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In the presence of glycoproteins, bacterial and yeast
biofilms are hypothesized to expand by sliding
motility. This involves a sheet of cells spreading
as a unit, facilitated by cell proliferation and weak
adhesion to the substratum. In this paper, we derive
an extensional flow model for biofilm expansion by
sliding motility to test this hypothesis. We model
the biofilm as a two-phase (living cells and an
extracellular matrix) viscous fluid mixture, and model
nutrient depletion and uptake from the substratum.
Applying the thin-film approximation simplifies
the model, and reduces it to one-dimensional
axisymmetric form. Comparison with Saccharomyces
cerevisiae mat formation experiments reveals good
agreement between experimental expansion speed
and numerical solutions to the model with O(1)
parameters estimated from experiments. This
confirms that sliding motility is a possible mechanism
for yeast biofilm expansion. Having established
the biological relevance of the model, we then
demonstrate how the model parameters affect
expansion speed, enabling us to predict biofilm
expansion for different experimental conditions.
Finally, we show that our model can explain
the ridge formation observed in some biofilms.
This is especially true if surface tension is low, as
hypothesized for sliding motility.
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1. Introduction
Micro-organisms can form colonies with fascinating and complex spatio-temporal patterns. As
these colonies are readily grown in experiments, bacteria and fungi are often used as model
organisms to investigate the mechanisms of pattern formation in large collections of cells.
Identifying the contributions of different candidate mechanisms to the self-organization process
is an important problem in developmental biology [1]. For example, Turing [2] and Keller &
Segel [3] famously showed that heterogeneous patterns can develop from a homogeneous initial
state as a result of reaction and diffusion of chemicals. Murray [1] proposed a more general
mechanochemical theory, where chemical signals combine with mechanical interactions between
cells and their environment to give rise to spatial patterns. As these mechanisms can interact in a
complex manner, pattern formation in micro-organisms continues to be an active field of research.

Reynolds & Fink [4] showed that the bakers’ yeast Saccharomyces cerevisiae can form mats when
grown on semi-solid agar. These mats consist of cells embedded in a self-produced extracellular
matrix (ECM), and established S. cerevisiae as a useful model organism for fungal biofilm
formation. We previously showed that a minimal reaction–diffusion model for nutrient-limited
growth alone could reproduce the floral pattern observed in mat formation experiments [5].
However, experimental observations also led Reynolds & Fink [4] to hypothesize that yeast
biofilms expand by sliding motility. This involves a sheet of cells spreading as a unit due to the
expansive forces of cell growth [6], and reduced friction between the cells and substratum [7], and
is not considered in previous models.

In this work, we use a combination of mathematical modelling and experiments to investigate
the extent to which sliding motility contributes to yeast biofilm formation. In §1a,b, we review
the existing literature on yeast biofilms and the mathematical modelling thereof. In §2, we
derive a two-phase (living cells and the ECM) mathematical model for biofilm expansion. We
then exploit the thin biofilm geometry to obtain a one-dimensional, radially symmetric thin-film
approximation to the general model in §3. We compute numerical solutions to the thin-film model
in §4, and show that it can reproduce the expansion speed observed in experiments. We confirm
that cell proliferation drives expansion in sliding motility, and demonstrate how the movement,
uptake and consumption of nutrients affect expansion speed. We close the paper in §5, concluding
that sliding motility is a plausible mechanism for biofilm formation in yeast.

(a) Biological background
A biofilm is a slimy community of micro-organisms existing on a surface, in which cells adhere
to each other and reside within a self-produced ECM. An estimated 80% of bacteria in nature
exists in biofilm colonies [8]. For this reason, they have been described as the ‘oldest, most
successful and widespread form of life on Earth’ [9], and have attracted significant research
attention. Our main objective is to better understand the mechanisms of yeast biofilm expansion.
Yeasts are single-cell fungal organisms that have well-known everyday uses, for example, in
baking and brewing. However, yeast species such as the pathogenic Candida albicans, often form
biofilms on indwelling medical devices [10]. These biofilms are a leading cause of infections in
clinical settings, and can be up to 2000 times more resistant to anti-fungal agents than planktonic
cells [8]. Inability to remove fungal biofilms can lead to candidiasis, which is an invasive disease
estimated to affect around 0.2% of the population per year. Due to its high resistance to treatment,
candidiasis has a mortality rate of 30–40% in immunocompromised people [11]. However, despite
these significant impacts on human health, fungal biofilms are much less widely studied than
bacterial biofilms [12].

The ECM is a distinguishing feature of biofilms. It consists of water, which forms up to
97% of matrix material [13], and various extracellular polymeric substances (EPS). Although the
composition and function of the ECM may differ between species, it provides biofilm colonies
with several advantages over planktonic cells, as summarized by Flemming & Wingender [9].
For yeast biofilms specifically, the ECM has been observed to assist the transportation of
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(a) (b) (c) (d)

Figure 1. A time series of images from a S. cerevisiaemat formation experiment [5] ((a) 68 h, (b) 117 h, (c) 164 h and (d) 237 h).
(Online version in colour.)

nutrients [14], and prevent penetration of harmful external substances [15]. The ECM also
influences biofilm rheology. Although biofilms are viscoelastic in general, on time scales longer
than the order of minutes they tend to behave as viscous fluids [9,16,17].

The budding yeast Saccharomyces cerevisiae has emerged as a useful model for fungal biofilm
growth in cell biology research [4]. A major advantage of using S. cerevisiae in experiments is
that its genome has been sequenced [18], and a wide variety of genetic tools such as mutant
libraries are available. As it is closely related to C. albicans [19], it has assumed an important role
in the identification of new targets for anti-fungal therapy [4,20]. Furthermore, as a eukaryotic
organism its basic cellular processes also have a lot in common with human cells [20]. Due to this,
S. cerevisiae has also been used as a model for understanding the division of cancer cells [12].

Reynolds & Fink [4] were the first to perform mat formation experiments with S. cerevisiae, and
similar methods have been used in subsequent studies [5,12,21]. In these experiments, yeast cells
are inoculated on semi-solid (0.3%) agar plates. They initially form a thin round biofilm, which
over time expands and forms a complex mat structure, characterized by petal-like features at its
edge. This transition is illustrated in figure 1.

