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We consider the situation of a large-scale stationary flow subjected to small-scale fluctuations.
Assuming that the stable and unstable manifolds of the large-scale flow are known, we quantify the
mean behaviour and stochastic fluctuations of particles close to the unperturbed stable and unstable
manifolds and their evolution in time. The mean defines a smooth curve in physical space, while
the variance provides a time- and space-dependent quantitative estimate where particles are likely
to be found. This allows us to quantify transport properties such as the expected volume of mixing
as the result of the stochastic fluctuations of the transport barriers. We corroborate our analytical
findings with numerical simulations in both compressible and incompressible flow situations. We
moreover demonstrate the intimate connection of our results with finite-time Lyapunov exponent
fields, and with spatial mixing regions.
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I. INTRODUCTION

Lagrangian coherent structures [1–3] have a well-
established importance in fluid flows. Loosely speaking,
they consist of fluid regions which move ‘almost’ coher-
ently, and their boundaries act as transport barriers sep-
arating the inside of the structure from the outside, at
least for some time. The boundaries of Lagrangian struc-
tures are analogues of stable and/or unstable manifolds.
In applications these boundaries are identified using a va-
riety of different techniques which take into account that
data is usually only known for finite times [4, 5]. The
analysis of these time-varying boundaries (which, confus-
ingly, are themselves sometimes referred to as Lagrangian
coherent structures) between coherent fluid blobs has
seen many recent applications, ranging from geophysi-
cal [6] to microfluidic [7] scales. Environmental applica-
tions include oil spills [8], garbage in the ocean [9], coral
protection [10], plankton distribution [11], ozone deple-
tion [12], transport of biological spores [13] and atmo-
spheric wind hazards near airports [14]. Additional ap-
plications include determining a ‘skeleton for turbulence’
[2, 15], microfluidic mixing optimisation [7] and fisheries
[6]. In essentially all these applications, the velocity field
is considered deterministic.

Most realistic flow situations are, however, typically of
a stochastic nature, related to the uncertainties present in
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any data, model, or simulation [16–19]. The stochastic-
ity naturally enters coarse-grained macroscopic degrees
of freedom, that is, those which we observe, in a multi-
scale setting. Recent work has extended the classical
deterministic framework of Eulerian partial differential
equations for fluid flows to stochastic partial differential
equations [20–25] where the stochasticity enters on the
side of the Lagrangian particle dynamics. The stochas-
ticity arises as the integrated effect of the fast small-scale
degrees of freedom by the process of homogenisation [25–
28], and describes the effect of the unresolved fast pro-
cesses onto the resolved slow degrees of freedom. Thus,
there is a need to incorporate the effect of stochasticity
into the deterministic approaches for understanding and
quantifying transport between coherent structures. The
natural extension from deterministic intuition may be to
think of stable and unstable manifolds of the stochas-
tic system to demarcate transport barriers. While there
exists deep theory for defining stable and unstable man-
ifolds in stochastic differential equations (usually falling
under ‘random dynamical systems’ approaches) [29–38],
there is at present little insight on how such theory can
be adapted to quantify transport barriers, and/or deter-
mine mixing across these.

In this paper, we restrict to two-dimensional flows,
motivated by the fact that oceanic flows are weakly
two-dimensional in that there is dominant flow on two-
dimensional isopycnal surfaces [39]. Since these surfaces
are not necessarily uniformly spaced, three-dimensional
incompressibility does not translate to two-dimensional
divergence-free velocity fields on each surface, and there-
fore we allow for general compressibility in our work. We
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consider the following idealized situation: We assume
that there is a large-scale flow which is slowly varying
in time and which can be viewed as steady for some
characteristic time scale τc. The large-scale flow is sub-
jected to small-scale disturbances which we model as a
stochastic forcing of the large-scale flow, along the lines
described above. Let us assume that we have knowledge
of the stable and/or unstable manifold of the determin-
istic large-scale flow from some coarse-grained measure-
ments at some time t1. Our aim here is to describe the
effect of the stochasticity on the temporal evolution of
these manifolds. More specifically: extending the no-
tion of stable and unstable manifolds in this setting, and
quantifying transport and mixing properties and their
uncertainty.

The presence of stochasticity destroys the natural no-
tions of stable and unstable manifolds, necessitating a
definition of what a backward-time or forward-time flow
barrier is. Following a recently developed idea for general
curves in two-dimensional flows [40], our approach here
is to study the statistics of the initial-time flow barrier
over many realisations of the noise. For each realisation
we define stable/unstable sets which are determined by
flowing in time the initially known locations of the stable
and unstable manifolds. Depending on an interpreta-
tion of how the driving noise is implemented, these sets
can take different forms. If the same noise realisation
is used across all initial conditions, we are in the classi-
cal domain of random dynamical systems, in which the
stable/unstable sets are indeed smooth curves for each
realisation, and therefore can be termed (random) sta-
ble/unstable manifolds [29–38]. On the other hand, we
introduce in this paper an alternative scenario, in which
the noise realisations are nonuniform across initial posi-
tions. This corresponds to the viewpoint that each fluid
particle is subject to a different noise realisation. The sta-
ble/unstable sets in this case will consist of an uncount-
able collection of points which do not form a curve. The
statistical behaviour of the stable/unstable sets in either
case is characterised by their mean—a smooth curve in
space—and their variance. The former identifies the av-
erage location of particles, while the latter quantifies the
width or uncertainty of the mean behaviour. It is this un-
certainty quantification of transport barriers—albeit in a
simplified setting—that forms the main contribution of
this article.

We remark that uncertainty quantification of propa-
gating structures typically has two aspects: the uncer-
tainty in the identification at the initial time, and the
uncertainty engendered through propagation by uncer-
tain velocities. We address here the latter aspect, assum-
ing that the stable and unstable manifolds are known at
some initial time. In identifying transport barriers (i.e.,
analogues of stable/unstable manifolds) over a finite-time
duration, we note that this is nonunique even in deter-
ministic flows [41]. This has led to the preponderance
of different methods, often called ‘Lagrangian coherent
structure’ (LCS) methods, which continue to be devel-

oped to identify these (for reviews, see [1, 3, 41, 42]).
These methods include ridges of finite-time Lyapunov
exponents (FTLEs) [1, 43–50], curves/surfaces towards
which there is extremal repulsion/attraction [1, 51–56],
sets which are ‘almost coherent’ with respect to the op-
eration of a transfer operator [57–61], identification of
vorticity cores or oscillations [62, 63], etc. Thus, the
very definition of ‘transport barrier’ at some finite time is
ambiguous. If following finite-time Lyapunov exponent
ideas, for example, one is seeking the infinite-time prop-
erty of stable/unstable manifolds as initial conditions
which decay exponentially in forward/backward times;
however, in finite-time situations, any continuous func-
tion f of time t in a finite-time interval can be bounded in
the form |f(t)| ≤ Aeλt, where λ is any given positive con-
stant, by choosing A appropriately. Thus, exponential
stretching is no more than a diagnostic for determining
(an analogue of) a stable/unstable manifold; using ridges
of finite-time Lyapunov exponents does not constitute
a watertight way of defining stable/unstable manifolds
[50, 51]. On the other hand, it has come to be expected
that some types of transport barriers in finite-time flows
(those which are analogous to stable/unstable manifolds)
carry an exponential stretching signature. We verify this
property in the first example that we consider—an in-
compressible flow in Section III—in validating our un-
certainty theory for transport barriers under stochastic
perturbations.

