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Abstract.

This Note discusses a connection between deterministic Lagrangian
coherent structures (robust fluid parcels which move coherently in un-
steady fluid flows according to a deterministic ordinary differential
equation), and the incorporation of noise or stochasticity which leads to
the Fokker–Planck equation (a partial differential equation governing a
probability density function). The link between these is via a stochastic
ordinary differential equation. It is argued that a closer investigation
of the stochastic differential equation offers additional insights to both
the other approaches, and in particular to uncertainty quantification
in Lagrangian coherent structures.

§1. Lagrangian coherent structures

The ‘Lagrangian coherent structure’ problem typically takes the fol-
lowing form. For some geophysical (oceanic [9], atmospheric [42], ex-
traterrestrial [22]) or laboratory-scale [12, 33] flow, fluid velocities u are
obtained as observational/experimental data, usually on a spatiotem-
poral grid defined for positions x ∈ Ω ⊂ R

n (typically, the dimension
is n = 2 or 3) and times t ∈ [0, T ]. The Lagrangian evolution of fluid
particle positions x is then given by the ordinary differential equation

(1)
dx

dt
= u (x, t) ,

for which—given the fact that u is available as discrete data in a finite-
time interval [0, T ]—numerical methods are needed. Determining sets
in Ω at time 0 which ‘remain coherent’ under some given criterion after
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96 S. Balasuriya

evolution by (1) to time T will be referred to as ‘the standard Lagrangian
coherent structure problem’ [7]. The adjective ‘Lagrangian’ in this case
refers to the fluid-dynamical nomenclature of ‘following fluid particles’
as opposed to the ‘Eulerian’ framework of specifying flow properties as
functions of (x, t). Influential observations [27] pointed to the inade-
quacy of using Eulerian information in determining coherent fluid re-
gions which had a dominant influence on how fluid transport occurred,
if u were nonautonomous. However, defining exactly what is meant in
saying that a time-varying structure is ‘coherent’ in a Lagrangian sense
is less clear. Thus, there are many approaches to this, each based on
a particular interpretation of ‘coherence.’ Both theoretical (variational
formulations [23, 25] and stable/unstable manifold approaches [2, 3] to
define coherent structure boundaries) and numerical (stretching of fluid
elements [44], entangling of trajectories [1], complexity of motion [29])
methods have been developed. In general, these methods tend to be de-
terministic in that they rely on advecting Ω according to (1), and then
extracting sets at time 0 based on some specific information gleaned
from such advection. Review and comparison articles on the extensive
field of Lagrangian coherent structure methods are available [7, 21, 24].

An issue that is gradually coming to the fore is that the velocity u in
(1) is not known with certainty. This is because in typical applications, u
is obtained from experimental/observational data. Uncertainties there-
fore include measurement error, known situations in which the velocity
measurements have large errors (e.g., regions of cloud cover when tak-
ing satellite observations of sea-surface heights in order to infer oceanic
velocities), modeling errors in converting observations to velocities (as
in using the geostrophic approximation to relate sea-surface height to
a streamfunction [45]), as well as errors arising from interpolating data
only available on a spatiotemporally discrete grid. The latter situation
arises even when using velocity field from numerical simulations, since
any computational fluid dynamics simulation itself has a finite resolu-
tion. How can subgrid processes, or velocity uncertainties, be encapsu-
lated in Lagrangian coherent structure methods?