A notable finding of Reynolds & Fink [4] is that the glycoprotein Flo11p is required for mat
formation. Similar glycopeptidolipids are prerequisites for biofilm formation in Mycobacterium
smegmatis. This is because they increase cell surface hydrophobicity, which results in weak
adhesion between the biofilm and substratum [7]. Furthermore, S. cerevisiae cells are non-
motile [22], making them unable to respond actively to nutrient or chemical gradients. Reynolds
and Fink subsequently hypothesized that sliding motility, which is a form of passive growth, is
the driving mechanism of yeast biofilm formation. Recent studies on bacterial biofilms have also
revealed that osmotic swelling is another potential mechanism for biofilm expansion [23,24]. This
requires production of EPS, which creates an osmotic pressure difference between the biofilm
and environment. The biofilm then physically expands by taking up water from the agar [23].
The extent to which sliding motility and osmotic swelling contribute to expansion depends on the
microbial species and environment [24]. For example, in some bacterial biofilms including Bacillus
subtilis, in which ECM fraction is commonly 50–90% [25] and can be as high as 95–98% [13,26],
osmotic swelling is the primary mechanism [23]. By contrast, we observe that ECM fraction is
approximately 10% in S. cerevisiae mats, suggesting that cell proliferation and sliding motility will
play a larger role. However, no detailed study into whether sliding motility is the mechanism of
yeast biofilm expansion has been performed. Investigating this is the subject of our paper.

(b) Previous models of biofilm formation
Owing to their ubiquity and importance to infections, biofilms have attracted significant attention
in the applied mathematics community. Previous models have incorporated a wide variety of
approaches (see Mattei et al. [25] for a comprehensive recent review). These include agent-based
or hybrid models [27–29], and reaction–diffusion systems [5,12,30–32], both of which model the
spread of cells, and movement and consumption of nutrients. However, a limitation of both
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of these approaches is that it is difficult to include the effect of colony mechanics, such as
extracellular fluid flow. As modelling sliding motility requires considering the ECM mechanics,
we restrict our attention here to models that incorporate the extracellular fluid.

In the literature, many authors include external fluid flow when modelling biofilm growth.
A common approach is to consider biofilms immersed in a liquid culture medium, growing
perpendicular to non-reactive, impermeable substrata. These models then incorporate the
hydrodynamics of bulk fluid in the medium [33–35]. We focus primarily on another promising
approach, in which biofilm constituents are themselves treated as fluids [36,37]. Under this
framework, biofilms are typically modelled as multi-phase mixtures of cells, EPS and external
liquid [17,26,38–43]. Applying conservation of mass and momentum for each fluid phase
then enables the mechanics of each fluid, and interactions between phases, to be taken
into account.

We aim to model S. cerevisiae mat formation experiments, which involve a biofilm spreading
radially by sliding motility, with nutrients supplied from the agar substratum. The radius of these
yeast biofilms significantly exceeds their height, which makes thin-film models well suited to this
problem. In most previous models that adopt the thin-film approximation in multi-phase fluid
models, the authors derive a fourth-order generalized lubrication equation for the evolution of the
biofilm height [22,23,44–50]. These models can then incorporate additional features, to investigate
the effects of nutrient supply [44,45,47,50,51], osmotic swelling [23,47,50], quorum sensing [46]
and surface forces [47–49] on biofilm growth. However, a common feature of these models is that
the derivation of a generalized lubrication equation requires the assumption of strong adhesion
between the biofilm and substratum. As a result, flow is driven by a large pressure that must
be balanced with a comparatively large surface tension. By contrast, sliding motility involves
increased cell surface hydrophobicity, and hence weak adhesion between the biofilm and agar.
Modelling S. cerevisiae mat formation therefore requires an alternative approach.

The model of Ward & King [46] is of particular interest to the problem of biofilm expansion
by sliding motility. They treat a bacterial biofilm as a multi-phase mixture of cells and water,
and use an extensional flow thin-film reduction to derive a model for the early time spread of
the colony. This approach assumes weak adhesion between the biofilm and substratum and is
therefore well-suited to modelling the sliding motility mechanism. However, in their model the
biofilm is immersed in a nutrient-rich liquid culture medium. This is unlike S. cerevisiae mats,
which receive nutrients from the agar substratum; their ability to spread therefore depends on the
supply of a depleting nutrient, which is also relevant to biofilm growth in nature or in a human
host [52]. Ward & King [46] also only consider early biofilm development, and thus neglect ECM
production and spatio-temporal variation in the cell volume fraction, which become important
on the time scale of our experiments. Furthermore, multi-phase fluid models have also only
previously been applied to bacterial biofilms, rather than the fungal biofilms considered here.
Based on these considerations, we aim to extend the thin-film model of Ward & King [46], to
model S. cerevisiae mat formation experiments.

2. Mathematical model
We consider growth of a yeast biofilm in cylindrical co-ordinates (r, θ , z), and assume radial
symmetry from the outset. The biofilm occupies the region 0< r< S(t) and 0< z< h(r, t), where
the leading edge of the biofilm S(t) is termed the contact line, and h(r, t) represents the biofilm–air
interface, which is a free surface. We define Hb and Rb to be the characteristic height and radius
of biofilm growth, respectively. The biofilm grows on a substratum, which has depth Hs and is
assumed rigid. A sketch of the problem domain, which closely resembles that of Ward & King [46],
is shown in figure 2.

We adopt a macroscopic continuum model, and treat the biofilm as a mixture of two viscous
fluid phases. These are a living cell phase denoted with the subscript n, and an ECM phase
denoted with the subscript m. We define the volume fractions of living cells and ECM to be
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substratum z = −Hs 

z

Rb

free surface z = h(r, t)

r
Hb

 S(t)

mixture of cells and ECM

Figure 2. Diagram illustrating a vertical slice through the centre of the biofilm and substratum.

φn(r, z, t) and φm(r, z, t), respectively, and assume that the mixture contains no voids, that is

φn + φm = 1. (2.1)

In defining these volume fractions, we note that it is not possible for both species to occupy the
same space simultaneously. Throughout this work, we implicitly assume that an appropriate
averaging process has taken place, and do not discuss the details here. We direct the reader to
the paper by Drew [53] for further information.

A novelty of our approach is that we combine a thin-film extensional flow model for sliding
motility with nutrient uptake from a depleting supply in the substratum. To enable this, we
introduce gs(r, z, t), the nutrient concentration in the substratum defined for −Hs < z< 0, and
gb(r, z, t), the nutrient concentration in the biofilm, defined for 0< z< h(r, t) and 0< r< S(t). After
deriving the governing equations, we impose the initial and boundary conditions required to
close the model in §2b. Nutrients can enter the biofilm across the biofilm–substratum interface, at
which point they become available for consumption by the cells. This, combined with boundary
conditions for the fluid flow, completes our description of sliding motility in biofilms.