An advantage of our approach is that it enables a spa-
tial quantification of the mixing imparted by the stochas-
ticity, complementing the notion of partitioning space
into regions which are dominantly coherent under noise
[58, 59, 64, 65]. The fluctuations around the mean
curve leads to the potential for transport between re-
gions which, in the absence of stochasticity, would be
identified as separate physical regions. We argue that
the variance (with respect to realisations of the noise)
describes the leakiness between the regions separated by
the mean curves. The leakiness is an averaged mean
quantity and does not describe the behaviour of a single
particle but rather of an ensemble of particles. From a
practical perspective, the crucial insight is that, under
the assumption of ergodicity of the stochastic dynamical
system, the variance is related to the relative volume of
mass of an initial distribution of particles that will be
leaking at a specified finite time. This quantity is im-
portant, for example, when estimating the spatial distri-
bution of oil spills and knowledge of the time-dependent
spatially varying variance around the mean curve can be
used to assess the extent of further oil contamination.
Our second example, focussing on Taylor-Green flow in
Section IV, validates that our theory correctly identifies
mixing regions and their evolution with time.

The paper is organised as follows. In Section II we
present the theory for the time-evolution of stochastically
perturbed stable and unstable manifolds. This provides
explicit analytical formulæ for the mean of the stable and
unstable sets as well as their variances. We show that the
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variance—as a measure of uncertainty—saturates under
generic conditions. Section III applies the theory to an
example of a compressible flow and presents numerical
simulations illustrating the ability of our framework to
capture the statistics of Lagrangian particle dynamics
near stochastically perturbed stable and unstable mani-
folds. Moreover, we show that our analytical framework
identifies structures which are aligned with FTLE ridges,
with the ridge thickness variation being predicted by our
theoretical variance. Section IV then treats an incom-
pressible flow example, and shows how the ideas of trans-
port barriers developed in the deterministic situation can
be extended to the stochastic case. We show that the in-
terchange of fluids across the transport barrier is spatially
correlated to the variance of the stable/unstable sets. We
conclude in Section V with a discussion and an outlook.

II. MANIFOLD UNCERTAINTY

A. Stable/unstable sets

Let x ∈ Ω, where Ω is a two-dimensional connected
open set. Let v : Ω → R2 be (sufficiently) smooth, and
consider the deterministic dynamical system

ẋ = v (x) . (1)

If v is a velocity field of a fluid, then solutions to (1)
are flow trajectories. We restrict here to a slowly vary-
ing large scale flow which can be considered as steady
for times smaller than some characteristic time scale τc.
For such flows, (1) can be considered the leading-order
approximation. Suppose (1) possesses a hyperbolic fixed
point a to which is attached a one-dimensional stable
manifold Γs and a one-dimensional unstable manifold [66]
Γu. These are shown by the thick curves in Fig. 1, and
are respectively parametrised by xs(t) and xu(t), both
solutions of (1). In deterministic systems (1) manifolds
of this sort are specifically important since they are flow
separators (flow barriers, transport barriers) in terms of
particle trajectories. Consider for example a blob of fluid
placed on top of the stable manifold Γs as shown in Fig. 1.
As this blob evolves according to (1), it eventually gets
close to a. At this point, it is strongly influenced by the
unstable manifold Γu, and the blob gets stretched (ex-
ponentially fast) along Γu. Thus, particles in the blob
which were on one side of Γs get stretched in one di-
rection, while those on the other side of the blob are
stretched in the other direction. In this sense, Γs is a
flow separator in forward-time. Similarly, Γu is a flow
separator in backward-time. We remark that these in-
terpretations continue to hold when v is unsteady; in this
instance a is not a fixed point, but a time-varying trajec-
tory to which is attached stable/unstable manifolds. The
flow-barrier property is well-known, and is a fundamental
reason why finite-time analogues of stable and unstable
manifolds (e.g., strong ridges of finite-time Lyapunov ex-
ponent fields [3], curves to which there is maximal attrac-
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FIG. 1. Stable (Γs) and unstable (Γu) manifolds of the fixed
point a of (1).

tion [1], etc) are investigated numerically as flow barriers
in realistic flows.

We want to determine the intuitive counterparts to
these—i.e., intuitive flow barriers—when the coarse-
grained large-scale flow (1) is subjected to small-scale
fluctuation. We model the resulting flow by a stochasti-
cally perturbed version of (1). We assume that the un-
stable/stable manifold is known at some time t1, and aim
to determine its subsequent evolution and uncertainty up
to some time t which is smaller than the characteristic
time scale of the large-scale flow τc. We will discuss this
under two slightly different interpretations of the per-
turbing stochastic differential equation (SDE).

We first consider the Itô stochastic differential equation
(SDE)

dy = v (y) dt+ ε σ (y, t) dWt, (2)

for y ∈ Ω for initial condition y(t1) = ζ. Here, ε is a
dimensionless parameter representing the size (|ε| ≪ 1)
of the stochasticity, dWt is two-dimensional Brownian
motion, and σ is a 2 × 2 matrix with components σij—
in general both spatially and temporally dependent—
incorporating anisotropic diffusion. In the form (2)
above, the first term is the ‘drift’ and the second the ‘dif-
fusion’ associated with the variable y. The SDE (2), if
interpreted as the Lagrangian description of fluid parcels
assumes the same realisation of noise Wt for all fluid
particles. This model is what is usually studied in the
framework of slow manifolds in random dynamical sys-
tems, which establishes the existence of smooth mani-
folds for each noise realisation [29–38]. The manifolds
can be initialised at time t1 by choosing a collection of
initial conditions for the ζ. The time t, until which we
plan to describe the manifold evolution can be any value
such that |t − t1| ≪ τc, the characteristic time scale of
the large-scale flow, to assure steadiness of the manifolds
Γu,s. The unstable manifold is propagated forward in
time with t > t1 whereas the stable manifold is propa-
gated backward in time with t < t1.

We also consider a slightly different viewpoint in which
each initial condition is allowed to be driven by indepen-
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FIG. 2. Illustration of the geometry of the finite-time random unstable set Gu(t) (green) in a time-slice t and the deterministic
unstable manifold Γu (dashed yellow). Left: For the SDE (2) with uniform noise Gu(t) is a smooth curve. Right: For the SDE
(3) with nonuniform noise Gu(t) is an uncountable collection of random points.

dent noise realisations. In particular, we consider

dy(ζ) = v
(
y(ζ)

)
dt+ ε σ

(
y(ζ), t

)
dW

(ζ)
t , (3)

where y(ζ) denotes conditioning on the initial value
y(t1) = ζ, and the noise realisation are independent with
E[W (ζ)

t W
(ξ)
s ] = δ(ζ − ξ)δ(t− s). This is a broader mod-

elling framework in which a correlation between the noise
experienced by all particles—as in (2)—is not assumed.
A principal computational advantage of this viewpoint
is the ability to efficiently capture many stochastic reali-
sations simultaneously when doing a forward simulation
in time. For brevity, we will call (A2) an SDE driven
by uniform noise and (3) driven by nonuniform noise, to
refer to the fact that the noise realisation used in each
simulation is uniform or nonuniform in the initial con-
dition, respectively. In the remainder we use the term
‘simulation’ to express one implementation of (2) or (3)
over a time interval, for a given collection of initial con-
ditions.

