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Wavespeed analysis: Approximating Arrhenius Kinetics with
step-function Kinetics
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The accuracy of using step-function approximations to the Arrhenius exponential in computing
the wavespeed in combustion wave propagation is investigated. Gaseous and gasless combus-
tion, and first- and second-order reactions are included in the study. The theoretical analysis
is based on Melnikov theory from dynamical systems. The error is shown to be small in most
instances. The analytical results are supported with numerical simulations.

Keywords: Arrhenius; combustion waves; Melnikov theory; step-function approximation;
wavespeed

1. Introduction

Typical approaches to solving combustion wave as well as many other combustion problems are
based on the fact that non-dimensional activation energies of combustion reactions are large,
resulting in reaction zones that are thin compared to the preheat regions. In some works these
ideas are implemented by using systematic asymptotic expansions. In other works they take the
form of combustion front approximations and delta-function kinetics. There is another, related,
approach to solving combustion problems that we find quite useful. It involves the use of step-
functions in the reaction rate terms. This approach has a long and glorious history, beginning with
works by Le Chatelier and many others who introduced the ignition temperature as a physical
characteristic of the combustible material in ‘pre-Arrhenius’ times, and who were correctly
criticized by subsequent researchers (see, e.g., [1, 2] for a more detailed discussion). By no
means are we trying to revive the old theories. We do not introduce ignition temperature as a
material parameter. Our use of step-functions is due to the understanding that the Arrhenius
exponential and an appropriately chosen step-function may be close to one another in the sense
of distributions and, therefore, may yield close results. We remark that in some earlier work [3, 4]
step-functions were used in combustion problems to replace the entire reaction term, i.e., both the
Arrhenius exponential and the kinetics function. This is different from our approach, in which
only the Arrhenius temperature dependence of the reaction rate is replaced by a step-function
[5-7]. (Other recent work where the accuracy of the step-function approximation is assessed
by comparing analytical results with numerical solutions is [8].) The step-function is chosen
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in such a way that its maximum value is the same as that of the Arrhenius function and the
integral values of the two over the entire temperature interval where the process occurs are also
equal.

The step-function approach has been successfully used in both combustion and frontal poly-
merization problems yielding accurate and reliable results. However, there are no systematic
studies that attempt to obtain analytical estimates of the accuracy of such approximations. We
present such a study in this paper. The analytical tool we use is Melnikov theory [9], which has
only recently been applied to combustion problems in [10], but not in the context of step-function
approximations. Melnikov theory relates to determining the distance between perturbed stable
and unstable manifolds in dynamical systems, and as shown in [10] can therefore be used as a cri-
terion for the persistence of a wavefront solution to certain types of partial differential equations.
We use Melnikov theory to get the error of the approximation in terms of an integral that involves
the difference of the exact and approximate reaction rates, as it should be if the proximity between
the two is to be understood in the distributional sense. We are thereby able to obtain theoretical
wavespeed estimates for both step-function and Arrhenius reaction rates, and moreover compare
these results with numerically obtained ones. We apply these methods to both gaseous and gasless
combustion, and also investigate both first-order and higher-order reactions.

2. Governing equations

We consider a one-dimensional pre-mixed adiabatic combustion model, expressed non-
dimensionally by

2
ou  0°u 0o~ u

o o V¢ @1
dy 1 3%y | '
-7 —ﬂy"ei /u.

at Le dx2

Here u(x, t) is the temperature at a location x at time #, y(x, t) is the concentration of the deficient
reactant, B is the exothermicity parameter, Le is the Lewis number, and » is the order of the
reaction. In this non-dimensionalization, the temperature u is scaled by the activation temperature
E /R, where E is the activation energy and R is the universal gas constant. The parameter S is the
ratio of the activation temperature E/R to the adiabatic temperature increase 7, — Tp, in which
T, and T are the adiabatic and initial temperatures respectively.

In contrast to (2.1), consider the problem

8u_82u+ ")

or  oxz O M (2.2)
dy 1 3%y By k() '
77 _ n

ot Leoxz Y

where k(u) is a step-function given by

k(u) = e PH (u — up). (2.3)
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Here H is the Heaviside function, and u is determined by setting the integral of k(u) over
the entire interval of temperature variation (0, 1/8) (see below) to be the same as that for the
non-dimensional Arrhenius function exp(—1/u). This results in

1/
U= — — eﬂfo e Vidy = % — eﬂ%Ez(,B) =ePE (B), (2.4)

where the function E; is

(o] efzt . o0 e*l
E;(2) :z/ 4 dt:zJ*I/ —dr
Lt Y

as defined in [11]. Equation (2.2) is meant to approximate the problem (2.1) with Arrhe-
nius kinetics. In order to determine the error resulting from this approximation, consider the
problem

d 92

T k() + 8y e — k()]

ar  9x? 2.5)
L k) — sy L — k)

—=—— - u)— e — k(u)].

ot Leaxz 7 Y

While (2.5) with § = 1 corresponds exactly to Arrhenius kinetics, the intention is to analyse (2.5)
initially as a perturbation of (2.2), using a small § approximation.

We are interested in uniformly propagating combustion waves which transform the initial
state, with the reactant concentration y = 1 and the temperature ¥ = 0, into the final burnt
state, where the reactant is completely consumed, y = 0, and the temperature is increased to
the burnt temperature. In particular, the focus shall be on determining the correction to the
wavespeed resulting from the fact that the step-function kinetics in (2.2) is an approximation to
the Arrhenius kinetics as expressed in (2.5). We will do this for several cases: (i) Le = co,n = 1;
(i) Le = oo,n = 2;(iii) Le = 1,n = 1; (iv) Le = 1, n = 2, although our techniques generalize
to any n.

