux
variation with respect to the control parameters a0 and ω, which relate to vertical translation
and horizontal compression of the graph of θ. This behavior is illustrated in Figures 6.2 and
6.3. In each case, the abrupt end to the curves represents the transition in which s becomes
complex, corresponding to the Melnikov function failing to have a transverse zero. If so (and
this corresponds to the inequality (6.1) reversing), a nonchaotic channel-like transport occurs
between cells [10, 9, 32]. In the chaotic regime, Figure 6.2 shows the flux variation as a function
of the frequency. If a0 
= 0, it is apparently increasing as a function of ω for frequencies near
this bifurcation. Choosing higher values of a0 causes the curves to shift upward. If, however,
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5 10 15 20

5

10

15

20

s

Figure 6.2. Behavior of s as a function of ω for case (i): a1 = 2, b1 = 0, and K = 1. The curves are
a0 = 1 (solid red curve), a0 = 0.5 (long green dashes), a0 = 0.1 (short blue dashes), and a0 = 0 (purple dots).

a0 = 0, then the flux is well defined and decreasing in ω for all ω (and indeed behaves like
sech (ω/4)), as shown in the dotted curve in Figure 6.2. In Figure 6.3, the flux variation with
a0 is displayed for three different ω’s. For small a0, smaller frequencies generate more flux in
a marginal sense—an effect which reverses substantially for larger a0.

The directional fluxes s± possess very similar qualitative behavior to s in this case. The
directional imbalance is ŝ = a0 K/2. If a0 K > 0, there is more flux transferred from left to
right across the heavy line in Figure 6.1.

6.2. Case (ii). Within the constant g ansatz, consider a more general instance where θ
has infinitely many modes. Take the (2π/ω)-periodic square wave which in a base period is
defined by

θ(t) =

{
1 if 0 < t < π

2ω or 3π
2ω < t < 2π

ω ,
−1 if π

2ω < t < 3π
2ω .

This has Fourier coefficients

c0 = 0 and cn =
1 − (−1)n

nπ
sin

nπ

2
for n 
= 0.

Now M is continuous and also has period 2π/ω. By Proposition 2.1, its Fourier coefficients
are

d0 = 0 and dn =

(
K

2

)
1 − (−1)n

nπ
sech

nω

4
sin

nπ

2
for n 
= 0.
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0.5 1 1.5
a0

10

20

30

40
s

Figure 6.3. Behavior of s as a function of a0 for case (i): a1 = 2, b1 = 0, and K = 1. The three curves
are ω = 1 (solid red curve), ω = 4 (dashed green curve), and ω = 7 (dotted blue curve).

Using this, it is possible to express M as

M(t) =
2K

π

∞∑
j=1

(−1)j+1

2 j − 1
sech

[
(2j − 1)ω

4

]
cos [(2j − 1)ωt] ,

which clearly has zeros at t = π/(2ω) and t = 3π/(2ω) within the domain [0, 2π/ω). A
numerically generated sketch of M(t) with the choice ω = π and K = 1 is shown in Figure 6.4,
confirming that these are the only zeros. The dashed curve in this figure is the graph obtained
by just keeping the j = 1 term, illustrating the quick convergence behavior. In fact, keeping
about seven terms in the summation appears to guarantee six-digit accuracy, in spite of the
fact that θ has slow convergence in its Fourier series. To use the formula of Theorem 4.1, there
are only two intervals that one needs to consider. If K > 0, the midpoints and lengths are
given by T+ = 0, L+ = π/ω, T− = π/ω, and L− = π/ω, where the positive (resp., negative)
subscript refers to whether M is positive (resp., negative) in that particular interval. If K < 0,
the subscripts need to be reversed, which will be compensated for in the final result by using
an appropriate absolute value. Using Theorem 4.1, the quantities

e0 = 0 and en =
dn
π n

[1 − (−1)n] sin
nπ

2
for n 
= 0

are obtained. Notice that these are real. Since θ(t) is an even function, Corollary 4.2 is
applicable, and moreover since all even n terms in en vanish because of the nature of the
sequence,

s = 2
∞∑
j=1

e2j−1 .
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Figure 6.4. The Melnikov function (solid red curve) and its single harmonic approximation (dashed blue
curve) for case (ii) with K = 1 and ω = π.

The vanishing of the even terms is consistent with the “resonance” behavior expected from
Proposition 4.5, since the zeros of the Melnikov function are evenly spaced in this instance.
Substitution and simplification lead to the exact expression

s =
4 |K|
π2

∞∑
j=1

1

(2j − 1)2
sech

(
(2j − 1)ω

4

)
,

whose rapid convergence means that it can be approximated easily with just a few terms.