The systems (2) and (3) can alternatively be thought of
in the weak sense via the same [67] corresponding Fokker–
Planck equation

∂ρ

∂t
+∇ · (ρv) = ε2

2
∇ · ∇ ·

(
ρ σσ⊤) , (4)

which encodes how densities ρ(y, t) evolve under the flow.
Since solutions y to (2) or (3) are random processes,

any entities analogous to stable/unstable manifolds of
the deterministic system (1) are themselves random.
There are well-established methods to account for sta-
ble/unstable manifold displacements due to determinis-
tic perturbations using for example the Melnikov function
[4]. Here, we extend this notion to stochastic perturba-
tions.

We first consider stochastically perturbed unstable
manifolds. For the deterministic flow, Γu is defined in
terms of the set of points which approaches a as t → −∞.
Thus, setting σ(y, t) = 0 for t < t1 is a technical trick

which enables the identification of the random unstable
manifold at time t1 to be precisely Γu. Its continua-
tion in time is then obtained by flowing forward in time
from t1 onwards. To formalise the definition, we first
note that the deterministic unstable manifold Γu can be
parametrised as a solution xu(t) of (1), where xu(t) → a
as t → −∞. (This highlights the necessity of requiring
infinite times in order to define the unstable manifold Γu

in the standard way for deterministic systems.) Thus,
Γu :=

∪
p∈R xu(p). The random unstable set Gu(t) is

now defined by

Gu(t) :=
∪
p∈R

{
yu(p, t) : yu(p, t) solves (2)/(3)

with yu(p, t1) = xu(t1 − t+ p)
}
. (5)

The initial condition yu(p, t1) = xu(t1−t+p) is chosen to
ensure that the time-evolved state yu(p, t) will be close to
xu(p) at time t (for the deterministic case with σ = 0 we
would have yu(p, t) = xu(p)). Upon varying the initial
condition xu(t1 − t + p) over p, the full deterministic
unstable manifold Γu is used as the initial condition at
time t1. Since points on Γu at t = t1 asymptote to a
as t → −∞ (because there is no stochasticity imposed
when t < t1), so will points on Gu(t) for any t. Thus, our
definition complies with the notion of pullback attractors
(see for example [29]). We note moreover that definition
(5) is generalisable to the situation where the ODEs (1) is
in Rn, and the perturbed unstable set is associated with
an (any-dimensional) unstable manifold of any invariant
submanifold a, as long as the stochasticity is assumed to
be zero for t < t1.

Depending on whether the stochastic system employs
uniform noise as in (2) or nonuniform noise as in (3) the
unstable set Gu(t) will have different characteristics. If
the same noise realisation is used for every initial point
on the manifold for each forward-time simulation as in
(2), Gu(t) will be a smooth curve for fixed time-slice t.
Indeed, in this situation, it is possible to define Gu(t) as
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the random unstable manifold for (2), and there are many
results which establish its smoothness in more generality
[29, 30, 33–38]. We show in Fig. 2a a schematic for Gu(t)
(green curve) at a time instance t, in this situation.

On the other hand, if we use (3) to define the random
unstable set Gu(t), then it will not be smooth because
each initial point xu(t1 − t + p) experiences a different
noise realisation in a forward-time simulation. We dis-
play in Fig. 2b a schematic of the set Gu(t) in this case,
bearing in mind that this is a finite representation of
the uncountable number of points comprising Gu(t). We
note that while the random unstable set associated with
uniform noise using (2) could be defined for infinite-time
stochasticity using alternative methods [29–31, 33–38], it
cannot be extended to infinite times in an obvious way for
nonuniform noise using (3). Moreover, the actual com-
putational construction of stochastic slow manifolds in
the sense of [29] for the uniform noise case (2) is based
on noise convolutions which involve unknown anticipat-
ing future noise terms. The most lucid construction is
provided by a normal form transformation [32, 68] but
requires knowledge of future unknown noise which may
be heuristically replaced by additive noise terms. The re-
striction to a finite value of t circumvents this problem,
suggesting a straightforward computational construction
which works equally well for describing the statistics as-
sociated with random unstable sets for uniform and for
nonuniform noise.

Next, we provide an analogous definition for the finite-
time random stable set Gs(t) for t < t1. The stable man-
ifold Γs is defined at time t = t1 for the deterministic flow
(1) by Γs :=

∪
p∈R xs(p), in which xs(t) is a solution to

(1) obeying xs(t) → a as t → ∞. For the stochastic flow
(2), we take Γs as an ‘initial’ condition at time t1, and run
(2) backwards in time to time t. This requires viewing
the SDEs (2) and (3) as backward stochastic differential
equations which, like their forward counterparts, have
well-defined solutions over a finite time under certain
smoothness assumptions [69]. Using this backwards time
approach gives meaning that the random stable set Gs(t)
is the set of points which asymptotically approaches a as
t → ∞. We therefore define the random stable set Gs(t)
by

Gs(t) :=
∪
p∈R

{
ys(p, t) : ys(p, t) solves (2)/(3)

with ys(p, t1) = xs(t1 − t+ p)
}
. (6)

The set Gs(t) will be either a smooth random stable man-
ifold, or an uncountable collection of points depending on
whether the noise is uniform as in (2) or nonuniform as
in (3).

B. Uncertainty of stable/unstable sets

The random stable and unstable sets differ for each
realisation of noise. To enable a statistical description of

this variation, we characterise their mean and variance
with respect to realisations of the driving Brownian noise.
We first examine the uncertainty associated with the un-
stable set Gu(t). While the geometric nature of the sets
Gu(t) is inherently different for uniform and nonuniform
noise (cf. Figure. 2), our theory works in either case. To
define the displacement from the deterministic manifold
Γu, we fix p ∈ R, and let

n̂u(p) :=
v⊥ (xu(p))

|v (xu(p))|
(7)

be the unit normal vector to Γu at the location xu(p).
Here, the ⊥ operation on vectors in R2 denotes rotation
by +π/2, that is,

h⊥ :=

(
0 −1
1 0

)
h . (8)

Let t > t1 be finite. For yu(p, t) ∈ Gu(t), we define the
random normal displacement by

Nu(p, t) := [yu(p, t)− xu(p)] · n̂u(p) (9)

which represents the normal displacement of Gu(t) with
respect to Γu, at locations parametrised by p, and at
times t > t1. The reader is referred to Fig. 2 for a geo-
metric depiction of the displacement.

We now look at the statistics of the displacement in
terms of averaging over different realisations of the driv-
ing noise. To elucidate Nu’s leading-order behaviour, we
consider the random variable

Ñu(p, t) := lim
ε→0

Nu(p, t)

ε
. (10)

By adapting the stochastic curve theory of [40], we show
in Appendix A that the leading-order expectation of the
normal displacement is zero, i.e.,

E
[
Ñu(p, t)

]
= 0 for all p, (11)

where the expectation value is taken with respect to
all Brownian driving paths. This relies on Itô’s lemma
[70, 71] being applied to (2) to determine the evolution
equation for the random variable yu(p, t) to first-order.
The mean over realisations of the unstable set Gu(t) is
therefore the deterministic unstable manifold Γu, inde-
pendent of t.

Next, we define the standard deviation—a measure for
the uncertainty—of the leading-order normal displace-
ment by

wu(p, t) :=

√
Var

[
Ñu(p, t)

]
. (12)

Appendix A shows that the methods of [40] (which rely
on the Itô isometry [70, 71]) can be adapted to obtain
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wu(p, t) =

[∫ t

t1
e2

∫ t
τ
[∇·v](xu(ξ−t+p))dξ

∣∣σ⊤(xu(τ−t+p), τ) v⊥ (xu(τ−t+p))
∣∣2dτ]1/2

|v (xu(p))|
, (13)

in which σ⊤ is the transpose of the matrix σ. Thus,
εwu(p, t) gives an expression for the leading-order uncer-
tainty of the normal displacement between Gu(t) and Γu

at a location p, and at a time-instance t. In contrast
with the random variable Nu(p, t), wu(p, t) is smooth in
p even for nonuniform noise as in (3). We note that the
expressions (11) and (13) work for either of the interpre-
tations (2) or (3), because in deriving the expressions, p
is considered fixed (see Appendix A).