3. Infinite Lewis number first-order reactions: Step-function problem

As a first case, we examine the step-function problem for Le = oo and n = 1, given in (2.2) —
equivalently, § = 0 in (2.5). We introduce the wave coordinate £ = x — ¢, where ¢y (assumed
positive) is the wavespeed of the travelling wave in this § = 0 situation. Under this ansatz, (2.2)
is representable as a system of two ordinary differential equations

—cou/(§) = u"(€) + e Py(§)H (u(£) — uo) } (.1)

—coy'(€) = —pe P y(E)H (u() — uo).

The system has the first integral

Bu' + cofu + coy = co,
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which is derived by multiplying the first equation in (3.1) by § and adding to the second, then
integrating the resulting equation, and finally using the boundary conditions at the cold end
in order to evaluate the constant of integration. This first integral allows us to determine the
burnt temperature i, i.e., the temperature as £ — —oo as u = 1/ and express the reactant
concentration as

y=1-pu-Lo (32)

where v(€) = u/(€). This enables the system (3.1) to be written as a two-dimensional system

u =v

vV =—cop—e P (1 — Bu — Cﬁv> H (u — uyg), 3.3)
0

in which a solution which progresses from the fixed point (u#, v) = (1/8, 0) (the fully burnt state)
to (0, 0) (fully unburnt) is sought. We partition the (u, v) phase space into two segments: u < ug
and u > uy (see Figure 1). In the former segment, the equations collapse to

u' =v
o = —cou. } (3.4)

in which the solution that approaches the origin as £& — oo is v = —cou.
In the second region (u > uy), the equations are

/

u =v
vV =—cpv—e? (1—,3u—ﬁv>, 3.3)
co
v
\ ! ‘5‘3
| 2
|
(0,0) | \/ - u
|
|

(uo, —Coug)

Figure 1. Heteroclinic connection in the (u, v) phase space representing a uniformly propagating wave:
Le =oco,n=1and§ = 0.
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and the solution that approaches the point (1/8, 0) as§ — —oo is

v = Ee*ﬂ (u - l) . (3.6)

To achieve a continuous solution in the system (3.3), the solution (3.6) needs to connect up with
the point (ug, —coutg). Imposing this condition, we get that

1

g = ————.
B+ cief

3.7)

Combining this with (2.4) and eliminating u(, we get the wavespeed formula

_en |t
co=e 0 B. (3.9)

A numerically computed graph of the variation of the wavespeed is given in Figure 2. The
wavespeed increases from zero at § = 0 to a maximum value, and decays to zero thereafter. The
non-monotonic dependence of ¢y on B is due to the non-dimensionalization; the dimensional
wavespeed is co(8)B~!/?, which is monotonic in 8.

Taylor expansions can be used to determine approximations to ¢y in the limit of large 8. Doing
so, we find

ngeﬁ/z[l—#—f-sl—ﬂlz—%—i-(')(%)] (3.9)
which agrees, to the leading order, with the well-known results in the case of Arrhenius kinetics
[1,2].

Co

0.6
0.5
0.4
0.3
0.2

0.1

1 2 3 4 5

Figure 2. Wavespeed variation with g for step-function kinetics. Here n = 1 and Le = oo.
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The explicit form of (u(£), v(&), y(£)) can be determined by solving the linear systems (3.4)

and (3.5), and matching them at (u, v) = (1o, —coug). If this matching point is chosen to be
& = 0, the temperature u can be written as

1 2o -
——ﬁﬁmwm(éL£>if$§O
€o

u)=1p B (3.10)
ug exp (—cof) if £ >0.
Its derivative is given by
pe” :
v(E) = '{W°ﬂp<coé>lf$50 G.11)

—coutg exp (—co€) if £ >0.

The fuel concentration (computed from the conservation law (3.2) in conjunction with the above
solutions) is expressible by

Be F .
yE) = “p<_27€> if&=0 (3.12)
| if &> 0.

Figure 3 shows the temperature and fuel concentration with 8 = 2. In the laboratory coordinate
system the wave moves to the right at a speed given by (3.8) with 8 = 2.

4. Infinite Lewis number first-order reactions:
Wavespeed correction

In this section, the correction (due to the step-function approximation) in the wavespeed is
computed. The dynamics are governed now by (2.5) with n = 1 rather than (2.2), and the resulting
correction to the wavespeed under the condition of sufficiently small § is obtained.

l _________________
/ Y
/
0.8
/
/
u 0/6
/
ﬂ
PN
/
/
7 0.2
//
———=c ‘ ‘ : 3
-6 -4 -2 2 4 6

Figure 3. Wavefront at 8 =2 for n = 1 and Le = oo: temperature (solid) and fuel (dashed). The front
moves to the right at a constant speed ¢y = 0.32.
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Beginning with (2.5) with Le = oo and n = 1, and using the ansatz & = x — ct, where c is
the (positive) wavespeed, we obtain the two ordinary differential equations

4.1

—cu'(§) = u"(€) + y(E)k (u(&)) + 8[e”""® — k (u(§))]
—cy'(§) = =By (€)) — 8py(E)e” " —k (u(§))]-