(a) Governing equations
We derive the governing equations of our general model using conservation of mass and
momentum. For the mass balances, we assume that the density of each fluid phase is constant,
and that the mass flux of each phase is entirely advective. The mass balance equations then read

∂φα

∂t
+ 1

r
∂

∂r
(rurαφα)+ ∂

∂z
(uzαφα)= Jα , (2.2)

where uα = (urα , uzα) for α= n, m, are the fluid velocities. The Jα terms represent the net
volumetric source of phase α. For these terms, we adapt the bilinear forms used in Tam et al. [5]
to include cell death. Assuming that dead cells immediately become part of the ECM, we write

Jn =ψnφngb − ψdφn and Jm =ψmφngb + ψdφn, (2.3)

where ψn is the cell production rate, ψm is the ECM production rate and ψd is the cell death rate,
all of which are constant. In (2.3), cell death is proportional to cell density only, while production
of both living cells and ECM increases with local cell density and nutrient concentration. This
is consistent with experimental observations, which show that cellular components and ECM
are both formed by catabolism of cellular synthesized glucose [54]. Despite not being considered
here, our model also retains the possibility of incorporating more complicated mechanisms, for
example, ECM production regulated by quorum sensing [39].

We assume that nutrients disperse by diffusion in the substratum, and by both diffusion and
advection with extracellular fluid inside the biofilm. As in Tam et al. [5], we assume that the rate
at which nutrients are consumed is proportional to the local density of cells and nutrients. The
mass balance equations for the nutrients in the substratum and biofilm, respectively, then read

∂gs

∂t
= Ds

[
1
r
∂

∂r

(
r
∂gs

∂r

)
+ ∂2gs

∂z2

]
(2.4)
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and

∂gb

∂t
+ 1

r
∂

∂r

[
rurm (1 − φn) gb

] + ∂

∂z

[
uzm (1 − φn) gb

] = Db

[
1
r
∂

∂r

(
r
∂gb

∂r

)
+ ∂2gb

∂z2

]
− ηφngb, (2.5)

where Ds and Db are the nutrient diffusivities in the substratum and biofilm, respectively, and η
is the maximum nutrient consumption rate.

Since the biofilm spreads as a unit in sliding motility, we follow O’Dea et al. [55] in assuming
strong interphase drag between the cells and the ECM, so that both phases move with the same
velocity un = um = u. Then, for simplicity we assume that the cells and ECM have the same
dynamic viscosity μ, so effectively the mixture can be treated as a single viscous fluid. We denote
the stress tensor for the mixture by σ , and since inertial effects are negligible (Re � 1) on the time
and length scales of biofilm growth, it satisfies the momentum balance equation

∇ · σ = 0. (2.6)

Owing to cell proliferation and death, and ECM production, the stress components for the mixture
will include terms involving ∇ · u, which commonly vanish. In cylindrical geometry, the relevant
components of the stress tensor are

σrr = −p − 2μ
3

∇ · u + 2μ
∂ur

∂r
, σrz = σzr =μ

(
∂ur

∂z
+ ∂uz

∂r

)

and σθθ = −p − 2μ
3

∇ · u + 2μ
r

ur, σzz = −p − 2μ
3

∇ · u + 2
∂uz

∂z
.

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

where p is the pressure [56]. Note that we have invoked Stokes’ hypothesis, giving the standard
coefficient −2μ/3 for the divergence terms in (2.7) [17,46,57,58]. Substituting (2.7) into (2.6), we
find that the momentum balances in the r- and z-directions, respectively, are

− ∂p
∂r

+ 2μ
r

∂

∂r

(
r
∂ur

∂r

)
− 2μ

3
∂

∂r

[
1
r
∂

∂r
(rur)+ ∂uz

∂z

]
+ μ

∂

∂z

(
∂uz

∂r
+ ∂ur

∂z

)
− 2μ

r2 ur = 0 (2.8a)

and

− ∂p
∂z

+ 2μ
∂2uz

∂z2 − 2μ
3

∂

∂z

[
1
r
∂

∂r
(rur)+ ∂uz

∂z

]
+ μ

r
∂

∂r

[
r
(
∂ur

∂z
+ ∂uz

∂r

)]
= 0. (2.8b)

Given appropriate initial and boundary conditions, these momentum balance equations (2.8),
together with the mass balance equations (2.2), (2.4), (2.5), define a closed system of governing
equations for the fluid pressure, fluid velocity and nutrient concentrations.

(b) Initial and boundary conditions
To close the system of governing equations, we require initial and boundary conditions for all of
the physical variables. When constructing the general model, we will leave the initial conditions
arbitrary. We obtain the first boundary condition by noting that nutrient cannot pass through the
base of the substratum. As the substratum is assumed rigid, the no-flux condition is

∂gs

∂z
= 0, on z = −Hs. (2.9)

When the cells are plated, there is no nutrient in the biofilm. Therefore, the nutrient concentration
is initially discontinuous across the biofilm–substratum interface. To enable cell proliferation
and expansion, the biofilm takes up nutrients from the substratum. We assume that the flux
of nutrients across the biofilm–substratum interface is proportional to the local concentration
difference, and expect that in general consumption of nutrients in the biofilm will sustain this



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190175

...........................................................

difference. Assuming fluid cannot pass through the interface, we then have

Ds
∂gs

∂z
= −Q

(
gs − gb

)
and Db

∂gb

∂z
= −Q

(
gs − gb

)
, uz = 0 on z = 0. (2.10)

In equations (2.10), the constant Q is the nutrient mass transfer coefficient, which indicates the
permeability of the biofilm. To obtain a condition for the fluid velocity on the biofilm–substratum
interface, we use the hypothesis that sliding motility increases surface hydrophobicity, causing
weak adhesion between the biofilm and substratum [6]. To model this, we impose zero tangential
stress on the biofilm–substratum interface instead of the more common no-slip condition. The
boundary condition reads

t̂ · (
φασ · n̂

) = ∂ur

∂z
+ ∂uz

∂r
= 0 on z = 0, (2.11)

where t̂ is any unit tangent vector, and n̂ is the unit outward normal vector.
For the boundary conditions on the free surface, we first observe that nutrient cannot pass

through the biofilm–air interface. This yields the no-flux condition

(
gbφmum − Db∇gb

) · n̂ = 0 on z = h. (2.12)

On each fluid phase, we also impose the kinematic condition

∂h
∂t

+ ur
∂h
∂r

= uz on z = h, (2.13)

which states that fluid particles on the free surface must remain there. Finally, we obtain stress
boundary conditions by noting that a free surface is subject to zero tangential stress, and normal
stress that is proportional to its local curvature. In general, these conditions read

t̂ · (
φασ · n̂

) = 0 and n̂ · (
φασ · n̂

) = −γ κ on z = h, (2.14)

where γ is the surface tension coefficient, and κ = ∇ · n̂, for the free surface normal vector
n̂ = (−hr, 1)/(1 + h2

r )−1/2 (where subscripts here denote partial differentiation), is the mean free
surface curvature. This completes the boundary conditions associated with the model.