This Note highlights emerging approaches to this issue which are
connected to stochastic differential equations. Furthermore, the rela-
tionship to a probability density function—whose evolution is governed
by a corresponding Fokker–Planck equation [11, 16] or alternatively a
Perron–Frobenius (transfer) operator [14, 15, 42]—is discussed.
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§2. Stochastic differential equation

A straightforward idea of modeling the velocity uncertainties de-
scribed previously is to include them as perturbations in the velocity
field, which are in some way stochastic. That is, the velocity field has
some dominant smooth behavior (which is captured by the data), plus a
small stochastic term which incorporates the range of uncertainties. This
viewpoint implies the replacement of (1) with an appropriate stochastic
differential equation [4, 5, 6, 8, 11, 16, 20]. A fairly general formulation
for this could be [4, 6, 26]

(2) dxt = u(xt, t) dt+ σ(xt, t) dWt ,

in which Wt is n-dimensional Brownian noise in Ω, and σ is an n×n ma-
trix, assumed small in some sense, which encodes the possibility that the
stochasticity be modulated in a heterogenous anisotropic way. The po-
tential for x-dependence in σ means that the noise is multiplicative [41],
and here (2) will be thought of in an Itô (as opposed to Stratonovich)
sense [39]. Thus, rather than deterministic trajectories x(t) to (1), one
can think of t = 0 conditions to (2) evolving as random trajectories xt.

Stochastic ordinary differential equations of the form (2) are well-
established in financial mathematics and stochastic integration theory
[30, 36, 39, e.g.], but their usage in Lagrangian coherence is only emerg-
ing recently; hence, this Note.

How can one make sense of how individual random trajectories of (2)
contribute collectively? Numerically, one can determine xt using, say,
an Euler–Maruyama algorithm [34]. By performing many simulations,
the statistics of various scalar fields can then be numerically computed
[4, 8, 20]. Such computational experiments have been performed for
finite-time Lyapunov exponents [4, 6, 20] as well as so-called Lagrangian
descriptors (taking a suitable average along trajectories) [8]. In these
cases, σ is usually chosen to be proportional to the identity.

Another method to combine ensemble information is to seek theo-
retical means and variances resulting from (2), through the usage of Itô’s
isometry [31, 39]. With the assumption that σ is small, but that the ve-
locity field need not be divergence-free, several such results have recently
been developed in the context of two-dimensional unsteady flows operat-
ing over a finite time interval. The first is an expression for the‘fattening’
of a curve when advected according to (2) [4]. The second specializes to
curves which have importance in Lagrangian coherent structures: un-
steadily evolving flow barriers which demarcate distinct Lagrangian co-
herent structures [6]. The fuzziness of such flow barriers under stochas-
ticity in the form (2) allows for a spatial characterisation ofmixing layers
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between coherent structures. The evolution of the spatial structure of
these layers with time, as well as a limiting behavior, is determined [6].
The direct connection of this to mixing is verified by numerically evolv-
ing density fields initially supported on the coherent structures on the
two sides of the mixing layer, and showing that their evolution obeys the
predicted spatial characterization of the mixing layer. A third addresses
(2) in the context of rigorously quantifying how sensitive each and ev-
ery Lagrangian trajectory’s final position xT is to noise [5]. In this, the
anisotropic variance of a scaled displacement from the deterministic loca-
tion is defined as a field on Ω, which can then be related to a measure of
robustness of sets [5]. Implications of this theory towards realistic data is
ongoing, and shows promise for evaluating the interdependence between
velocity measurement uncertainties, spatial resolution, and Lagrangian
structures that can be resolved subject to these.

Building on the various approaches described in this section—-utilizing
Monte Carlo simulations, stochastic calculus methods, or new approaches
on (2)—seems to be a promising way forward in understanding the im-
pact of noise and uncertainty on Lagrangian structures.

§3. Diffusion and the Fokker–Planck equation

Stochasticity at the microscopic level corresponds to diffusion at
the macroscopic level. Thus, an alternative way of understanding ‘co-
herence’ associated with trajectories of the deterministic ordinary dif-
ferential equation (1) is to consider instead an evolving density ρ(x, t)
governed by the advection–diffusion partial differential equation

(3)
Dρ

dt
:=

∂ρ

∂t
+ u · ∇ρ = ∇2ρ ,

in which the left-hand side is the convective derivative (derivative follow-
ing the flow) of (2). ‘Coherence’ can now be attributed to the structure
of the evolving scalar field ρ(x, t). For example, if there is a collection of
closed contours of ρ(x, t) at some time t which evolve without developing
significant filamentation [24] then these might be construed as demar-
cating an unsteady coherent structure. Alternatively, material surfaces
across which there is minimum diffusive flux might be taken as defining
a boundary of a coherent structure [26].