Once again, the conservation law (3.2) holds (with ¢ replacing cy), enabling a reduction to two
dimensions:

u'=v
v = —cv— (1 — gv — ,Bu) k(u) — & (1 — gv — ,3u> [e V" — k(u)). (42)
We expand the wavespeed in § in the form
(B, 8) = co(B) + 8c1(B) + O (8%) ; (4.3)

the goal is to determine the leading-order correction term ¢, to the wavespeed ¢y which is shown
in (3.8). Substituting in (4.2) and retaining only terms up to O(§), we obtain

u =v

vV = —cov — (1 - Ev — ,814) k(u)
co

+35 |:—clv (1 + ,Bk(zu)> — (e V" — k(u)) (1 — Ev - ,3u>:| .
CO Co

For a wavefront solution to exist, we need the system (4.4) to possess a persistent heteroclinic
connection between (1/8, 0) and (0, 0) for small §. We note that the connection exists for § = 0
(indeed, that is the system analysed in Section 3), with wavespeed given by c¢y. In order to
examine such a persistent heteroclinic connection, we briefly outline the Melnikov method from
dynamical systems, which as shown in [10] can be used within this context (references to the
more standard Melnikov approach are [9, 12, 13]; the results in [10] require some modifications
of these). Consider a two-dimensional system

(4.4)

7 =1(z)+ g (z). (4.5)

When § = 0, suppose this system possesses a heteroclinic connection between the two saddle
fixed points. (A heteroclinic connection of this sort occurs when a branch of the one-dimensional
unstable manifold of one fixed point coincides with a branch of the stable manifold of the other
— this certainly occurs in our system (4.4) when 6 = 0.) This heteroclinic trajectory can be
represented as a solution z = z(£) to (4.5) with § = 0, as given in equations (3.10) and (3.11) in
our case.

Now, for small § > 0 in (4.5), the fixed points retain their stable and unstable manifolds [14].
However, these need no longer coincide. Let d(&, §) be the distance between these manifolds,
measured along a perpendicular to the unperturbed heteroclinic drawn at z(—&). This distance is
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Taylor expandable in § in the form

M(§)

d —
€9 =G o)

+ O(8%). (4.6)

The quantity M (&) is the ‘Melnikov function’, for which an expression is

ME)= f_ exp |:—/_ V. f(i(s))dsi| f(z(r)) A g(z(r))dr, 4.7)

o0 &

where the wedge product between two vectors is defined by (ay, a2)T A (b1, by)T = a\by — azb;.
Please see [10] for a detailed derivation.

The key point is that for a heteroclinic connection to persist for small §, it is necessary that
the Melnikov function (which essentially contains the leading-order information regarding the
distance) be identically zero. That is, M (&) should be zero for any value of & chosen in (4.7), and
in fact any value (say, 0) that is convenient can be chosen.

By identifying the functions f and g through a comparison of Equations (4.5) and (4.4), we
find that

:M_

€o

v.f co (4.8)

and

fAg=v |:—clv (1 + ﬁkg’”) — (e V" — k(u)) <1 - Cﬁv — ﬁu)]
0

Co

. |:—c1v (1 + 2 'ZS”) — ¥~ k(u))} “9)

0

by using the conservation law (3.2) for notational convenience. By substituting these values into
(4.7), choosing & = 0, setting the Melnikov function equal to zero, and rearranging, we obtain

/;oo exp |:_ /O’ <M — CO) dsi| v(r)y(r) [k (u(r)) — efl/u(r)] dr

o0 Co
/-oo exp [— /r <M - c0> ds:| [v(r)]? |:1 + M;r))} dr
oo 0 Co Co

where each of u, v and y are the § = 0 values, expressed in Equations (3.10), (3.11) and (3.12)
respectively. Using these formulas, and also the simplification afforded through the step-function
nature of k(u) as given in (2.3), we obtain

(4.10)

1

Cc] =
2u0

(A+ B), (4.11)
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0.01}

-0.01

-0.02¢

-0.03*

Figure 4. Leading-order wavespeed correction (c;) with 8 forn = 1 and Le = oo.

where

0 _
A= / exp ( r ,3) exp P - —e P |dr
— 00 Colhpe 1— ,Beﬂugcg exp (ﬂeco r)

and

oo <"
B := / exp (— ) dr.
0 uo

In the above expressions, ¢y is given in (3.8). The derivation of (4.11) from (4.10) is shown in
Appendix A.

While B in (4.11) is positive, A is negative since the quantity in the square brackets in its
integrand is negative for r < 0. Therefore, ¢; may be either positive or negative, depending on
the combined effects of A and B. Since A is an integral over the region r < 0, which is behind
the front, the effect of Arrhenius kinetics behind the front tries to slow it down, while its effect
ahead of the front (encoded in B) tries to make its speed up. Intuitively, one would expect the
front to broaden because of this process. The combination of these effects makes the front settle
into a new speed, which may be either greater or less than the unperturbed (step-function kinetics)
front. Figure 4 displays the numerically computed wavespeed correction, using (4.11). For small
values of 8, the wavespeed increases when including Arrhenius kinetics, but for larger values,
the wavespeed decreases. The transition of ¢; from positive to negative occurs around g = 1.6.
Moreover, as 8 increases, the value of |c;| appears to decrease to zero, an indication that the
step-function approximation to Arrhenius kinetics is better for very large S.

Since the scale of ¢; for small 8 is somewhat larger than that for intermediate 8 values as
shown in Figure 4, this small g8 variation is shown separately in Figure 5. Since c; is of the order of
0.25, this is an indication that the step-function approximation for the kinetics is unreasonable for
small B (for such B, it is only for very small § that the Taylor expansion of ¢ would be legitimate,
whereas one needs § approaching unity to better model Arrhenius kinetics).