3. Extensional flow thin-film approximation
In this section, we use a thin-film approximation to obtain a simplified approximation to the
model derived in §2. A key observation is that the radius of a biofilm significantly exceeds
both its height and the depth of the substratum. This allows us to assume that the aspect ratio
Hs/Rb = ε� 1, as well as Hb/Rb =O(ε). In §3a, we non-dimensionalize the governing equations
with this in mind. The choice of scaling regime depends on the physics most relevant to the
problem. For sliding motility in which surface tension is reduced [6], it is appropriate to model the
biofilm as an extensional flow, which was considered by Ward & King [46]. In §3b,c, we adopt this
approach, and use a thin-film approximation to simplify the governing equations and boundary
conditions considerably. We then propose parameter values and source terms in §3d, yielding a
one-dimensional axisymmetric model that we can compare with experimental results.

(a) Scaling and non-dimensionalization
To non-dimensionalize the equations, we use the initial biofilm radius, Rb, as the length scale,
and scale time by the cell production rate, ψn, and initial nutrient concentration, G. The scaled
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variables are (where hats denote dimensionless quantities)

(r, z) = (Rbr̂, εRbẑ), (ur, uz) = (ψnGRbûr, εψnGRbûz)

and t = t̂
ψnG

, gs = Gĝs, gb = Gĝb, p =ψnGμp̂.

⎫⎪⎬
⎪⎭ (3.1)

Under this scaling, the governing equations (2.2), (2.4), (2.5) and (2.8) become, after dropping hats
and eliminating φm by summing (2.2) over both phases and applying (2.1)

1
r
∂

∂r
(rur)+ ∂uz

∂z
= (1 + Ψm) φngb, (3.2a)

∂φn

∂t
+ 1

r
∂

∂r
(rurφn)+ ∂

∂z
(uzφn)= φngb − Ψdφn, (3.2b)

∂gs

∂t
= D

[
1
r
∂

∂r

(
r
∂gs

∂r

)
+ 1
ε2
∂2gs

∂z2

]
, (3.2c)

Pe
{
∂gb

∂t
+ 1

r
∂

∂r

[
rur (1 − φn) gb

] + ∂

∂z

[
uz (1 − φn) gb

]}

= 1
r
∂

∂r

(
r
∂gb

∂r

)
+ 1
ε2
∂2gb

∂z2 − Υ φngb, (3.2d)

− ∂p
∂r

+ 2
r
∂

∂r

(
r
∂ur

∂r

)
− 2

3
∂

∂r

[
1
r
∂

∂r
(rur)+ ∂uz

∂z

]
+ ∂

∂z

(
∂uz

∂r
+ 1
ε2
∂ur

∂z

)
− 2ur

r2 = 0 (3.2e)

and − ∂p
∂z

+ 2
∂2uz

∂z2 − 2
3
∂

∂z

[
1
r
∂

∂r
(rur)+ ∂uz

∂z

]
+ 1

r
∂

∂r

[
r
(
∂ur

∂z
+ ε2 ∂uz

∂r

)]
= 0, (3.2f )

where we have introduced the dimensionless constants

Ψm = ψm

ψn
, Ψd = ψdG

ψn
, D = Ds

ψnGR2
b

, Pe = ψnGR2
b

Db
and Υ = ηR2

b
Db

. (3.3)

In (3.3), Ψm and Ψd are the dimensionless ECM production and cell death rates, respectively.
The parameter D is the coefficient of diffusion for nutrients in the substratum, scaled by the cell
production rate and biofilm radius. The Péclet number, Pe, is the ratio of the rates of advective
transport to diffusive transport within the biofilm. The parameter Υ is the dimensionless nutrient
consumption rate. We scale Υ differently to the corresponding term in Ward & King [46]. In
their model, the biofilm was immersed in a nutrient-rich liquid culture medium, and hence
they balanced nutrient consumption with diffusion in the z-direction. By contrast, S. cerevisiae
mats grow on a nutrient-limited thin substratum, making it appropriate to balance nutrient
consumption with the temporal derivative and in-plane advection and diffusion.

Applying the same scaling (3.1), the dimensionless boundary conditions are

∂gs

∂z
= 0, on z = −1, (3.4a)

∂gs

∂z
= −ε2Qs

(
gs − gb

)
,

∂gb

∂z
= −ε2Qb

(
gs − gb

)
on z = 0, (3.4b)

∂ur

∂z
+ ε2 ∂uz

∂r
= 0, on z = 0, (3.4c)

uz = 0 on z = 0, uz = ∂h
∂t

+ ur
∂h
∂r

on z = h, (3.4d)

Pe
[

gb (1 − φn)

(
ur
∂h
∂r

− uz

)]
= ∂gb

∂r
∂h
∂r

− 1
ε2
∂gb

∂z
on z = h, (3.4e)
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− 2
∂h
∂r

(
∂ur

∂r
− ∂uz

∂z

)
+ 1
ε2
∂ur

∂z
+ ∂uz

∂r
−

(
∂h
∂r

)2 (
ε2 ∂uz

∂r
+ ∂ur

∂z

)
= 0 on z = h (3.4f )

and − p + 2

[
ε2

(
∂h
∂r

)2
+ 1

]−1 [
ε2

(
∂h
∂r

)2
∂ur

∂r
− ∂h
∂r

(
∂ur

∂z
+ ε2 ∂uz

∂r

)
+ ∂uz

∂z

]

− 2
3

[
1
r
∂

∂r
(rur)+ ∂uz

∂z

]
= −γ ∗κ∗ on z = h, (3.4g)

where κ∗ is the dimensionless mean free surface curvature. The dimensionless parameters

Qs = QRb

εDs
, Qb = QRb

εDb
and γ ∗ = εγ

ψnGRbμ
(3.5)

are all assumed to be O(1). The mass transfer parameters Qs and Qb are the nutrient depletion rate
(from the substratum), and nutrient uptake rate (by the biofilm), respectively. The dimensionless
surface tension coefficient (or inverse capillary number), γ ∗, is the ratio of surface tension
forces to viscous forces. Equations (3.2), and the boundary conditions (3.4), then complete the
dimensionless extensional flow model, on which we apply the thin-film reduction.