The uncertainty (13) associated with the unstable set
monotonically increases with time t, representing the ac-
cumulation of stochastic effects as time progresses. How-
ever, under generic conditions (σ is bounded), we show
in Appendix B that as t increases, wu(p, t) approaches
a constant value at any particular point xu(p) on Γu,
and does so exponentially fast. The saturation of the
uncertainty of the flow barrier is related to approaching
the invariant density of the corresponding Fokker–Planck
system (4). If the time required to reach statistical equi-
librium is less that the characteristic time scale τc of the
large-scale flow, we may set in our formulæ t → ∞. We
numerically verify that this saturation occurs rapidly in
the Taylor–Green example we analyse in Section IV.

The limit p → −∞ in (13) provides the uncertainty
at the saddle point a. This limit is computed exactly as
described in Section 3.5 of [72], where a similar limit is
computed for a comparable expression (this argument is
similar in spirit to that presented in Appendix B for the
limit t → ∞ as well). We find that

wu(−∞, t) = eλst

(∫ t

t1

e−2λsτ
∣∣σ⊤(a, τ) ê⊥u

∣∣2 dτ)1/2

,

(14)
and this uncertainty is measured in the direction ê⊥u from
a (i.e., n̂u(p) → ê⊥u as p → −∞). The vectors ês and
êu are the normalised eigenvectors of the Jacobian ma-
trix ∇v(a) with corresponding eigenvalues λs < 0 and
λu > 0, tangential to the stable and unstable manifolds
at a, respectively. The appearance of the complementary
eigenvalue λs when considering an uncertainty of the un-
stable manifold in the v⊥u direction is to be noted.

Let us return to the general expression (13) for the
uncertainty wu(p, t). There are two simplifications which
occur under regularly considered cases:

(i) If the fluid is incompressible with ∇ · v = 0, the
entire exponential factor in (13) simplifies to 1.

(ii) If the diffusion is isotropic and independent of space
and time, then σ = Id (but let us suppose it re-
tains the appropriate dimensions). This allows the
σ term to be discarded from (13). Moreover, since∣∣v⊥∣∣ = |v|, the ⊥ symbol on the v in the integrand
can be removed.

If both the above simplifications are in operation, then
the uncertainty formula (13) reduces to the particularly
simple form

wu(p, t) =

[∫ t

t1
|v (xu(τ − t+ p))|2 dτ

]1/2
|v (xu(p))|

. (15)

This is the temporal L2-norm of the quantity
|v (xu(τ − t+ p))| / |v (xu(p))|, which represents the frac-
tional speed at a time-varying point in relation to that
at the final point xu(p) (occurring at τ = t). The along-
manifold velocity variations therefore impact the across-
manifold uncertainties; an intuitive explanation is that
the along-manifold velocity variation is directly linked to
that across the manifold because of incompressibility.

If only simplification (ii) applies, the uncertainty at a,
(14), is explicitly integrated to give

wu(−∞, t) = eλst

(
e−2λst − e−2λst1

−2λs

)1/2

, (16)

and if additionally ∇·v = 0, the condition λs = −λu can
be applied.

The general expression for the standard deviation (13)
allows for the definition of uncertainty regions around Γu.
At any time-instance t, we define

Ru
α(t) :=

∪
p

{xu(p) + αrεwu(p, t)n̂u(p) : r ∈ [−1, 1]} .

(17)
The parameter α represents how many standard devia-
tions around Γu the region is, and therefore Ru

α defines
a region of uncertainty of the stochastic unstable sets
Gu(t), to leading-order in ε. While there is no obvious
reason to expect that the unstable sets are normally dis-
tributed around the unstable manifold Γu (indeed, our
numerics indicate that they are not), a choice α = 2
(which would represent a 95% confidence interval for an
assumed normal distribution) appears reasonable for cap-
turing the bulk of the uncertainty.

An analogous characterisation is possible for the dis-
placement of the random stable set Gs(t). We define

n̂s(p) :=
v⊥ (xs(p))

|v (xs(p))|
(18)

and for t < t1 consider

Ns(p, t) := [ys(p, t)− xs(p)] · n̂s(p) , (19)

As before, we expect E [Ns(p, t)] = O(ε), inspiring the
definition

Ñs(p, t) := lim
ε→0

Ns(p, t)

ε
. (20)
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The proofs for the unstable manifold furnished in Ap-
pendix A go through for the stable manifold with no
substantive change. In particular,

E
[
Ñs(p, t)

]
= 0 for all p, (21)

implying that the mean of the stable sets over different
realisations of the Brownian driving noise is given by the
stable manifold Γs. The standard deviation defined by

ws(p, t) :=

√
Var

[
Ñs(p, t)

]
, (22)

yields the uncertainty measure

ws(p, t) =

[∫ t1
t
e2

∫ t
τ
[∇·v](xs(ξ−t+p))dξ

∣∣σ⊤(xs(τ−t+p), τ) v⊥ (xs(τ−t+p))
∣∣2dτ]1/2

|v (xs(p))|
. (23)

Our previous discussions on simplifications under in-
compressibility and isotropic diffusion for wu apply
equally for (23). Moreover, saturation of ws(p, t) is to
be expected as t → −∞ for bounded σ. The uncertainty
at a in the direction ê⊥s is obtained by taking the limit
p → ∞ in (23), which leads to

ws(∞, t) = eλut

(∫ t1

t

e−2λuτ
∣∣σ⊤ (a, τ) ê⊥s

∣∣2 dτ

)1/2

.

(24)
The corresponding expression under σ = Id is

ws(∞, t) = eλut

(
e−2λut − e−2λut1

2λu

)1/2

. (25)

In general, the region of uncertainty is

Rs
α(t) :=

∪
p

{xs(p) + αrεws(p, t)n̂s(p) : r ∈ [−1, 1]} ,

(26)
which quantifies the fuzziness of the stable manifold when
subjected to a (small) stochastic perturbation.

In the next two sections, we consider two specific ex-
amples. In the first example in Section III, we exam-
ine the perturbations to the stable manifold for uniform
and nonuniform noise as in (2) and (3) for a velocity
which is not area-preserving. Our focus here is directly
on the manifolds and their uncertainty, but we will also
compare our uncertainty measures to the spatial struc-
ture of a noise-averaged exponential stretching measure.
In the second example, we study a stochastically per-
turbed area-preserving flow and show how our analytical
expressions can be used to quantify fluid transport across
stochastic Lagrangian structures. Specifically, this exam-
ple relates our measures to spatial mixing regions near
the stable manifold.

G
s

H0,0L H4,0L

H0, 3 L H4, 3 L

H0,- 3 L H4,- 3 L

FIG. 3. The phase plane of (27), with the stable manifold of
interest, Γs, shown in green.

III. STOCHASTIC SETS RESPECT
EXPONENTIAL STRETCHING: A

COMPRESSIBLE EXAMPLE

The base flow we consider for this example is given by

ẋ1 = −4x1 + x2
1

ẋ2 = 3x2 − x3
2

 , (27)

which is not area-preserving. The part of the phase plane
of interest to us is shown in Fig. 3. The focus shall be
on the stochastic perturbation to the stable manifold Γs

of (0, 0) as shown in magenta. The relevant parametric
representation for this, as a solution to (27), is

xs(p) =

 4/
(
1 + e4p

)
0

 ; p ∈ R .