Our main intention is to use a perturbative method to assess the correction to the step-
function solution that is needed when approaching Arrhenius kinetics ((2.5) with § = 1). The
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Figure 5. Leading-order wavespeed correction (c;) with B for small 8 values, withn = 1 and Le = oo.

hope is that the perturbative approach which uses 0 < § < 1 would nevertheless provide a good
approximation even when § = 1. While this may sound optimistic, a similar idea was seen to work
remarkably well in [10]; a perturbative Melnikov approach for large Lewis number was seen to
predict accurate wavespeeds even for Le = 3. With this in mind, we can think of using (4.3) for the
wavespeed of (2.5) with § = 1, while neglecting O (62) terms. In other words, the approximation
for the Arrhenius kinetics situation based on this perturbative approach would be ¢y + 1c;. We
show this (Arrhenius approximation) wavespeed in Figure 6 as the solid curve. The dashed curve
is the wavespeed using only step-function kinetics (cg). As we have remarked previously, using
step-function kinetics to approximate Arrhenius kinetics is less accurate for small 8, i.e., for
smaller activation energies, but becomes better for large B, i.e., for larger activation energies.
Moreover, the step-function approximation underestimates the wavespeed for small 8, while it
slightly overestimates the wavespeed at large 8 values.

5. Infinite Lewis number second-order reactions: Step function kinetics

Consider now the situation where the reaction term is second-order in the fuel concentration; that
is, n = 2 in (2.2). Equation (3.1) then receives the simple modification of y? replacing y.

The conservation law (3.2) continues to hold in this situation, and we can once again reduce our
emphasis to the (u, v) phase-plane. In the region u < u, the dynamics continue to be described
by Equation (3.4), for which we have determined the solution in Section 3. The left part of
the diagram in Figure 1 therefore continues to be valid, with the stable manifold of the origin
connecting to (ug, —cou). We need the unstable manifold emanating from (1/8, 0) to connect
up with this, but we now have a nonlinear equation

u =v

2
vV = —cov—e P (1 — Bu — Ev) ) -1

€o
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Wavespeed
0.8
Arrhenius (solid)
0.6/ Step-function (dashed)

Figure 6. Wavespeed at § = 1 for n = 1 and Le = oo, and retaining only the leading-order term in (4.3).
The solid curve is this wavespeed which approximates Arrhenius kinetics (¢ + ¢1), while the dashed curve
is that obtained from step-function kinetics (cy).

Considering the second equation in (3.1) foru > u (again, with y replaced by y? on the right-hand
side), and imposing the condition y(0~) = 1, we obtain the solution

1
y(é) = PO =:y-(§), §=0, (5.2)

co

where the above serves to define the function y_(&). The corresponding u solution, subject to the
condition u(—o0) = 1/8, can be determined by using the conservation law (3.2) with the above
substituted for y, replacing v(§) with u/(§), to get the first-order differential equation

W(E) + cou(§) = %0 [1—y ()]
Solving, we get
3
() = %’e*coé /_oo e [1 — y_(s)] ds. (5.3)

This solution no longer corresponds to a straight line (as pictured in Figure 1) emanating from
(1/8, 0), but rather a curve. We picture this change in Figure 7, in which we have chosen g = 0.5.
In general, the curve from the right must connect to the stable manifold of (0, 0), so we need the
condition u(0) = uy which yields

0 oS 00 —t
_ —se 1 te
”Ozeﬁ/ Wd3=3/ pEE
—0 1 — TS 0 w
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Figure 7. Heteroclinic connection in the (u, v) phase space representing a wavefront: Le = oo, n = 2,

§=0and 8 =0.5.

where w is the scaled velocity defined by

Substituting T = w? + ¢ in the integral,

0 ,—T

upf=1- wzewzf ¢ dr=1-— wzeszl (wz).
w? T

We define the invertible function

F(a):=ae’E | (a),

54

(5.5)

which is a monotonic function increasing from 0 at a = 0 and approaching 1 as a approaches co,

for which asymptotic expressions (which will be useful later) are

2
Fla~1-—-+— fora>1 and F(a)~ —alna for 0 <a <1
a a

Using the function F, our condition is expressible as
F(B)+ F(w?) =1,

and hence the wavespeed ¢y must satisfy

co=e P2/BF-1[1 — F(B)],

(5.6)

(5.7)

(5.8)



Downloaded By: [Balasuriya, Sanjeeva] At: 16:18 21 July 2008

Combustion Theory and Modelling 655

0.6 |/ >\
\ Second—order (solid)
0.5 AN

N First—order (dashed)

0.4

0.3

02

0.1

Figure 8. Wavespeed variation with B for step-function kinetics with Le = oo, for second-order (solid)
and first-order (dashed) reactions.

for which an easier expression is not available. A numerically computed graph of ¢y for this
second-order reaction appears in Figure 8§, in which a comparison to that of first-order kinetics
(dashed curve) is also presented.

In the asymptotic limit 8 >> 1, the condition (5.7) is approximated by F(w?) = 1/8 (using
the large a asymptotics in (5.6)). Since this means that w? must be small, using the small a limit
in (5.6) leads to —w? In w? = 1/, which gives us the asymptotic formula

1
~e b2 [ 5.9
coRe np (5.9

in the large B limit. Its comparison with the exact formula (5.8) is shown in Figure 9.