(b) Thin-film equations
We now use a thin-film approximation to simplify the dimensionless extensional flow model
derived in §3a. This involves expanding the dependent variables in powers of ε2

h(r, t) ∼ h0(r, t) + ε2h1(r, t) + O
(
ε4

)
(3.6a)

and

φn(r, z, t) ∼ φn0(r, z, t) + ε2φn1(r, z, t) + O
(
ε4

)
, (3.6b)

and so on, where series for p, ur, uz, gs and gb take the same form as (3.6b). Substituting (3.6) into
the dimensionless governing equations (3.2), at leading order we obtain

1
r
∂

∂r
(rur0)+ ∂uz0

∂z
= (1 + Ψm) φn0gb0, (3.7a)

∂φn0

∂t
+ 1

r
∂

∂r

(
rφn0ur0

) + ∂

∂z

(
φn0uz0

) = φn0gb0 − Ψdφn0, (3.7b)

∂2gs0
∂z2 = ∂2gb0

∂z2 = 0, (3.7c)

∂2ur0

∂z2 = 0 (3.7d)

and − ∂p0

∂z
+ 1

3
∂

∂z

[
1
r
∂

∂r
(rur0)+ ∂uz0

∂z

]
+ ∂2uz0

∂z2 = 0. (3.7e)

These are subject to the leading-order boundary conditions

∂gs0
∂z

= 0 on z = −1, 0, and
∂gb0
∂z

= 0 on z = 0, h0, (3.8a)

∂ur0

∂z
= 0 on z = 0, h0, and uz0 = 0 on z = 0, (3.8b)

∂h0

∂t
+ ur0

∂h0

∂r
= uz0 on z = h0 (3.8c)

and − p0 − 2
3r

∂

∂r
(rur0)+ 4

3
∂uz0

∂z
= γ ∗

r
∂

∂r

(
r
∂h0

∂r

)
on z = h0, (3.8d)

where the rightmost term in (3.8d) incorporates κ∗ = ∇2h0, which is the leading-order local free
surface curvature.
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Equations (3.7c), (3.7d) and the associated boundary conditions (3.8a), (3.8b) demonstrate that
gs0, gb0 and ur0 are independent of z, as is characteristic of extensional flows [59]. In a similar way
to, for example King & Oliver [60], we exploit this by integrating the governing equations with
respect to z across the biofilm depth to derive a one-dimensional closed system of equations for
the leading-order variables. First, we introduce the depth-averaged cell volume fraction

φ̄n0 = 1
h0

∫ h0

0
φn0 dz. (3.9)

Integration of (3.7a), (3.7b) with respect to z then yields, after application of Leibniz’s integral rule
in (3.7b)

∂h0

∂t
+ 1

r
∂

∂r
(rur0h0)= (1 + Ψm) φ̄n0gb0h0 (3.10a)

and
∂

∂t

(
φ̄n0h0

) + 1
r
∂

∂r

(
rur0φ̄n0h0

) = (
φ̄n0gb0 − Ψdφ̄n0

)
h0, (3.10b)

where subtracting (3.10a) from (3.10b) gives

∂φ̄n0

∂t
+ ur0

∂φ̄n0

∂r
= φ̄n0

[
gb0 − Ψd − (1 + Ψm) φ̄n0gb0

]
. (3.11)

To obtain equations for the leading-order nutrient concentrations, we need to consider the
higher-order correction terms to the governing equations (3.2c) and (3.2d). Upon substituting the
expansions (3.6), the O(1) balances are

∂2gs1
∂z2 = 1

D
∂gs0
∂t

− 1
r
∂

∂r

(
r
∂gs0
∂r

)
(3.12a)

and

∂2gb1
∂z2 = Pe

{
∂gb0
∂t

+ 1
r
∂

∂r

[
rur0(1 − φn0)gb0

] + ∂

∂z

[
uz0(1 − φn0)gb0

]} − 1
r
∂

∂r

(
r
∂gb0
∂r

)
+ Υ φn0gb0.

(3.12b)

Using (3.4a), (3.4b) and (3.4e), we can also obtain higher-order corrections to the boundary
conditions, giving

∂gs1
∂z

= 0 on z = −1, (3.13a)

∂gs1
∂z

= −Qs
(
gs0 − gb0

)
,

∂gb1
∂z

= −Qb
(
gs0 − gb0

)
on z = 0 (3.13b)

and
∂gb1
∂z

= ∂gb0
∂r

∂h0

∂r
− Pegb0

(
1 − φn0

) (
ur0

∂h0

∂r
− uz0

)
on z = h0. (3.13c)

Integrating (3.12a) and (3.12b) with respect to z across the substratum and biofilm depth,
respectively, and applying the boundary conditions (3.13), we obtain

∂gs0
∂t

= D
[

1
r
∂

∂r

(
r
∂gs0
∂r

)
− Qs

(
gs0 − gb0

)]
(3.14a)

and

Pe
{

h0
∂gb0
∂t

+ 1
r
∂

∂r

[
rur0

(
1 − φ̄n0

)
gb0h0

]} = 1
r
∂

∂r

(
rh0

∂gb0
∂r

)
+ Qb

(
gs0 − gb0

) − Υ φ̄n0gb0h0,

(3.14b)
for 0< r< S(t). We also need to take into account that the nutrient concentration in the substratum
can be non-zero outside of the biofilm domain. Outside of the biofilm, the nutrient will disperse
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via diffusion only, and therefore the mass balance equation outside of the biofilm is

∂gs0
∂t

= D
r
∂

∂r

(
r
∂gs0
∂r

)
, on S(t)< r<R, (3.15)

where R = Rp/Rb, and Rp is the radius of the Petri dish. We then seek a solution for gs0 such that
the nutrient concentration and its first spatial derivative are both continuous at the contact line.
Equations (3.14) and (3.15) then constitute the leading-order nutrient balance equations for our
thin-film model.