The analytical formula (23) for the uncertainty measure
ws along the stable curve requires the calculation of the
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FIG. 4. Smooth stable set Gs(t = 0) of the stochastic flow associated with (27) driven by uniform noise with ε = 0.02 from
time t1 = 2. (a): Single simulation (green). (b): Histogram from 100, 000 simulations. The black curves depict the α = 1
(thick dashed), α = 2 (thin dashed) and α = 3 (dotted) standard deviation envelopes Rs

α(t = 0) (cf. (26) using the analytical
expression (28) for ws(p, t)).
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FIG. 5. Stable set Gs(t = 0) of the stochastic flow associated with (3) driven by nonuniform noise with ε = 0.02 from time
t1 = 2. (a): Single simulation (green dots). (b): Histogram from 1000 simulations. The black curves depict the α = 1 (thick
dashed), α = 2 (thin dashed) and α = 3 (dotted) standard deviation regions Rs

α(t = 0) (cf. (26) using the analytical expression
(28) for ws(p, t)).

quantities

v (xs (τ − t+ p)) =

 −16e4(τ−t+p)/
(
1 + e4(τ−t+p)

)2
0



and

[∇ · v] (xs(τ − t+ p)) = −1 +
8

1 + e4(τ−t+p)
.

After some algebra (not shown), the leading-order uncer-
tainty of the stable manifold (23) reduces to

ws(p, t) = e3t
(∫ t1

t

e−6τ

[
σ2
21

(
4

1 + e4(τ−t+p)
, 0, τ

)
+ σ2

22

(
4

1 + e4(τ−t+p)
, 0, τ

)]
dτ

)1/2

, (28)

where σij represent the components of the diffusion ma-
trix. For the computations in this section, we choose
σ11=1 , σ12=0 , σ21=x2−1 and σ22=3 sin (2πx1) e

0.8x1

which support a nontrivial dependency along the deter-
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ministic stable manifold x2 = 0.
We will now study the stable set Gs(t) with t1 = 2. To

numerically solve the SDEs (2) and (3) we employ the
Euler–Maruyama scheme [73, 74]. There are two com-
peting issues in choosing ε and the time-step ∆t for the
numerical simulations: ε

√
∆t must be much smaller than

∆t (i.e., |ε| ≪
√
∆t) to ensure that the stochasticity ap-

pears as a perturbation, while ∆t must itself be small for
better accuracy of the method. In the following we use
ε = 0.02 and ∆t = 0.01 unless otherwise specified.

Let us first compute the stable curve Gs(t = 0) for
the system (27) driven by uniform noise, in which each
initial condition is propagated with the same realisation
of the noise as in (2). To do so, we seed 4000 particles
along y2 = 0, equally spaced between x1 = 0 and 0.004
at time t1 = 2, and advect (2) backward in time to t = 0.
The stable curve Gs(0) (green) associated with one single
simulation is shown in Fig. 4 (a). We now show that the
average behaviour of the stable curves Gs(t) with respect
to different realisations of the noise is well described by
our theory, where the mean is given by Γs (up to O(ε2))
and the standard deviation by ws(p, t). In Fig. 4 (b),
we present a histogram using 100, 000 independent sim-
ulations (each seeded with 4000 initial particles), formed
by counting the proportion of the 4 × 108 points within
each bin of size (0.0525 × 0.01) in the displayed domain
at time t = 0. It is clearly seen that the contour lines
of the histogram align well with the regions Rs

α(0) of the
uncertainty.

We next numerically generate the random stable set
Gs(t = 0) for the system (27) driven by nonuniform noise,
as in the class of SDEs (3). Fig. 5 (a) shows Gs(t = 0)
obtained for a single simulation; it is now a collection
of points as opposed to the smooth curve depicted in
Fig. 4 (a). The histogram over realisations of the noise
is shown in Fig. 5 (b) and resembles the histogram ob-
tained for the SDE (2) driven by uniform noise shown in
Fig. 4 (b). Note that the average is taken here only with
1000 realisations whereas in the uniform nosie case we
used 100, 000 realisations. As the Fokker–Planck equa-
tion (4) is identical for the two SDEs (2) and (3), we can
interpret the simulation of the nonuniform noise case (3)
as an effective computational tool to determine the sta-
tistical behaviour of an ensemble of realisations of the
noise for the uniform noise case (2).

Our theory gives the mean and standard deviation of
the instantaneous normal distance Ns of the stable curve
Gs(t) to the stable manifold Γs (cf. (19)). We now nu-
merically verify these expressions, validating also that
these expressions are correct to order ε. To determine the
statistics of scatter around the point (1.5, 0) on the stable
manifold at time t = 0, we backwards advect from time
t1 = 2 from the point (0.0006968, 0). This is the point
from which (1.5, 0) maps under deterministic advection
from t = 0 to t1 = 2, and is associated with p = 0.12771.
Since we are considering only one initial condition, the
systems (2) and (3) are equivalent for this experiment.
The quantity Ns (in this case Ns = x2 because n̂s is the

unit vector in the x2-direction) is computed for each of
M = 104 simulations. The empirical probability density
function f(Ns) is shown in Fig. 6 for several values of ε
together with a normal probability density function with
the mean and variance given by our theoretical predic-
tions; the mean is zero according to (21) and the stan-
dard deviation εws(0.12771, 0) is computed from (23).
The simulations also illustrate the interesting fact that
the actual density function clearly does not converge to
a Gaussian; in all our simulations we observed a sharper
peak at zero. The spread of the density, however, clearly
exhibits convergence as ε → 0. Our theory provides an
O(ε) expression for the standard deviation, and thus this
value should be accurate up to O(ε2). We explore this
in Fig. 6 (d), where we use M simulations for each ε to
plot the logarithm of the error

E =

∣∣∣∣∣∣
√√√√ 1

M

M∑
j=1

(
x
(j)
2 (0)

)2
− εws(0.12771, 0)

∣∣∣∣∣∣ (29)

between the theoretical and numerical standard devia-
tions against ε, where x

(j)
2 (0) is the x2 coordinate at time

t = 0 of the jth ensemble member with initial condition
x1(t1) = 0.12771 and x2 = 0. In this region, the error
appears to go as ε2.5, confirming the scaling O(ε2) as
discussed above.