Co

0.02 ,\\

\

\
0.015 ¢ \\ Actual (solid)

\\ Approximate (dashed)
0.01 1 \'
0.005 |
B

18 20

Figure 9. Comparison of actual wavespeed (5.8) with the large B approximation (5.9) for second-order
reactions with Le = oo.
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As in Section 3, it is possible to write down the solution as a function of the spatial variable.
First, the y solution is

() = H‘(E) :? g i g_ (5.10)

where the function y_ is defined in (5.2). The temperature satisfies

1 2 w? w? -
u@)=1# [1 - eXp(y(E)> i <y(é)>] re=0 (5.11)
uo exp (—cof) if &€ >0,

as shown in Appendix 9. The v solution is most easily expressed by using the conservation law
(3.2):

B B (5.12)

2 @ - Dy ifE <0
v(E) = .
—coup exp (—co&) if &€ >0,

with u_ representing the u solution for & < 0. As before, solutions have been set up such that
& = 0 corresponds to the matching point between the regions u < ug and u > uy.

6. Infinite Lewis number second-order reactions: Wavespeed correction

The procedure followed in Section 4 for first-order reactions can be used to determine the
wavespeed correction for second-order reactions as well. The equation corresponding to (4.2) is

u =v

2
V= —cp — (1 - gv - ﬂu) k() — 8 (1 — by ,8u>2 [ — k(w)].

Expanding the wavespeed as in (4.3), and retaining only O(8) terms, we arrive at

u' =v
2
vV = —cov — <1 — ?v—ﬁu) k(u)

0

2
+6 |:—clv (1 + 2;‘3k2(u) (1 — Ev - ﬂu)) — (™" — k(u)) <1 — ﬁv — ﬁu) i|
CO Co Co

(6.1)

This is in the form of (4.5) with
f:= (v, —cov — y?k(u))

and

g = (0’ —Cv |:1 + i—lfyk(u)} — yz(e_l/u — k(l/l))>

0
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withy =1 — :iov — Bu. Then,
28
V- f=—cy+ —yk(u)
Co
and
2
fArg=v |:—c1v (1 + —'fyk(u)) —y? (e_l/” - k(u)):| .
o

Substituting these expressions into the Melnikov formula (4.7), taking & = 0, setting M = 0 and
solving for ¢, we get

/;oo - |:_ /Or (2,3)’(S)k (u(s)) Co) dsj| 0(r) ()2 [k (u(r) — =] dr

=" X 6.2)
1 (o] r . .
/ exp [_ / <2/3y(S)k (u(s)) _ Co) ds] [o(r) [ 1+ 2,8y(r)l§ (u(r))j| i
-0 0 €o lers
We show in Appendix C that this is expressible as
o = G +uoEy (1/uo) 63)

[ 377>~ (T

w?

where w and F are defined in (5.4) and (5.5), and

_ wzi : _wl/;l 2 _ _ _'BF(wz/y)
G=e /Oe Jy[F(w /y) 1] |:1 eXp—l—yF(w2/y) dy

We use the quantity ¢y + c¢; as our theoretical approximation for the wavespeed in the case of
Arrhenius kinetics. The relative error of the wavespeed obtained from this theoretical process (in
comparison with the wavespeed obtained from a direct numerical simulation of the governing
PDE (2.5) with § = 1 and n = 2) is given in Figure 10. The agreement is very good, with the
error diminishing to 1% for the larger 8 values pictured.

7. Unit Lewis number first-order reactions

So far, we have considered only Le = o0, i.e., the gasless combustion problem, in which the mass
diffusion can be neglected in comparison to that of heat. We now focus on gaseous combustion,
in which the diffusivities are comparable, and we take Le = 1. As an initial step, we will examine
the first-order reaction (n = 1). The travelling wave solution problem has the form

(&) + cou'(§) + y(E)e P H (u(€) — ug) = 0,
Y'(E) + coy' (&) — By(E)e P H (u(§) — uo) = 0.
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-0.07

5 10 15 20 25 30

Figure 10. Relative error in using ¢y + ¢; to estimate the wavespeed for Arrhenius kinetics with second-
order reaction and infinite Lewis number.

While this is a four-dimensional system, a reduction is possible by adding 8 times the first
equation to the second and integrating, resulting in

(v + Bu) + co (y + Bu) = constant.

Sinceu = 0and y = 1 até = oo, the constant is ¢y. As before, the limiting value of u as§ — —oo,
where y = 0, is 1/8. Solving the first-order differential equation, we obtain the conservation law

y(&)=1—Bu(é). (7.1)

Thus, the dynamics can be represented purely with the u differential equation. Letting v(§) = u/(§)
as in previous sections, we obtain

u'=v
vV = —cov — e P (1 —Bu)H (4 — up). } (7.2)

For u < ug, the solution is exactly as in Section 4, and consists of a straight line connecting
(ug, —coup) (at & = 0) to (0, 0) (at & = o0). The equations in u > u are also linear, and have the
solution

1

1 .
ug exp (—co€) if &€ > 0.

where

N | —

|:—c0 + ,/c(z) + 4ﬂeﬁi| .
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Since this solution must reach (1, —coug) as & — 07,

toco = — (% - uo) "= —% (1— FB) .

by using (2.4) and the definition of F' given in (5.5). Substituting for u and simplifying,

co=e P21 - F(B)] /%. (7.4)

In the limit of large B, Taylor expansions tell us that

1 3 35 287 11907 1
— B2 | _ - —
co=e /,3[1 2/3+8,32+16ﬂ3+128ﬁ4+0(ﬁ5)i|' (7.5)

The (exact) expression for ¢y permits us to write

n=e"2JBF(B). (7.6)

We note that for large 8, (co/u) ~ (1/8) < 1, and therefore for & < 0 (i.e., in the reaction zone),
lcou'| < |u”]. Thus, for large B, the term cov can be neglected in (7.2) in the region & < 0; this
is further analysed in Section 8.