Finally, we consider the higher-order correction term in the radial momentum equation (3.2e)
to obtain equations for the leading-order radial velocity. Using the conservation of mass equation
(3.2a) to simplify, the relevant term is

∂2ur1

∂z2 = ∂p0

∂r
+ 2

3
(1 + Ψm)

∂

∂r

(
φn0gb0

) − 2
r
∂

∂r

(
r
∂ur0

∂r

)
− ∂

∂r

(
∂uz0

∂z

)
+ 2ur0

r2 . (3.16)

Similarly, the higher-order corrections to the boundary conditions (3.4c), (3.4f) are

∂ur1

∂z
= 0, on z = 0 and

∂ur1

∂z
= 2

∂h0

∂r

(
∂ur0

∂r
− ∂uz0

∂z

)
− ∂uz0

∂r
on z = h0. (3.17)

To evaluate (3.16), we need to solve for the pressure p0. As ur0 is independent of z, integration of
(3.7e) with respect to z yields, after applying (3.8d) and using (3.7a)

p0 = 4
3
(1 + Ψm) φn0gb0 − 2

r
∂

∂r
(rur0)− γ ∗

r
∂

∂r

(
r
∂h0

∂r

)
. (3.18)

Now, integrating (3.16) with respect to z across the biofilm depth, and applying the boundary
conditions (3.17), we obtain

4
∂

∂r

[
h0

r
∂

∂r
(rur0)

]
− 2ur0

r
∂h0

∂r
= 2 (1 + Ψm)

∂

∂r

(
φ̄n0gb0h0

) − γ ∗h0
∂

∂r

[
1
r
∂

∂r

(
r
∂h0

∂r

)]
. (3.19)

Equations (3.10a), (3.11), (3.14), (3.15) and (3.19) then form a closed system for the leading-order
biofilm height, (depth-averaged) cell volume fraction, nutrient concentrations and radial fluid
velocity. These equations form our one-dimensional, thin-film extensional flow model.

(c) Initial and boundary conditions
We use experimental observations to propose initial and boundary conditions for the one-
dimensional axisymmetric model. The experiments and procedure used in this work are
described by Tam et al. [5]. In the experiments, the Petri dish is initially filled uniformly with
nutrient, and a small droplet containing cells and fluid is inoculated in the centre of the dish
using a pipette. The fluid in the droplet is rapidly absorbed into the agar substratum, leaving a
thin layer of cells, which we assume adopts a parabolic profile. Experiments of C. albicans show
that extracellular material only emerges in mature biofilm [61], hence we assume the biofilm is
initially made up of cells only. Appropriate initial conditions are therefore

S(0) = 1, h0(r, 0) = H0

(
1 − r2

)
, φ̄n0(r, 0) = 1, gs0(r, 0) = 1 and gb0(r, 0) = 0, (3.20)

where H0 is the initial biofilm height, which we expect to be O(ε). In specifying (3.20), we note
that we have chosen the characteristic length scales to be the initial biofilm height and radius, and
scale both nutrient concentrations by the initial concentration in the substratum.

For the boundary conditions, we first assume that the biofilm and nutrient concentration are
radially symmetric, and that the centre of the biofilm is fixed. This yields the conditions

∂h0

∂r

∣∣∣∣
(0,t)

= 0,
∂φ̄n0

∂r

∣∣∣∣
(0,t)

= 0,
∂gs0
∂r

∣∣∣∣
(0,t)

= 0 and
∂gb0
∂r

∣∣∣∣
(0,t)

= 0, ur0(0, t) = 0. (3.21)
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In addition, we know that the contact line position S(t) evolves according to the local fluid velocity,
that is

dS
dt

= ur0 (S(t), t) . (3.22)

To close the one-dimensional axisymmetric model, we now require an additional boundary
condition for each of the nutrient concentrations, and the fluid velocity. For the nutrient
concentration in the substratum, it is natural to impose the no-flux condition

∂gs0
∂r

∣∣∣∣
(R,t)

= 0 (3.23)

at the boundary of the Petri dish. Regarding the nutrient concentration in the biofilm, we note
that the leading edge of the biofilm is rounded by a meniscus, where the height changes over a
region in r with O(ε) size [62]. This meniscus is not captured under the original thin-film scaling.
With this in mind, close to the contact line we consider a re-scaling of the original variables

(r, z) =
(

S(t) + εRbr†, εRbz†
)

and (ur0, uz0) =
(
εψnGRbur

†
0, εψnGRbuz

†
0

)
. (3.24)

With this scaling, the leading-order balance for the flux boundary condition (2.12) becomes
(dropping daggers)

∂gb0
∂z

= ∂gb0
∂r

∂h0

∂r
on z = h0. (3.25)

At the contact line, the left-hand side of (3.25) vanishes due to (3.8a), and in general h0 can depend
on r. The boundary condition on the biofilm nutrient concentration is therefore

∂gb0
∂r

∣∣∣∣
(S(t),t)

= 0. (3.26)

To close the momentum equation (3.19), we impose that the biofilm experiences zero radial stress
at the contact line, that is σrr(S(t), t) = 0. Using (3.18) to eliminate the pressure, we find that

σrr = 4
∂ur0

∂r
+ 2

ur0

r
− 2 (1 + Ψm) φn0gb0 + γ ∗

r
∂

∂r

(
r
∂h0

∂r

)
. (3.27)

Integrating (3.27) over the biofilm depth, or noting that φ̄n0 → φn0 as h → 0, we then obtain

4
∂ur0

∂r
+ 2ur0

r
= 2 (1 + Ψm) φ̄n0gb0 − γ ∗

r
∂

∂r

(
r
∂h0

∂r

)
, on (r, t) = (S(t), t) . (3.28)

Equations (3.10a), (3.11), (3.14), (3.15) and (3.19), together with the initial conditions (3.20)
and boundary conditions (3.21), (3.22), (3.26), (3.28) and (3.23), form a closed one-dimensional
axisymmetric model for leading-order variables. From here onwards, we drop zero subscripts on
leading-order terms for convenience.

(d) Parameters
To obtain a set of parameters to use when comparing the model with S. cerevisiae mat formation
experiments, we require estimates for all dimensional quantities in (3.1), (3.3) and (3.5). To
assist with this, we first set Ψm = 1/9 to ensure that φ̄n will approach 0.9, as is consistent with
experimental observation. For comparison purposes, we also set Ψd = 0, as cell death rate is
difficult to measure, and images from the end of the experiments show that the proportion
of dead cells is low. Furthermore, as reduced surface tension is a characteristic of sliding
motility [6], we initially consider γ ∗ = 0. The experimental design then enables us to estimate
all other dimensional parameters, with the exception of ψn and η, which we subsequently fit to
experimental data. We then obtain the dimensionless parameters listed in table 1. Further details
on how each was estimated are available in the electronic supplementary material. The parameter
T corresponds to the dimensionless time taken to complete the experiment, and informs the time
domain in numerical solutions to the model. We note that all constants in the right-hand column
are O(1), which justifies the scaling regime employed in the thin-film model.
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Table 1. Dimensionless parameter estimates for a yeast (S. cerevisiae) biofilm.