We next compute the finite-time Lyapunov exponent
(FTLE) field, whose strong ridges help identify stable
manifolds in the deterministic setting. Forward-time
FTLE fields are the relevant diagnostics for stable mani-
folds, since particles on the stable manifold will be expo-
nentially stretched apart by the complementary unsta-
ble manifold attached to (0, 0) as visible in Fig. 3. The
FTLEs at a time t are the finite time averages of the max-
imum expansion rate for a pair of particles propagated
by (2) over the time interval [t, t1] (see, for example, [3]
on the computation of FTLEs). Monte Carlo methods
for FTLE fields are now emerging as a tool in stochas-
tic situations [18, 19, 75–79]. Following these ideas, we
seed 200× 400 particles in the same domain displayed in
Fig. 4 at time t = 0. The particles are then advected for-
ward in time with the dynamics (2) to time t1 = 2, and
the resulting FTLE field is computed. Fig. 7(a) shows
a clear ridge of the FTLE field, indicative of the stable
manifold curve Gs(t = 0). Exactly as for deterministic
flows, this sharp ridge is an indication that for that par-
ticular realisation of noise, the stable curve is smooth.
Since recent work legitimises taking the expectation over
many simulations [79], in Fig. 7(b) we show the averaged
FTLE field across 100, 000 simulations, of which (a) is
one. The statistical spread of the stretching fields dis-
plays a ‘fattening’ associated with the uncertainty of the
stable set. We have used a nonlinear scaling on the color-
bar to elucidate the variation in the (rarely visited) outer
flanges, for an effective comparison with the theory even
up to the three standard-deviation level. Our theoreti-
cal regions Rs

α(0) capture the undulating nature of the
averaged FTLE field excellently, implying that the spa-
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FIG. 6. (a-c) Analysis of the normal statistics of Ns = x2 at the (1.5, 0) for the stochastic flow associated with (27) driven
by uniform noise from time t1 = 2 to t = 0, for the values (a) ε = 0.02, (b) ε = 0.007 and (c) ε = 0.002. Shown is the
empirical probability density function f(Ns) of the simulation (red circles) using M = 104 simulations, and a reference normal
probability density function with variance given by the theoretical values εws(0.12771, 0) as computed from (23) and mean zero
as computed from (21) (blue curves). (d) The error E in the standard deviation versus ε in these simulations (red circles), in
a log-log plot. The slope obtained by linear regression is 2.48.

tial structure of the exponential stretching statistics is
well-explained by our theory.

We remark that performing the FTLE calculation us-
ing the nonuniform model (3) does not make sense, be-
cause the presence of different noise realisations in ad-
jacent trajectories generate a flow map which is not
smooth. The spatial gradients of the flow map then ac-
quire large values which are additional to those arising
from exponential separation.

IV. STOCHASTIC SETS GOVERN
TRANSPORT: TAYLOR–GREEN FLOW

The previous example illustrated that the theory for
the uncertainty of stochastic stable sets was consistent
with both the actual stochastic evolution of a curve po-
sitioned on the stable manifold Γs at some final time,
as well as the distribution of exponential stretching as
quantified by FTLEs. We now explore the implications
associated with the uncertainties to quantitatively un-
derstand transport across the deterministic flow barriers.

The deterministic base flow we examine here is the
area-preserving Taylor–Green flow [4], also known as pla-
nar cellular flow,

ẋ1 = − sin (πx1) cos (πx2)

ẋ2 = cos (πx1) sin (πx2)

 . (30)

Its phase portrait, which consists of a periodic array of
counter-rotating vortices, is depicted inFig. 8. We wish to
relate the uncertainty of the heteroclinic manifold (shown
in green in Fig. 8) with the transport occurring between
the upper and lower cell under stochastic perturbations.
Particles within the cells get fed into the transport region
by coming in towards the point (1, 0) and then getting
pulled along by this heteroclinic manifold; hence for the
study of how particles are advected in forward time and
diffuse across these two cells, it is their location with
respect to the unstable manifold Γu which is pertinent.

We note that here ∇ · v = 0, and moreover

xu(p) =

 2
π tan−1 (e−πp)

0
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(a) (b)

FIG. 7. The forward FTLE field computed at time t = 0 for the stochastic flow associated with (27) driven by uniform noise
till time t1 = 2, using identical conditions and notation as in Fig. 4. (a) One single simulation, and (b) The mean of 100, 000
simulations using a nonlinearly-scaled colorbar. The black curves depict the α = 1 (thick dashed), α = 2 (thin dashed) and
α = 3 (dotted) standard deviation regions Rs

α(t = 0) (cf. (26) using the analytical expression (28) for ws(p, t)).

G
u

H0,0L H1,0L

H0,1L H1,1L

H0,-1L H1,-1L

FIG. 8. The phase plane of the Taylor–Green flow (30), with
the transport barrier between the upper and lower cell shown
in green.

and

v (xu (τ−t+p)) =

(
−2 sech [π (τ−t+p)]

0

)
.

For general σ, performing the algebra on (13) leads to
the fact that

wu(p, t) =

(∫ t

t1
sech2 [π (τ−t+p)]

[
σ2
21 (x1(τ−t+p), 0, τ) + σ2

22 (x1(τ−t+p), 0, τ)
]
dτ
)1/2

sech (πp)
(31)

where

x1(p) :=
2

π
tan−1

(
e−πp

)
(32)

is the relationship between the x1 coordinate along Γu

and its p-parametrisation.

We examine the case σ = Id, in which case (31) can be
integrated explicitly to yield

wu(p, t) = cosh (πp)

(
tanh [πp]− tanh [π (t1 − t+ p)]

π

)1/2

.
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After using the relationship (32) to represent wu in terms
of the location x1 ∈ (0, 1] along Γu rather than p, the
explicit uncertainty measure is evaluated as

w̃u(x1, t) := wu(p, t) =
1√

π (coth [π (t− t1)]− cos (πx1))
.

(33)
This is not zero as x1 → 1, and the limiting value coin-
cides with the unstable manifold uncertainty expression
wu(−∞, t) ‘at saddle-point’ given in (14). However, w̃u

becomes unbounded as x1 → 0+, influenced by the stable
manifold at (0, 0). This can be understood by realising
that any small perturbation near x1 ≳ 0 will be impacted
by the strong exponential stretching in backward time
due to the unstable manifold. Another interesting obser-
vation is that w̃u in (33) is monotonically increasing in
t at each fixed location x1 (representing an increase in
uncertainty with time), but saturates rapidly to

w̃u(x1,∞) =
1√
2π

csc
(πx1

2

)
, (34)

defining a long-term uncertainty with respect to the lo-
cation x1 on Γu. This is a special case of the expected
convergence to a limiting long-term uncertainty as shown
in Appendix B. The existence of a constant limiting
long-term uncertainty reflects the fact that the number
of particles leaving a cell equals on average the number
of particles entering a cell, allowing for a statistical equi-
librium.

We now relate these expressions for the uncertainty
to mixing. Specifically, we focus on the fact that, in
the absence of stochasticity, the unstable manifold Γu

forms a flow barrier between the upper and lower cells
in Fig. 8. Fluid which swirls around in each cell and
approaches x2 = 0 from near x1 = 1, remains sepa-
rated by Γu as it travels near x2 = 0. The inclusion
of stochasticity destroys the ‘flow barrier’, thereby caus-
ing mixing between the fluids of the upper and lower
cells. The spatial distribution of this mixing is directly
controlled by the uncertainty regions Ru

α given by our
theory, as we now verify. For our numerical verification,
we seed the entirety of the upper cell with a uniform
grid of 1000 × 2000 particles at time t1 = 0, and advect
it with the stochastically perturbed flow (with σ = Id
and ε = 0.1), using the Euler–Maruyama scheme with
∆t = 0.01. To obtain an efficient statistical description,
we choose the SDE driven by nonuniform noise (3) rather
than (2) driven by uniform noise, and perform only one
simulation. In effect we perform a Monte–Carlo approx-
imation of the Fokker–Planck equation (4) with the ini-
tial density being the Lebesgue measure on the two cells.
(We cross-validated this computation by directly simu-
lating the Fokker-Planck equation (4) using a spectral
scheme with Crank-Nicolson time-stepping, using each
as our initial density each of (i) uniform density in the
top cell, (ii) uniform density in the bottom cell, and (iii)
Dirac density supported on Γu (not shown).)