Now we consider the problem of determining the wavespeed correction in the presence of
non-zero §. Following the approach of Section 4, our equations in this instance are

u =v

V' = —cv—(1— Bu)k(u) — 8 (1 — Bu) [e™/" — k(u)]. }
Expanding the wavespeed in 6 as in (4.3), we obtain

u =v

vV = —cov— (1 — Bu)e PH®u — uo) (7.7)

+6 [—clv + (1 — Bu) (e_ﬁH(u —ugy) — e‘l/”)] .
This is once again in the form (4.5), with
V. f = —Cp

and

frg= v[—clv—i—y(e’ﬁH(u — uo)—efl/”)]
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where we have used y for convenience based on (7.1). Once again, computing the Melnikov
function from (4.7) and setting it equal to zero, we obtain

/00 e v(r)y(r) [k (u(r)) — e /O] dr
0 = == = . (7.8)
/ e [u(r)* dr

oo

In Appendix D we show that

B+ F)

= N_+ Ni], 7.9
l 202 [N-+ Ni] (7.9)

where

e[ F(-Fy 1\ [F s
No=— - VF exp (- d
B [ I+ F +<1—F) /o ! exp( ﬁl—s>s ’

Ny = Buge '/ [%F(l/uo) — 1}

and F when presented with no argument means F(8).

We can now compare the theoretical approximation we get from this process with a direct
numerical simulation of the PDEs, and show this in Figure 11. Within the range 0.5 < 8 < 50 in
which we performed computations, the quantity ¢y + ¢; is at worst 7% off from the wavespeed
obtained using a direct numerical simulation.

10 20 30 40 50

-0.02

Figure 11. Relative error in using ¢y + ¢; to estimate the wavespeed for Arrhenius kinetics with first-order
reaction and unit Lewis number.
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In the large 8 limit, the behaviour of ¢ /¢y turns out to approach a constant. This is since

F(—F) L\ [1=F 1/F —s/(1— 1—1/F)y 2 [ B+l o (B
R e U R [TF Y _q

co (1 — F)?

(with F = F(B), except for the one term with an explicit argument), and using the asymptotics
(5.6), we obtain

1 1 1, _ -12
ﬁw—ﬁ+§f0t6’dt+e F 1

7

1
Co ﬁ

Thus, for large 8, the wavespeed has the structure

1
c=co [1 + 55 +c’)(52)} )

8. Unit Lewis number nth-order reactions

We will briefly outline the arguments associated with computing the wavespeed in this instance;
our brevity is since the computations are very similar to those presented in detail in previous
sections. When Le = 1, but for general reaction order n > 1, we have the § = 0 equations

u'(§) + cou'(€) + (1 — pu(§))" e P H (u(§) — up) = 0,

in which u(—o00) = 1/8, u(0) = uy and u(co) = 0, exactly as in the previous section. While this
is easily solvable in & > 0, the nonlinearities in & < 0 make this a difficult problem to continue.
We therefore concentrate on the large 8 limit only, in this section. In this limit, we have remarked
in Section 7 that the convective term (involving the first derivative of «) can be neglected. We can
therefore write this modified equation as

u"(€) + cou'(€)H (wo — u(€)) + (1 — Bu(§))" e P H (u(€) — uo) = 0.
This has the solution

uge ¢ if £€>0

u@~y1 1 1-Bu . (8.1)
E — E—[l _ %‘Kn]zj)(”_l) lf é < 07

in which

n—

1 n—1 2 -8
(1= pugys | 2¢

K, = .
2 n+1
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Imposing the condition that v(07) = —cyug, we get the wavespeed to be

1— F(B)'T [2Be?
oo L= FONE 2per 52)
F(B) n+1
which is only valid for large 8. Taylor expansions (as before) show us that
" 1 1\  1+dn+n® (1) 1
co=e P <—> V2 —/2n (—) + — (—) +0 (—) ., (83)
’ B T+n B V2 \B g3

for reaction orders n > 1.
We now turn our attention to § # 0, i.e., to the equation

u" 4+ cu'H (ug — u) + (1 — Bu)" e PH (u — ug)
—8cu' [Huo —u) — 11— 8 (1 — Bu)* [e PH(u —ug) —e™"/*] = 0. (8.4)

Expanding c as ¢y + §c1, and following the standard process, we are able to derive that

1
1 = —— [N-+ Ny, (8.5)
UnCo
in which
__ePa—Fey*t v
=~ o e - DFO A+ [ = pur
and

uo (1 — n
N, = uo/ ﬂe‘”“du.
0 u

We refer the reader to Appendix E for these derivations.