parameter value source parameter value source

H0 0.1 assumption D 4.34 [63,64]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψm 0.111 observation Pe 0.953 [65]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψd 0 observation Υ 3.15 experimental data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R 14.4 experimental design Qb 8.65 [66]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T 15.9 experimental data Qs 2.09 [66]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ ∗ 0 assumption
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Results and discussion
In this section, we compare the thin-film extensional flow model derived in §3 with experimental
data, and then investigate the dependence of the parameters on the speed of biofilm expansion.
To achieve this, we undertake the numerical solution of (3.10a), (3.11), (3.14), (3.15) and (3.19) on
r ∈ [0, R], and t ∈ [0, T], subject to (3.21), (3.22), (3.26), (3.28), (3.23) and (3.20) in §4a. Doing so with
the parameters in table 1 confirms that sliding motility can reproduce experimental results. In
§4b,c, we then vary the parameters, including cell death rate and surface tension coefficient, to
predict the expansion speed and biofilm shape in different conditions.

(a) Numerical solutions and comparison with experiments
We use a front-fixing method [67] to solve the one-dimensional axisymmetric model. This
involves introducing the new variables

ξ = r
S(t)

and ξo = r − S(t)
R − S(t)

, (4.1)

so that the biofilm always inhabits ξ ∈ [0, 1], and the interval ξo ∈ [0, 1] represents the remainder
of the Petri dish not occupied by the biofilm. We then use a Crank–Nicolson scheme to discretize
the model. For all nonlinear terms, we linearize using data from the previous time step. At each
time step, we solve the governing equations in the same order as they are derived in §3b. When
solving for the nutrient concentration in the substratum, we use data from the previous time step
as an initial guess for gs(S, t) at the current time step. We then solve both (3.14a) and (3.15), and
use Newton’s method to correct the initial guess, and ensure that the first spatial derivative of
gs is continuous at r = S(t), which corresponds to ξ = 1 and ξo = 0. We compute solutions using
an equispaced grid with �ξ =�ξo = 1.25 × 10−4 and �t ≈ 1 × 10−4, which ensures adequate
convergence with grid spacing and time step size. Further details on the numerical method are
provided in the electronic supplementary material.

We compute solutions for the parameters given in table 1 to facilitate comparison with
experiments. There is good agreement between the numerical contact line position and the
measured radius of the S. cerevisiae mats, as shown in figure 3a. Unlike the reaction–diffusion
model of Tam et al. [5], figure 3b shows that the extensional flow model produces a non-
constant expansion speed. The velocity profile resembles the experimental B. subtilis biofilms of
Srinivasan et al. [50], featuring an initial period of acceleration followed by a deceleration. A likely
explanation of the acceleration observed early in biofilm growth is that cells initially proliferate
in nutrient-rich conditions. With abundant nutrients, both existing and newly produced cells are
able to proliferate, accelerating expansion. However, as time passes nutrients become depleted
in the centre of the colony, as shown in figures 3c,d. When this occurs, cell proliferation is
mostly confined to the leading edge (figure 3f ), which slows the expansion of the colony. This
phenomenon also dictates the shape a biofilm attains as it expands. As figure 3e shows, our model
predicts that the biofilm will expand vertically and radially when nutrients are abundant. When
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Figure 3. Numerical solution to the thin-film model, using parameters given in table 1, and comparison with experimental
data. (a) Comparison of numerical contact line position (dashed curve) with experimental data. Dots indicate the mean data,
and error bars indicate the experimental range. (b) Instantaneous biofilm expansion speed ur(S(t), t). (c–f ) Spatio-temporal
evolution of themodel variables. Figures plotted for t ∈ [0, 15.9], and r ∈ [0, 14.4], at 10 equispaced time intervals. The dashed
curve in (e) represents the initial condition, and arrows indicate the direction of increasing time. (c) Nutrient concentration
(substratum), (d) nutrient concentration (biofilm), (e) biofilm height and (f ) net fluid production.

nutrients deplete and growth is concentrated near the leading edge, the biofilm stops thickening
and can only expand radially. The model even predicts that the height at the centre of the biofilm
will begin to decrease slightly, as the advection of mass with the fluid exceeds the net production
rate.

(b) The effect of model parameters on biofilm size
In §4a, we considered one set of parameters relevant to the S. cerevisiae mat formation
experiments. However, biofilms can grow in vastly different ways depending on the microbial
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Figure 4. The effect of parameters on the predicted biofilm radius after 5 days of growth, S(T). In each solution, we use the
initial conditions (3.20). When held constant, all parameters (excepting T) are as in table 1. (a) The effect of cell production rate,
ψn. (b) The effect of ECM production rate,Ψm, and cell death rateΨd . (c) The effect of nutrient transport parameters, D, Pe and
Υ . (d) The effect of nutrient depletion and uptake parameters, Qs, and Qb.

species and environmental conditions. To predict biofilm growth by sliding motility in a range
of experimental conditions, we compute numerical solutions for 5 days of growth. For each set
of solutions, we use the default parameters given in table 1, and vary one parameter at a time
over a realistic range. This allows us to isolate the effect of each parameter on biofilm size, and
consequently expansion speed. Of the dimensionless parameters, we found that the Petri dish
size R and surface tension coefficient γ ∗ had negligible effect on the biofilm size. Results for other
dimensionless parameters and the cell production rate, ψn, are shown in figure 4. A vast range of
behaviour is possible while keeping dimensionless parameters within one order of unity.

Figure 4a,b describes how fluid production and cell death affect expansion speed. As
expected, higher rates of fluid (either living cells or ECM) production result in larger biofilms.
However, unlike the production of ECM, the production of new cells facilitates increased cell
proliferation in the future, and therefore cell production rate is a stronger determinant of size
than ECM production rate. This verifies that expansion in sliding motility is mostly driven by
cell proliferation. In addition, figure 4b shows that increasing the cell death rate decreases biofilm
size, which is expected as fewer living cells are subsequently available to proliferate.