Since our focus is on particles which escape into the
lower cell, we use periodic boundary conditions for x1 ∈

[0, 1] to ensure that particles escaping from the left- and
right-sides are fed back into the cell. We focus on a mix-
ing zone near x2 = 0, in particular choosing the region
(x1, x2) ∈ [0.1, 0.9]× [−0.1, 0.1] (we exclude regions near
x1 = 0 and 1 to minimise periodic boundary condition
effects). We bin this region into boxes of width 0.025
and height 0.005. We show in Fig. 9 (a) the histogram
of the particles at time t = 2 which were initially at
t1 = 0 in the upper cell. The dashed blue curves are the
α = 1 (thick) and α = 2 (thin) standard deviation en-
velopes of Ru

α(t) computed using (33); that is, the curves
x2 = ±εw̃(x1, t) (thick) and x2 = ±2εw̃(x1, t) (thin).
These curves, which demarcate the uncertainty around
the mean of the unstable set, align well with the den-
sity contour lines of the simulation. The larger density
in the upper-right region is associated with regions well-
divorced from the mixing region, that is outside the un-
certainty region Ru

α(t). The ‘leakage’ of the upper fluid
into the lower cell is seen to be spatially correlated with
the fact that the uncertainty region Ru

α(t) extrudes into
the lower cell. Moreover, the fact that the uncertainty re-
gion Ru

α(t) also ventures into the upper cell is displayed
by the fact that there is a smaller density in the region
defined by Ru

α(t) about x2 = 0 in comparison to regions
well above x2 = 0. Fig. 9 (b) is a similar histogram, but
now of the lower fluid, i.e., particles seeded uniformly in
the lower cell at time t1 = 0, and advected stochastically
until t = 2. Once again, the ability of the uncertainty
regions of the unstable set to describe the probability
density function of the fluid particles is apparent.

To further quantify mixing between the cells, we define
a covariance-like quantity as follows. Let ui and li rep-
resent the number of ‘upper’ and ‘lower’ fluid particles
which are in bin i at time t, and ū and l̄ be the average
number of particles in each bin, with the average taken
over all the bins in our mixing zone. Then we define the
covariance function

ci(t) := (ui(t)− ū(t))
(
li(t)− l̄(t)

)
(35)

for each cell i. One or the other of the two terms in (35) is
close to zero in regions in which only one of the fluid types
dominate, and therefore ci is expected to be small in such
regions. In contrast, ci will be larger in regions in which
both fluid types are present, i.e., regions of strong mixing
between upper and lower fluids. The histogram of ci(2) is
shown in Fig. 9 (c). As expected, the spatial distribution
of the mixing measure ci is indeed strongly impacted by
the uncertainty envelopes of the unstable set. The dashed
blue curves identifying Ru

α=1(t) do indeed appear to align
with these contours of the covariance. That is, we have
verified that the uncertainty measure Ru

α(t) quantifies the
spatial mixing regions between cells.

Next, we analyse the temporal evolution of the mixing.
Fig. 10 shows the covariance function ci(t) as a function
of the final time t. The solid green curves drawn in each
figure are the curves x2 = ±εw̃u(x1,∞), with the satu-
rated variance of the unstable set w̃u(x1,∞) as given in
(34). At each time pictured in Fig. 10, the blue dashed
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FIG. 9. Mixing characterization of Taylor–Green flow from
time t1 = 0 to t = 2, using uniformly seeded particles in
the upper and lower cells. In all cases, the blue dashed lines
depict the α = 1 (thick) and α = 2 (thin) standard devia-
tion envelopes Ru

α(t) computed using (33). (a) Upper fluid
histogram, (b) Lower fluid histogram, (c) Histogram of the
covariance function ci(t = 2) as given in (35).

curves Ru
α(t) (for each t) describe the spatial variation of

the covariance (35) remarkably well. As time increases,
the increase in uncertainty is captured by the fact that
the blue dashed curves are progressing outwards. How-
ever, this increase in uncertainty saturates rapidly with
time. Specifically, Ru

α=1(t) appears to have converged
by t = 1 to the green curves, which mark the satura-

tion. Moreover, the dominant characteristics of the co-
variance contours at t = 1 are not very different from
those at t = 7, and in both these situations the thick
blue dashed curves associated with Ru

α=1(t) are virtually
indistinguishable from the solid green curve representing
the saturated variance around the unstable manifold Γu.

Finally, we illustrate that our theory also describes the
spatial mixing for diffusion matrices which are temporally
and spatially varying. We choose here

σ11 = 1 , σ12 = 0 , σ21 = 0 and

σ22 = sech
(
x1 − 1

2

)
cos (5πx1) tanh (t)

 . (36)

In this case, an explicit expression as in (34) for the sat-
urated uncertainty cannot be given. However, it can be
numerically computed using (31) for t ≫ 1. Fig. 11
displays the covariance field ci(t). The highly-mixing
region expands from being compressed near x2 = 0 at
t = 0.1, and saturates as expected (at a slower rate than
for σ = Id). The spatial variation of the uncertainty re-
gion Rα(t) at each time t, and its temporal evolution de-
scribes the numerically observed spatial mixing remark-
ably well.

V. DISCUSSION AND OUTLOOK

We have developed a framework to study the effect of
small stochastic noise on the transport and mixing prop-
erties of two-dimensional fluid flow situations. We con-
sidered the idealised situations of a well-defined slowly
varying large-scale flow subjected to small-scale noise,
where have access to the associated stable and unsta-
ble manifolds at some fixed time. We extended the no-
tion of stable and unstable invariant manifolds to noisy
stable and unstable sets, by tracking the evolution re-
spectively in backward and forward time. These sets are
smooth curves for stochastic dynamical systems which
employ the same noise realisation for each initial condi-
tion, but are an uncountable collection of points when
each initial condition is evolved with its own Brownian
noise driver. The mean and variance of the displace-
ment of these curves from the associated deterministic
stable and unstable manifolds at any finite time are char-
acterised, in the presence of small noise. The mean dis-
placement is, to leading-order in the noise parameter,
zero, consistent with the heuristic expectation that the
mean stable/unstable sets remain close to their deter-
ministic counterparts. The variance is a measure of the
fuzziness of these stable and unstable sets and quantifies
how different realisations of the noise vary around the
mean. As such, we provide an easily expressible theoret-
ical quantification of statistical properties of the random
stable/unstable manifolds. The theory can also be ap-
plied for an unsteady velocity field v(x, t) as long as we
are able to identify the stable/unstable manifold at a
given time t1. In other words, the theory works to quan-



14

0.2 0.4 0.6 0.8
-0.1

-0.05

0

0.05

0.1

-2

-1.5

-1

-0.5

0

0.5

1

104

(a)

0.2 0.4 0.6 0.8
-0.1

-0.05

0

0.05

0.1

-2

-1.5

-1

-0.5

0

0.5

1

104

(b)

0.2 0.4 0.6 0.8
-0.1

-0.05

0

0.05

0.1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

104

(c)

0.2 0.4 0.6 0.8
-0.1

-0.05

0

0.05

0.1

-1

-0.5

0

0.5

1

1.5

104

(d)

FIG. 10. Mixing characterisation of Taylor–Green flow from time t1 = 0, using the contours of the covariance ci(t) (cf. (35)),
with parameters and curve descriptions as in Figure 9. The final times for the figures are (a) t = 0.1, (b) t = 0.4, (c) t = 1 and
(d) t = 7. The solid green curve represents the saturated uncertainty as defined by (34), to which Ru

α=1(t) is seen to converge
as t increases.

tify the uncertainty due to propagation, assuming that at
an initial time, the manifold is known.