Henceforth, we focus explicitly on the case n = 2. This is since when rn is large, features
of wide reaction zones become important, and therefore the errors in our calculations increase.
For details on why increasing n reduces the accuracy, the reader is referred to [15]. Numerical
calculations of the relative departure of ¢y + ¢; from the wavespeed obtained by direct numerical
simulation are presented in Figure 12. While some data points differ from numerical simulations
only by 4%, others differ by fully 39%. Our results in this Le = 1 and n > 1 situation are
therefore significantly worse than for our previously examined cases. The necessity to perform
an approximation (in which the convective term was discarded in the reaction zone) in order to
obtain the § = 0 solution explicitly, may be to blame. If we do not do this approximation, we are
able to derive an explicit expression for c; in terms of the § = 0 solution, but will not be able
to obtain an analytical expression such as is given in (8.5). Consequently, a purely numerical
evaluation of ¢; would itself be necessary, undermining our theoretical approach.
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-0.1¢

-0.2p

Figure 12. Relative error in using ¢y + ¢; to estimate the wavespeed for Arrhenius kinetics with second-
order reaction and unit Lewis number.

9. Conclusions

In this paper we discuss how combustion problems can be solved approximately by replacing the
Arrhenius temperature dependence of the reaction rate by an appropriately chosen step-function of
the temperature. We illustrate our approach by considering both gasless and gaseous combustion,
with reactions of various orders. We demonstrate that the accuracy of such approximations is
quite satisfactory not only when the non-dimensional activation energy (which is related to the
Zeldovich number) is large, but also when it is an order one quantity. This method is particularly
useful, as an alternative to systematic asymptotic expansions, in complex problems that involve
more than one reaction with high activation energies so that there are more than one large (or
small) parameters in the problem. The asymptotic treatment then typically requires considering
distinguished limits because uniform results are usually impossible to obtain. These distinguished
limits, even when seeming physically relevant, do not give a complete picture of the process. Using
step-function approximations may provide a more complete set of results. We remark that the
step-function approach has been justified in stability studies [8].

Appendix
A Derivation of (4.11) from (4.10)

Since
k (u(s)) = e " H (u(s) — uo),
and u(&) has the monotonic structure as given in Figure 3 such that u(0) = u(, we have
k(u(s)) =eP[1 — H(s)].

Consider now the interior integral appearing in both the numerator and the denominator of (4.10):

exp [_f (M _ CO) ds} — exp [_/ (M _ CO) ds}
0 Co 0 Co
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-B
= exp |:(—’Bi—0(l - H(r))+Co> r] ;

since if r > 0, 1 — H(s) = 0 in the domain (0, r), whereas if r < 0, 1 — H(s) = 1 in (r, 0). Now,
work on the denominator (D) of (4.10):

D= f"o exp [( pe’ (1—-H(r)+ Co) r] [v(r)]? [1 + W} dr

0o Co €o

_ [ pe’ —0 Y o[ 287 pe’
_/ooexp[(co— 0 >r} <,B+c(2)eﬂ) exp[ 0 r}(l—k cé )dr

o0 _CO )2
+ exp [c ——— ) exp[—2¢or]dr
/ phﬂ(ﬁ+%ﬁ p[~2c0r]

2C()
= s = 2C0ué.

(B + cier)’

In the above calculation, the expression for v(r) from (3.11) was used, and ultimately the rela-
tionship between ug and ¢ as given in (3.7). We similarly split the numerator (N) of (4.10) into
the domains (—o0, 0) and (0, co) to obtain

0 Be P _ Be P Be P B -1
N =/_OO exp |:<Co — io )r:| (/3 +Z%e/3> exp [ ECO ”] exp[ eCO V} <e B _ exp [M:D dr
*° — —1
+/O exp [cor] (—/3 n i‘%eﬁ) exp [—cor] (1) (— exp [E]) dr

0 2 -B _ 2,8

—co c; + Be _ B+cye”) B

= — ﬁ/ exp |:—0 ri| e P —exp ( ) e dr
B +cge €0 ,3+céeﬂ—,Bel-“c§exp< £ ’)

co

—0Q

(o)) o0 2 B
+—— exp|— (B + cge”) e | dr
i | el (e e]
_ 0 r B/uo -B
= coug exp 71X | — = —e dr
—0 Uupcoe (1/14()) _ ﬂeﬂcg exp (ﬂeco r)

o] ec(,r
—i—couo/ exp |:— :| dr
0 uo

= cougA + couogB

as defined in (4.11). Now, since ¢; = N /D, Equation (4.11) results.
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B Derivation of (5.11)
Using Equation (5.3) for &£ < 0,

u(E)_ OeCOE{ 08

paof U} @)exp[(L4”°]
CO e 3 0 Be=? B Co dr
t Be P

1y @)e—wr
:—+ we ec‘)é[
BB o0

1 w/y-(§) p—t
=3 1+ w? exp (w? —COS/ —dt

—ll:l—wzex w? E ( w? >:|
~ B P e o))

C Derivation of (6.3) from (6.2)

Consider first the interior integral appearing in both the numerator and denominator of (6.2). If

r <0,
r 2 ] 2 r
exp [—/ (—'By(s)k (u(s)) — co> ds] = e exp |:——'Bﬂ / y(s)dsi| .
0 €o coe” Jo
However,
pe~’
y/ — y2
o
and hence
Yy _ Be
—_— y.
y Co

Integrating from O to r, and with the observation that y(0) = 1,

-B r
Iny(r) = '3‘;—0/0 y(s)ds.

Thus, forr < 0,

oo [_ /Or (%y(s)k (M(S)) _ C()) dsi| = " exXp [_2 In y(”)] = [yg(L:;]z .