6.3. Case (iii). An instance in which numerical evaluation is necessary is now presented.
Suppose g remains constant as before, but now

θ(t) = sin (πt) − 3 cos (2πt) + 4 cos (3πt) +
1

2
sin (23πt) ,

which is shown in its fundamental domain [0, 2) by the dashed curve in Figure 6.5. Here,
ω = π. The corresponding Melnikov function, computed via Fourier coefficients in the usual
fashion, is also displayed in this figure (where K = −5 is chosen for variety). The Melnikov
function has only four zeros, as opposed to θ, which has eight. It is also smoother than θ, from
which it is derived using a low-pass filtering (see Remarks 2.3 and 5.2). One can numerically
compute the zeros of M (which turn out to be 0.249415, 0.819345, 1.25022, and 1.55607
to six significant figures, independent of the choice made for K) and thereby determine the
midpoints Tj and the lengths Lj of the four intervals. Since one knows the dns, Theorem 4.1
can now be used to determine the leading-order flux s. There are only eight nonzero values
for the en’s in Theorem 4.1, and upon doing the arithmetic, one obtains s = 0.463583 |K|. If
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Figure 6.5. The function θ (dashed blue curve) and its corresponding Melnikov function (solid red curve)
with the choice K = −5 for case (iii).

necessary, this value can be expressed to a much higher degree of accuracy quite easily, since
the computations involve mainly the determination of the roots of M(t) which can be done
to as high a degree of accuracy as required. Since M has average value zero, the directional
leading-order fluxes are equal in this case.

6.4. Case (iv). The constraint that g be constant is now removed. Suppose that the flow
is derived from perturbing the original Hamiltonian H(x, y) with the additive term

H1(x, y, t) = ε
1

2π
[sin (2πy) − sin (2πx)] cos (ωt + β) ,

where β is a constant phase. This is the identical perturbation addressed using a “separatrix
map” in section VI in [1]. Since the phase β can be ignored, this has only a single harmonic
θ(t) = cos (ωt). The corresponding spatial function g(x, y) is equal to (− cos 2πy,− cos 2πx)
and is not a constant. Therefore,

γ(t) = − cos (2πȳ(−t)) sech (−2πt) = sech2 (2πt) ,

whose Fourier transform is

γ̂(ω) =
ω

4π
cosech

(
ω

4

)
.

From Corollary 5.3, the Melnikov function, modulo a shift in t, takes the form

M(t) =
ω

4π
cosech

(
ω

4

)
cos (ω t) .
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Figure 6.6. The Melnikov function (solid red curve), its single harmonic approximation (dashed green
curve), and the shifted Melnikov function (dotted blue curve) for case (v).

The flux is also computable via a direct application of Corollary 5.5,

s =
ω

2π2
cosech

(
ω

4

)
,

which is a straightforward result given the harmonic nature of the perturbation.

6.5. Case (v). Now choose a more complicated perturbation while still remaining within
the separable ansatz. It is only the x-component of g(0, y) that contributes to γ(t); take this
to be the function gx(0, y) = y. Therefore,

γ(t) = ȳ(−t) sech (−2πt) ,

whose Fourier transform is no longer easily expressed and requires numerical evaluation. Take
θ to be the square wave analyzed in case (ii), but choose ω = π. The Fourier transform γ̂
needs to be numerically obtained, and this was done using Mathematica’s Fourier transform
software. Now, θ’s Fourier coefficients cn are as given in case (ii), and one can compute
dn = cnγ̂ (nπ) numerically. These Fourier coefficients of M are seen to satisfy the conditions
dn = 0 for even n (since cn has this property) and dn = d∗−n for odd n (since θ is even and
Lemma 2.2 applies). This enables the Melnikov function to be written in the form

M(t) = 2
∞∑
j=1

|d2j−1| cos [(2j − 1)πt + Arg (d2j−1)] ,

whose numerically generated sketch appears in Figure 6.6 as the solid curve. Once again, it is
seen that quick convergence is obtained; keeping only the j = 1 term gives the single harmonic
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approximation shown by the dashed curve. The zeros are located at t = 0.5602496185 and
1.5602496185 and are to this order of accuracy equally spaced. There is hardly any qualitative
difference in this Melnikov function and that pictured in Figure 6.4, for which g was constant.
It may be that the same topological intersection pattern would result for monotone g, in
keeping with the speculation in [6]. The Melnikov function can be shifted by multiplying each
dn by exp (0.0602496185 i n π) such that the new Melnikov function now satisfies the shift for
which Proposition 4.5 is applicable. The resulting shifted Melnikov function is illustrated in
Figure 6.6 as the dotted curve. Proposition 4.5 can now be directly used to calculate the flux,
with the shifted dns as the coefficients, and with m = 1. Applying the simple formula using 15
nonzero terms in the infinite summation gives the value s = 0.064360176. This value appears
to be accurate to eight significant digits in that no changes in these digits were observed when
increasing the number of terms in the summation.