We validate in numerical simulations that the coherent
sets identified by the mean of the stable and unstable sets
coincide with the ridges of the FTLEs. Whereas this is
well established in the deterministic context, the applica-
tion of FTLEs in the stochastic, or equivalently diffusive
[18, 77, 78], context is less well explored. Moreover the
variance theory that we developed was shown to capture
the spatial structure of the averaged FTLE field, thereby
providing an explicit method for ascribing an uncertainty
in the location of ridges.

From a practical perspective, our formulæ quantify the
expected transport of Lagrangian tracers across stochas-
tically perturbed transport barriers. In particular, we
use the variance of stable and unstable sets around their
mean to determine the physical region in space which
on average will be mixed at a given time. These well-
defined mixing regions Rα(t) allow us to specify, via α,
the probability of finding mixing and leakage across the
mean of the stable and unstable sets. This can be used
to determine, for example, the possible extent of envi-
ronmental pollution such as oil spills, together with an
uncertainty quantification based on any given model for

the diffusivity matrix σ.
The analytical expressions we found require knowledge

about the deterministic vector field as well as the diffu-
sive behaviour (for example by means of eddy dispersion,
drifter separation or alternative model for stochasticity
[80–83]). Conversely, information about the extent of the
mixing region and the fuzziness of the transport barriers
may allow us to find estimates on the diffusion tensor
given only measurements of the mean flow and the mix-
ing region. This can be used to cross-validate the estima-
tion of the diffusion tensor by oceanographers using eddy
dispersion or drifter separation. Although this does not
allow for the determination of each individual component
of the diffusion tensor, the estimation of the variance al-
lows for the estimation of the diffusivity across the mean
stable and unstable curves. In the case presented in Sec-
tion IV the formula (31) for the width of the transport
barrier allows to determine, for example, σ2

12 + σ2
22.
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FIG. 11. Exactly as in Fig. 10, the covariance ci(t) is shown for the temporally and spatially varying diffusion σ as defined in
(36) rather than σ = Id. The final times are (a) t = 0.1, (b) t = 0.4, (c) t = 1 and (d) t = 7.

through grants FT130100484 and DP170100277, and
GAG through grant DP180101385.

Appendix A: Proof of the the expectation and
uncertainty expressions (11) and (13)

It will be necessary to first describe the results obtained
in [40] in the notation of the present paper. The idea in
[40] is to determine the difference between an advected
curve of

ẋ = v(x, t) (A1)

and

dy = v(y, t)dt+ εσ(y, t)dWt (A2)

from the time t1 to a general time t. The initial condi-
tion (at time t1) for both equations is a curve C given
parametrically by x(q, t1) where q is a parameter, and
any parametric representation is permitted. Let x(q, t)
represent the final advected curve at time t according
to the deterministic advection (A1), and y(q, t) be the

stochastically advected curve according to (A2), subject
to the condition y(q, t1) = x(q, t1). From this point on-
wards, we treat q as fixed. Define a moving normal on
the deterministic curve at a general time τ ∈ [t1, t] by

n̂(q, τ) :=
∂x(q, τ)

∂q

/∣∣∣∣∂x(q, τ)∂q

∣∣∣∣
and the normal displacement at time t by

N(q, t) := [y(q, t)− x(q, t)] · n̂(q, t) .

Then, using an application of Itô’s lemma, it was shown
in [40] that

N(q, t) =

ε
∫ t

t1
e
∫ t
τ
[∇·v](x(q,ξ),ξ)dξ

([
∂x(q,τ)

∂q

]⊥)⊤

σ (x(q, τ),τ) dWτ∣∣∣∂x(q,t)∂q

∣∣∣ ,

to leading-order in ε. It is immediately clear that
E [N(q, t)] /ε = 0, since the integrand is of a determinis-
tic function with respect to Brownian motion and yields
zero [70, 71], and thus (11) will result. Moreover, it is
shown in [40] with the help of the Itô isometry [70, 71]
that
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√
Var [N(q, t)] =

ε

(∫ t

t1
e2

∫ t
τ
[∇·v](x(q,ξ),ξ)dξ

∣∣∣∣σ⊤ (x(q, τ), τ)
(

∂x(q,τ)
∂q

)⊥∣∣∣∣2dτ
)1/2

∣∣∣∂x(q,t)∂q

∣∣∣ , (A3)

to leading-order in ε. The task is to now convert (A3) into
(13), since slightly different conditions are in operation
in this paper. The first is that v is steady; this is easily
implemented by simply neglecting the second argument
of v. The more subtle issue is to decide on the proper
parametrisation for C (which is parametrised by q in the
form x(q, t1)), which in the present context must be the
unstable manifold Γu. We know that the trajectory xu(p)
parametrises Γu, and so we define for τ ∈ [t1, t]

x(q, τ) := xu(τ − t+ p) . (A4)

Therefore, x(q, t1) = xu(t1 − t+ p), and thus we set q =
p + t1 − t as the (linear) relationship between the q and
the p parametrisations. In fact, this is the reason why
xu in the definition for Gu in (5) is associated with the
argument t1 − t+ p, i.e., q. Differentiating (A4), we get

∂x(q, τ)

∂q
=

∂xu(τ − t+ p)

∂p
= v (xu(τ − t+ p)) ,

where we have used the fact that xu is a solution to (1).
Therefore, ∂x/∂q can simply be replaced by v (with ap-
propriate arguments as obtained from the above expres-
sion) in (A3). Because of the definition (10), what is
shown in (13) is the O(ε) term of (A3), and thereby (13)
has been derived. We note in particular that this works
at each fixed p.

The results of (21) and (23) associated with stochas-
tic perturbations to the stable manifold Γs are similarly
derived; here the main difference is that the curve C is
Γs instead and we need to propagate backward in time.
Hence we take x(q, τ) = xs(τ − t + p) for τ < t1, and
we relate the parameters by q = p + t1 − t because
x(q, t1) = xs(t1 − t+ p).

Appendix B: Saturation of uncertainty expression
(13)

Here, we provide a quick heuristic justification for our
claim that if the diffusion matrix σ is bounded, the un-
certainty (13) saturates as t increases. In examining (13)
at large t, we observe that xu(τ − t+ p) → a. Indeed, for
large t it is true that

xu(τ − t+ p) ∼ a+ c eλu(τ−t+p)êu ,

for some constant c (reflecting a choice of the parametri-
sation along Γu). Then, v (xu(τ − t+ p)) is simply the
τ -derivative of this, and so

v (xu(τ − t+ p)) ∼ cλue
λu(τ−t+p)êu .

Next, we observe that as t → ∞, ∇ · v → λs + λu, which
is the value at the fixed point a. Inserting all these ap-
proximations into (13) yields

wu(p, t) ∼

√∫ t

t1
e2(λs+λu)(t−τ)

∣∣σ⊤(xu,τ)cλueλu(τ−t+p)ê⊥u
∣∣2dτ

|v (xu(p))|

∼
cλue

λup
√
e2λst

∫ t

t1
e−2λsτ |σ⊤(xu(τ−t+p), τ) ê⊥u |

2
dτ

cλueλup

≤ K

√
e2λst

∫ t

t1

e−2λsτ dτ = K

√
1− e2λs(t−t1)

−2λs
. (B1)

In the above formal computations, we have assumed a
bound K for σ, and demonstrated that wu(p, t) remains
bounded as t increases (note the exponential decay be-
cause λs < 0). In general wu(p, t) will saturate to-
wards a p-dependent value arising from the presence of
xu(τ − t+ p) in the integrand.
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