When r > 0, on the other hand, k(«) = 0, and this quantity becomes simply e¢“".
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Consider now the numerator of (6.2). Split the integral into (—o0, 0) (call this G) and (0, c0)
(call this H). Then

0
G = / e vu(r) [e_’3 — e_l/”] dr.

[e.¢]

We will convert this to an integral over y with the help of the expressions (5.11) and (5.12), valid
in the domain & < 0. Thus, for r < 0,

e , w? w2
v(r) = E |:1 — (1 — w”exp mEl (m>> - )’—(")i|

_ w? \ _
=50 [F (y_<r>> 1}’

with the help of the definitions (5.4) and (5.5). Moreover, from (5.11),

~By-(OF (£5)
1=y-F (%)

efl/u(r) = exp

Applying now the change of variable y = 1/(1 — cor/w?),

_ 11)2§/1 —wz/*l|: (w_2>_ :| _ _'BF(wz/y)
G=e 52 J, e yy F y 1|1 eXp—l—yF(wz/y) dy,

as required. The second integral, on (0, 0o0), becomes
o0
H = —/ e vu(r) [y(r)]2 e~ gy
0

oo u uo u
= —/ i/ (r)e” O dr :/ eV du
o u(r) 0o u

©1 1
= u()/ —e_l/u(]dl‘ = u()El (—) .
1t A

which completes the expression for the numerator in (6.3). Now, split the denominator also into
the regions (—o0, 0) and (0, oo). The first of these, J;, becomes

0 or v(r) 2 2B8e~ P
n=| e (m) [” cg “”)} v
o e w? 2 2
[ ()] oo
2 ¢ 1 1 w? 2 2 1
= g ool (-3)) [P (5) ) [re o e
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- %ewz f:o e [F(1) — 1P (1 4 %) dr

::%w%’ﬁfmf—<4+§)Fm+ﬂ]

=00

t=w?

Co 2 2
=5 [(F(wz)) - <4 + E) F(w?) + 3] .
The second integral is easier:
(o] [o¢]
Jr= / e o)) dr = / ec"’u(z)c(z)e’%”rdr = u%co.
0 0

This completes the derivation of Equation (6.3).

D Derivation of (7.9)

The numerator of (7.8) will be split into two in the usual way. The first of these, upon conversion
of the integration from r to u, is

0
N_ = /7 e v(r)y(r) [k (u(r)) — e_l/”(’)] dr

o0

[ o0 (1218 _ B _ 1
_/1/ﬂexp|:,uln<'40—1/ﬂ>j|[l ﬁu](e e )du

_ B,
= —10/ st [e‘ﬂ —exp (—i>:| ds
Bl —F(B]» Jo I—s

e P 1 1+Fp) |1=F(B)
= - e TR
Bl —=F(B] ™ ~Fp)

e b 1=F(B) s
+—i’f s1/FP) exp [—,3 ]ds
B~ F(B))» Jo I—s

_e”3 F(l1 - F)? 1 R \/F s
_7[_ I+ F +(1—F) /0 ’ eXp<_ﬂ1—s>d5

where (7.3) has been used to connect u with r, 1 — Bug = F(B) (based on (2.4) and (5.5)),
and co/u = [1 — F(B)]/F(B), based on (7.6). For brevity, F presented with no argument means
F(B). The second part of the numerator is

N, = — /OO e v(r)y(r) [k (u(r)) — e_l/”(’)] dr

0

uo
:/ 20 (1 = Buye V' du
0 u
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i _ 2 —1/ug i
uokE, ﬂuoe + BuoE,
Uo Uo

_ +1 1
i [£220(2) 1]

The denominator is given by

0 1 2 )
D = / e (— — uo> wre* dr +[ ecoruécée_zc"’dr
—00 ﬂ 0

<1 )2 2 L 2¢0 F?
= — — U S CE— UCo — —(/4/—/—— .
B ) M it T T B

Putting these together gives us (7.9).

E Derivation of (8.5)

In (8.4), we set v = 1’ as usual, to obtain a system for («, v) in the form (4.5) in which

f= (v, —covH(ug — u) — (1 — Bu)" e PH®u — uo))

and
g = (0, —civH (ug — u) + cou[H(uo — u) — 11+ (1 — Bu)'[e PH(u — ug) — e="/*]).
Therefore,
V-f=—coH (ug — u)
and

fAg=v{—crvH(uo —u)+ cov[H(uo — u) — 11+ (1 — Bu)'[e”" H(u — uo) — e~ """]}.

Substituting into the Melnikov formula (4.7), setting it equal to zero, and solving for ¢, as usual,
we are able to write

N_+ Ny

)= —
D_+ D,

where the subscript indicates whether the integral is over the negative or positive half line, and N
and D stand for numerator and denominator respectively, each term of which we will compute
momentarily. First, we note that the interior integral within the Melnikov formula takes the value

" . ] if £<0
exp |:—/0 V- £(2(s)) dsi| = {ecor if £ >0,
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Now, since v(r)dr = u/(r)dr = du as before,

0
N — / v[—cov + (1 — Bu)" (7 — e~ /")]dr

o]

1/8 _ e
—/ |:C§u0 <11— 5:0) +(1 = pu)' (7 — el/”)i| du

__ ePa—F@) s N
= T D EF [(n—l)F(ﬂ)+4]+/uO (= puy' e Vid,

by performing calculations similar to those in Appendix 9. Also,

Ny = / e v(l — Bu)" (—eil/“)dr
0

u (1 — n
:uu/ A =B iy,
0

u

In the denominator, D_ = 0 since the convective term which multiplies ¢; in f A g is zero in
& < 0. On the other hand,

o0 o0
D, = / e [u(r)Fdr = / e (—coup)® e 2V dr = uéco.
0 0

Putting these together give us (8.5).
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