How is this connected to the stochastic differential equation (2)?
The impact of evolving random trajectories of (2) generically results in
a nonuniform distribution of trajectory densities ρ(x, t) for t ∈ [0, T ].
Standard stochastic techniques [35, 40, 43] enable the derivation that
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this evolves according to

(4)
∂ρ

∂t
+∇ · (ρu) = 1

2
∇ · ∇ · (ρ σσ�) ,

which is the Fokker–Planck equation corresponding to the stochastic
dynamics (2) [40]. In the simplest case where σ is proportional to the
identity [11, 18, 32] and when the fluid is incompressible (∇·u = 0), this
collapses to the classical advection–diffusion equation. Preserving the
(x, t)-dependence in σ is relevant, allowing for the possibility of modeling
anisotropic diffusion which is further modulated by time and space.

While (2) and (4) may be considered equivalent, there are some
practical differences in the usage of these two equations. Complicated
σ causes considerable difficulties in analyzing, and in simulating, (4).
(For example, lack of spatial periodicity will complicate using Fourier
methods.) In contrast, such σ is easily incorporated into numerical sim-
ulations of (2) using, for example, the Euler-Maruyama algorithm [34].
Itô calculus [30], relevant to analyzing (2), forms an alternative method-
ology for addressing Lagrangian coherence information, contrasting with
classical parabolic PDE methods required for (4). One interesting ap-
proach for the general Fokker–Planck equation (4) is by Haller et al
[26], who develop a variational approach for determining surfaces across
which there is the least diffusive flux (as a potential definition for de-
marcating a Lagrangian coherent structure). Another is by Denner et al
[11], who (with σ being the identity) propose a method which can be
numerically applied to (4) to investigate coherence.

Another direct comparison between (2) and (4) is that the proba-
bility density obtained from the collection of random trajectories of (2)
all starting at the same initial position x0, is equivalent to considering
(4) with the initial density distribution ρ(x, 0) = δ(x−x0), where δ(�) is
the Dirac-delta distribution. Thus, statistical information from the tra-
jectories of (2) can be used to reach conclusions on the Fokker–Planck
equation’s evolution. The linearity of (4) may allow for amalgamation
of this information for ensembles of trajectories with different x0-vaiues.

§4. Perron–Frobenius transfer operator

Given a map M , the Perron–Frobenius or transfer operator P en-
codes how probability densities are pushed forward by M [10]. If imag-
ining M to be the deterministic flow map of the ordinary differential
equation (1) from time 0 to T , an approximation for P is obtainable
by the Ulam matrix P with elements Pij , by partitioning Ω into boxes
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100 S. Balasuriya

Bi and by deterministic evolution, determining the transition probabil-
ities into boxes Cj in M(Ω). The Perron–Frobenius operator can be
made compact by convolving with a diffusive kernel prior to and af-
ter applying M [11, 14]; this enables the extraction of singular values
λk and corresponding singular vectors vk of the approximant P . Thus
P�Pvk = λ2

kvk, with the singular vector vk (a constant on each of
the Bis) forming an approximation for a field on Ω. Consequently, the
transfer operator satisfies P�Pvk ≈ λ2

kvk. Singular vectors associated
with the largest (near unity) λks therefore identify ‘almost coherent’
sets [14, 15, 42] in Ω, with the level of coherence quantified by λk. This
method, popularized and extended by Froyland and collaborators, is a
well-established method for the detection of coherent structures associ-
ated with Lagrangian trajectories if (1) [14, 15, 37, 42]. It is often viewed
as deterministic because M is, and nice theoretical results related to the
singular limit of diffusion approaching zero are available [15].