6.6. Case (vi). The separability assumption on h is now relaxed. Note that it is only the
x-component of h which contributes to the λn functions, since ∇H is purely in the x-direction.
Suppose now that this component, hx, is given by

hx(x, y, t) = cos [4π (y − t)] + 2 sin [3π (x− 2 t)] .

This is a combination of a horizontal traveling wave and a vertical traveling wave with unequal
speeds. The perturbation has period 1, corresponding to ω = 2π. In the Fourier expansion

hx(x, y, t) =
∞∑

n=−∞
gxn(x, y) exp (i n 2π t) ,

the only terms which survive are

gx±2(x, y) =
1

2
exp (∓i 4π y) , gx±3(x, y) = exp (± i 3π x) .

The corresponding λn are

λ±2(t) =
1

2
sech (2πt)

[
2sech2 (2πt) − 1

]
± i sech2 (2πt) tanh (2πt) , λ±3(t) = ±i sech (2πt) .

Mathematica can be employed to compute the associated Fourier transforms

λ̂±2(r) =
r2

16π2

[
sech

(
r

2

)
± cosech

(
r

2

)]
, λ̂±3(r) = ± i

2
sech

(
r

4

)
.

The Melnikov function can be exactly obtained from Proposition 2.1 to be

M(t) = 2 [sech (π) + cosech (π)] cos (4πt) − sech

(
3π

2

)
sin (6πt) .

There are four roots to the equation M(t) = 0 in the fundamental domain [0, 1); Mathematica
was used to determine these with 30 digits of accuracy. These roots are very close to being
equally spaced; two of the subintervals created have lengths 0.249678 (to six digit accuracy),
whereas the other two have lengths 0.256180 and 0.244463 (greater accuracy is available and
was used in the calculations). A straightforward application of Theorem 4.1 gives the value
s = 0.2202363444.
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6.7. Case (vii). A much more general instance is now examined, in which h is not sepa-
rable, and there are infinitely many terms in its Fourier expansion. Suppose that hx(x, y, t) =
w(2x− 2y − t), where w is the 2-periodic triangular wave given in its base domain by

w(ξ) =

{
1
2 + ξ if −1 ≤ ξ < 0,
1
2 − ξ if 0 < ξ ≤ 1.

The perturbation corresponds to a diagonally traveling triangular wave. Utilizing the Fourier
expansion for w(ξ), it is possible to represent hx(x, y, t) by

hx(x, y, t) = w(2x− 2y − t) =
∞∑

n=−∞,odd

2

n2 π2
exp [inπ2(x− y)] exp [inπt] ,

from which the x-components of the gn functions for odd n can be expressed as

gxn (x, y) =
2

n2 π2
exp [−i 2π n (x− y)] .

The corresponding functions λn(t) are zero for even n and for odd n turn out to be

λn(t) =
2

n2 π2
(cos [2π n ȳ(t)] + i sin [2π n ȳ(t)]) ,

which satisfy λ−n = λ∗
n. Given that λn(t)’s real part is even in t and its imaginary part is

odd, its Fourier transform λ̂n(r) is purely real. Moreover, the Fourier coefficients dn of the
Melnikov function satisfy dn = λ̂n (nπ), which are therefore themselves real. Furthermore,

d−n = λ̂−n(−nπ) =

∫ ∞

−∞
e−i(−nπ)tλ−n(t) dt =

[∫ ∞

−∞
e−inπtλn(t) dt

]∗
= d∗n ,

and hence d−n = dn as well. The Melnikov function is therefore

M(t) = 2
∞∑

m=1

d2m−1 cos [(2m− 1)πt] .(6.2)

The computation of the dn’s turns out to be possible explicitly for any given positive integer
n. From the relationship cos [2πȳ(t)] = − sech (2πt) it is possible to generate the recurrence
relation(

cos [(n + 1)2πȳ(t)]
sin [(n + 1)2πȳ(t)]