The remaining plots in figure 4 show how the dimensionless parameters affect expansion
speed. The effect of nutrient movement and consumption is revealed in figure 4c. Increasing
the nutrient diffusion coefficient D will result in more uniform nutrient concentrations across
the Petri dish than seen in figure 3c,d. This promotes thickening of the biofilm as opposed
to radial expansion. In addition, increasing the nutrient consumption rate Υ results in larger
quantities of nutrient being required to produce a new cell, thereby slowing expansion. The
Péclet number indicates how readily nutrients advect radially with the extracellular fluid. Larger
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Figure 5. Numerical solution with D= 1.5, Υ = 10 and Pe= 10, and other parameters as in table 1. (a) Spatio-temporal
evolution of the biofilmheight, illustrating the formation of a ridge near the leading edge. Figures plotted at 10 equispaced time
intervals for t ∈ [0, 15.9], where the dashed curve denotes the initial condition. (b) The normalized ridge height, Ir , confirming
more pronounced ridge formation than the base solution in figure 3.

values of Pe increase nutrient supply to the proliferating rim, enabling faster expansion. However,
the slender biofilm and substratum geometries are such that nutrient availability close to the
leading edge depends more strongly on uptake from the substratum than advection in the
biofilm. Therefore, the Péclet number has a weaker effect on expansion speed than the nutrient
depletion and uptake rates, as figure 4d illustrates. Larger values of nutrient depletion rate Qs

decrease nutrient access to the cells, which slows expansion. Conversely, increasing nutrient
uptake rate Qb aids cell production, as more nutrients become available for consumption. A
common theme in all of these results is that expansion speed depends on the ability of cells close
to the leading edge to consume nutrient and proliferate. The results presented here are relevant to
clinical settings, where expansion speed correlates with the invasiveness of infection. Our model
describes environmental conditions that result in decreased expansion speed.

(c) Predicting biofilm shape: ridge formation and surface tension
In addition to the size, our model also predicts the shape a growing biofilm will attain.
Although not observed in S. cerevisiae mat formation experiments, some bacterial biofilms
[50] and yeast colony biofilms [54] develop a ridge structure close to the leading edge. To
observe ridge formation in our model, we compute a numerical solution with the experimental
parameters given in table 1, except with D = 1.5, Υ = 10 and Pe = 10. Compared to the
experimental parameters, this combination of decreased nutrient diffusion, and increased
nutrient consumption and advection leads to faster nutrient depletion behind the proliferating
rim. Cell proliferation then becomes concentrated close to the leading edge, which in conjunction
with increased advection of mass outwards from the biofilm centre, creates the noticeable
ridge seen in figure 5a. To quantify ridge formation, we compute the normalized ridge height
Ir(t) = (max h(r, t))/h(0, t) in the new numerical solution, and compare with the experimental
case. Figure 5b shows the normalized ridge height increasing faster than the base solution with
experimental parameters. Although we do not investigate the mechanisms of ridge formation in
detail, our model shows that interplay between sliding motility and nutrient-limited growth can
initiate ridge formation. Importantly, this can occur without the need to invoke other mechanisms
such as osmotic swelling or mechanical blistering.

Finally, we investigate the effect that non-zero surface tension would have on the biofilm
shape. This surface tension represents the strength of cell–cell adhesion at the free surface,
which we assumed weak when comparing with experiments. To investigate its effect, we
compute numerical solutions with the parameters as in figure 5, while varying the surface
tension coefficient over the range γ ∗ ∈ [0, 2]. These results are shown in figure 6. We observe
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Figure 6. Numerical solutions with parameters (excepting γ ∗) as in figure 5, illustrating how surface tension affects ridge
formation. (a) Final biofilmheight, h(r, T), where T = 15.9, plotted forγ ∗ ∈ [0, 2], at increments ofγ ∗ = 0.2. (b) Normalized
ridgeheight of the solutions infigure6a, showingadecrease in ridgeheightwith surface tension. (c) Instantaneousfluid velocity
at t = T , again plotted for γ ∗ ∈ [0, 2], at increments of γ ∗ = 0.2.

that increasing the surface tension coefficient reduces the extent of the ridge, and that γ ∗ = 2 is
sufficient to prevent ridge formation. As surface tension appears only in the momentum equation
(3.19) and boundary condition (3.28), we expect the fluid velocity profile to explain this behaviour.
Figure 6c shows that increasing γ ∗ decreases the radial velocity near the centre of the biofilm.
This decreases movement of fluid and nutrients towards the leading edge of the biofilm, thereby
inhibiting ridge formation. However, we do not observe ridge formation in S. cerevisiae mat
formation experiments nor the solution with experimental parameters (figure 3). This supports
the hypothesis of low cell–cell adhesion in sliding motility, and justifies setting γ ∗ = 0 when
comparing the model with experiments.

5. Summary
In this paper, we developed a mathematical model to better understand how mechanics affect
yeast biofilm expansion. We were particularly interested in the role of sliding motility and
nutrient limitation, features hypothesized to be relevant to mat formation experiments of the
budding yeast S. cerevisiae. To investigate this, we derived a general multi-phase model for
biofilm expansion, treating the biofilm as a mixture of living cells and extracellular fluid. We
systematically reduced the model to a one-dimensional axisymmetric form by employing an
extensional flow thin-film reduction. By computing numerical solutions, we showed that the
thin-film model could reproduce the expansion speed of S. cerevisiae mat biofilms. We then
confirmed the hypothesis that cell production rate is the strongest determinant of biofilm size
in sliding motility. By varying model parameters, we showed that increasing the ability for cells
close to the leading edge to consume nutrients and proliferate promotes faster expansion. This
can be achieved by decreasing the rates of nutrient diffusion, consumption and depletion, or
by increasing the nutrient uptake rate. Finally, we showed that sliding motility is a possible
explanation for the ridge formation observed in bacterial or yeast colony biofilms. We found that
surface tension slows the movement of cells and nutrients towards the biofilm rim, and thus
inhibits ridge formation. Our model confirms that sliding motility is a plausible mechanism for
yeast biofilm expansion, and offers a way of quantitatively predicting biofilm growth for other
microbial species and environmental conditions.

In addition to these results, our model offers an opportunity to study further biological
questions. For example, there are potential links between the characteristic floral morphology
of S. cerevisiae mats and the stability of solutions to azimuthal perturbations. This provides
one avenue for further investigation. Depending on the desired application, the general model
also retains the possibility of investigating different mechanisms. For example, the model could
be re-scaled to investigate expansion driven by strong adhesion and increased surface tension,
rather than sliding motility. A more detailed model could also consider the agar substratum
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as viscoelastic, rather than solid. We could then impose continuity of shear stress at biofilm–
substratum interface, instead of the zero tangential stress assumed here. The model can also
incorporate more complicated cell production mechanisms, for example, ECM production
regulated by quorum sensing. It is also possible to include more complicated mechanical
behaviour, for example, biofilm viscoelasticity or expansion driven by osmotic swelling. We
intend to tackle some of these scenarios in future work, to shed further light on the mechanisms
governing biofilm expansion.
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