In the above implementation, there is usually no explicit reference
to a stochastic ordinary differential equation. However, the Perron–
Frobenius operator is also often mentioned as the solution operator P′

of a Fokker–Planck equation [11, 16, 18]; specifically, P′ρ(x, 0) = ρ(x, T ).
Since the Fokker–Planck equation (4) is generated from the stochastic
differential equation (2), this Perron–Frobenius operator P′ captures
the continuing impact of uncertainties in the velocity field over the en-
tire time duration t ∈ [0, T ]. This is different from the understanding
of the transfer operator P in the most commonly known deterministic
Lagrangian coherent structure approaches [14, 15, 37, 42]. However, it
is a method for incorporating the uncertainty in the velocity field, and
singular vectors of P′ give similar information on coherence [11] to those
of P, albeit with a different interpretation of diffusion.

It should be pointed out that even with a deterministic u, if it were
only known on a spatio-temporal grid, there is uncertainty in u at the
subgrid level. When performing advection numerically, implicit or ex-
plicit interpolation usually occurs between gridpoints. These values,
therefore, are in reality not known exactly. A possible modeling ap-
proach is to apply the stochastic differential equation (2) with a σ ma-
trix which is zero at the gridpoints, but unknown off these gridpoints.
Thus, (2) and its Fokker–Planck equation (4) may be apply even if the
velocity is known with infinite accuracy, if only known on a discrete grid.

It is worth summarizing the two different Perron–Frobenius opera-
tor interpretations that have been discussed, within the context of the
Fokker–Planck equation (4) and the corresponding stochastic differential
equation (2). In both cases, consider an initial condition x0 for (2).
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(1) P: The impact of a diffusive kernel prior to advection is asso-
ciated with applying (2) and (4) with σ ≡ 0. In other words,
rather than (2), the understanding is that the deterministic
advection (1) is in operation, while the Fokker–Planck equa-
tion (4) collapses to the pure advection/transport equation
∂ρ/∂t + ∇ · (ρu) = 0. However, the initial condition ρ(x, 0)
is then not a Dirac mass at x0, but is a diffused version of this.

(2) P′: The impact of velocity uncertainties can be modeled by
applying (2) and (4) with σ �= 0, but with the initial condition
to the Fokker–Planck equation being ρ(x, 0) = δ(x− x0). This
applies if there is genuine uncertainty in u (measurement error,
say), or if u is only known at gridpoints.

Additionally, to evaluate the impact across all initial conditions x0 (in
terms of a field on Ω), a broadening of the above understanding will be
necessary.

The two transfer operators approaches above have a nice connec-
tion to how uncertainties in data impact Lagrangian predictions, which
can have profound consequences (e.g., attributing uncertainties to the
movement of coherent weather systems). Uncertainties in the prediction
of any model can arise because of two main reasons: (i) uncertainty in
initial position, and (ii) uncertainty in the model. These are quite nat-
urally connected to P and P′ respectively, because the former reflects
diffusion imparted on the initial condition δ(x−x0) but evolved with no
noise, while the latter has an exact initial condition subject to a noisy
evolution. Can these two effects be combined within the Fokker–Planck
framework by having a diffused initial condition (rather than δ(x− x0))
at each point x0, and also letting σ be nonzero (but chosen in a reason-
able way to model system noise, e.g., having it zero at gridpoints but
nonzero elsewhere to model resolution error)? Alternatively, is there an
advantage to thinking of P and P′ in terms of the stochastic differential
equation (2), where the former might be associated with a weighting of
initial conditions?

§5. Concluding remarks

This Note discusses the link between deterministic advection (which
reflects the ‘standard’ Lagrangian coherent structure methodology) as
given in (1), and the Fokker–Planck equation (4). The relationship is via
the stochastic equation (2), which hitherto has only seen limited atten-
tion from this community. It is suggested that analyzing the stochastic
ordinary differential equation (2) may offer considerable new insight into
Lagrangian coherence, noise and diffusion.
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