)
=

(
− sech (2πt) tanh (2πt)
− tanh (2πt) − sech (2πt)

) (
cos [n2πȳ(t)]
sin [n2πȳ(t)]

)
,

from which for positive integer n the result

(
cos [2π n ȳ(t)]
sin [2π n ȳ(t)]

)
=

(
− sech (2πt) tanh (2πt)
− tanh (2πt) − sech (2πt)

)n−1 ( − sech (2πt)
− tanh (2πt)

)

can be obtained. Thus, the real and imaginary parts of λn(t) can be computed for any positive
integer n. It turns out that the Fourier transform of λn(t) is also explicitly computable in
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Figure 6.7. The slow decay of the Fourier coefficients of the Melnikov function illustrated in a semi-log
graph for case (vii).

terms of exponential functions for any positive integer n, and hence dn can be determined
for any n. A Mathematica routine performing this task is provided with the supplementary
material for this article. It computes, for example,

d33 = −92717622204276507853284597169 exp (99π/4)

3080690429637219581952 [exp (33π) − 1] π2
≈ −1.69 × 10−5 ,

and higher-order terms take significant computational time. Figure 6.7 illustrates the decay of
the |d2m−1| in a semi-log graph. Unlike in earlier examples, the decay is nonmonotone, and it
is also slow (d33 as expressed above is still of order 10−5). Nevertheless, the Melnikov function
computed from (6.2) appears to the naked eye to converge rapidly with the inclusion of only
a few terms. It is indeed qualitatively similar to negative the Melnikov function of case (ii)
(pictured in Figure 6.4). It is clear from (6.2) that it has zeros at t = 1/2 and t = 3/2, and
the numerically computed graph indicates that these are the only zeros in the base domain.

Since the zeros of M are equally spaced, it is possible to use Proposition 4.5 to compute
the chaotic flux. The Melnikov function is almost in the correct form for direct application
of its result, the only shortcoming being that the subinterval centered at t = 0 corresponds
to a negative M . This can be compensated for in the result of Proposition 4.5 by the simple
stratagem of including an additional negative sign, leading to the formula

s = lim
N→∞

4

π

N∑
m=1

(−1)m d2m−1

2m− 1
=: lim

N→∞
s(N) .

The nonrapid convergence of the dns results in s(N) having relatively slow convergence, to
a value which appears to be 0.120048 correct to six significant figures. The fact that exact
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Figure 6.8. The convergence of s(N) for case (vii) in a semi-log plot.

expressions are available for the dns make each computation of s(N) correct to a very high
degree of accuracy; twenty significant digits were used in the present calculations. The conver-
gence behavior of s(N) is illustrated in Figure 6.8, again using a semi-log graph to accentuate
the differences. Using only three nonzero terms in the summation gives a good approximation
immediately (to about two significant figures), but obtaining a very refined value for the flux
requires more numerical effort because of the slow, apparently oscillatory, convergence.

7. Concluding remarks. The available leading-order chaotic flux formula for separable
harmonic perturbations [6, 7] has been extended to nonseparable, general periodic, pertur-
bations. This is a direct assessment of the chaotic flux crossing a separatrix in the sense
that it comes from a direct computation of the area transported per unit time. The formulae
were obtained through a procedure which involved computation of the Fourier coefficients
of the Melnikov function, which was accomplished through appropriate Fourier transforms.
Knowledge of the distribution of zeros of the Melnikov function then leads to a relatively sim-
ple formula for the flux, involving bi-infinite summations over modulated Fourier coefficients.
Several results were presented for special cases, such as when the zeros were evenly distributed,
when the perturbation was separable, and also when its temporal part was harmonic modulo
a shift. The directional leading-order fluxes were also computed using the theory.

An example was analyzed in detail, with seven different perturbations used. It was seen
that the flux computations were particularly easy in the separable instance, since in this case
only one Fourier transform needs to be computed. In the more general case, the calculations
may not be as easy. In many cases, however, the bi-infinite series for the flux was usually
seen to converge quite rapidly in a gross sense. Chaotic flux quantification was achieved for
significantly nontrivial perturbations of this planar cellular flow. Calculations were possi-
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ble using a naive implementation of Mathematica, without requiring sophisticated numerical
techniques which would normally be needed if attempting to compute lobe areas directly. It
is expected that this algorithm for computing the leading-order chaotic flux would be viable
in substantially more complicated instances than the illustrative example of section 6. While
more thought may be required in the numerical details, the accessibility of Fourier transform
software renders this approach particularly attractive.
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