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STOCHASTIC SENSITIVITY: A COMPUTABLE LAGRANGIAN

UNCERTAINTY MEASURE FOR UNSTEADY FLOWS∗

SANJEEVA BALASURIYA†

Abstract. Uncertainties in velocity data are often ignored when computing Lagrangian particle
trajectories of fluids. Modelling these as noise in the velocity field leads to a random deviation from
each trajectory. This deviation is examined within the context of small (multiplicative) stochasticity
applying to a two-dimensional unsteady flow operating over a finite-time. These assumptions are
motivated precisely by standard availability expectations of realistic velocity data. Explicit expres-
sions for the deviation’s expected size and anisotropy are obtained using an Itô calculus approach,
thereby characterizing the uncertainty in the Lagrangian trajectory’s final location with respect to
lengthscale and direction. These provide a practical methodology for ascribing spatially nonuniform
uncertainties to predictions of flows, and new tools for extracting fluid regions which remain robust
under velocity fluctuations.
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1. Introduction. Global ocean/atmospheric models rely on velocity data ob-
tained on a low resolution grid; this data is Eulerian in the nomenclature of fluid
mechanics because it is given in terms of spatial location and time. The impact
of these on Lagrangian (‘following-the-flow’) trajectories is of particular interest, as
this defines where assorted quantities of interest (heat, pollutants, plankton, spores,
ozone, energy, etc) go. ‘Coherent’ regions of these, and their movement, profoundly
impact the environment and climate, and are therefore significantly studied. Com-
putation of these ‘Lagrangian coherent structures’ using deterministic methods for
given unsteady Eulerian velocity data—ignoring uncertainties in the data—are well-
established [47, 62, 68, 5, 64, 12, 45, 71]. However, an issue coming to the fore
recently [19, 41] is the fact that subgrid effects (because data is only available on a
spatial grid) must impact any predictions made. Incorporating these uncertainties
into Lagrangian conclusions is an aspect of the so-called ‘stochastic parametrization’
problem, which attempts to parametrize the uncertainties in a probabilistic way, and
feed this information into the grid-scale deterministic model. In existing coherent
structure work, however, there are none which explicitly characterize the effect of a
velocity uncertainties on trajectories. The main goal of this article is to address this
deficiency through the proposal of a method for quantifying the impact of uncertainty
in Eulerian velocity data on Lagrangian trajectories.

Inspired by uncertainty in velocity data, this article provides a set of rigorous
computational tools for assessing the uncertainty of Lagrangian trajectories under
stochastic variation in the Eulerian velocity field. The principal measure provided—
an uncertainty field on the set of initial conditions— can be viewed as an uncer-
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tainty lengthscale prediction of eventual Lagrangian locations, which is also useful
in ascribing uncertainties to any conclusions reached (e.g., as a confidence weight-
ing if the predicted trajectories are used in a Lagrangian data assimilation algorithm
[66, 55, 70, 59, 3]). Alternatively, this field quantifies the stability of trajectories to
random ongoing perturbations, enabling the separation of the flow domain according
to a measure associated with such robustness. The anisotropy (directionality in the
uncertainty) is also captured.

A natural way to model the velocity uncertainty and consequent stochastic La-
grangian trajectories is to use a Itô stochastic ordinary differential equation whose
solutions x correspond to particle trajectories. While such equations have been stud-
ied extensively within contexts of financial mathematics, and in theoretical analyses of
noise-induced bifurcation and related phenomena [16, 15, 21, 23, 17], escape/passage
times from sets [33, 60, 32], and controlling such systems [61, 1, 2], they have seen little
usage in the Lagrangian coherent structure community. However, there is emerging
interest in this modelling approach [26, 6, 9, 50, 20]. The drift term would be the
deterministic velocity, and the form of the additional diffusion term could be cho-
sen based on any information available from the application of interest, and would
relate to the uncertainty of the Eulerian velocity. For example, it may be known
that the velocity data in certain areas or certain times has larger uncertainties than
others (e.g., cloud cover impacts on satellite observations of oceanic data). In the
absence of any insight into choosing a particular model, the generic choice could be
canonical Brownian motion [24, e.g.]. Having made a choice, the deviation of the
stochastic trajectories from the deterministic one, scaled in the limit of small noise,
is clearly the random variable of interest. Unlike in the classical Freidlin-Wentzell
large deviation approaches [33, 22, 25], the interest here is not to theoretically ana-
lyze the probabilities of large deviations, but rather to assign to each initial condition
x computable measures of sensitivity towards stochasticity which makes straightfor-
ward intuitive sense. Moreover, this circumvents brute force Monte-Carlo numerics
on stochastic systems which are well-known to be computationally expensive [31].
There are closely related analyses to this paper [6, 14, 9] which address uncertainties
in advected curves and stable/unstable manifolds using formal calculations. In this
article, however, an uncertainty measure across the global flow domain, as well as a
description of its anisotropy, are developed and rigorously justified.

Section 2 develops the theory; in this, the first analysis using these ideas, the
development is restricted to two-dimensional flows where data is confined to a finite
time interval, and the stochasticity is assumed small. These assumptions are moti-
vated precisely by the facts that most available velocity data is two-dimensional and
is available only over a finite-time, and if having any faith in the data, the uncer-
tainties must be considered small. However, generality is allowed within this: the
velocity field does not need to be area-preserving nor possess any particular form of
time-dependence, and the diffusion matrix of the perturbing stochasticity can depend
on the location and time, while being anisotropic. Thus, the noise is permitted to
be multiplicative. Again, these conditions are necessary in the application; veloc-
ity data often has deviations from area-preservation, has fluctuations in time, and
uncertainties which may depend on position and time (e.g., because of cloud cover,
nonuniformity in measurement error across a camera’s field of vision, certainty at
gridpoints but uncertainty elsewhere). Under generic smoothness assumptions on the
velocity and diffusion matrix, a computable expression for the scaled variance, pro-
jected in a general direction, is obtained. By maximizing this anisotropic uncertainty
across all directions, an explicit formula is obtained for the stochastic sensitivity, in
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the sense of quantifying the sensitivity of the deterministic system towards stochas-
ticity. This is a scalar field in relation to all initial conditions x, thereby providing
an analytical estimate for the spatial-dependence of the stochastic impact. Thereby,
information on the solutions corresponding to Dirac-delta initial conditions of the
Fokker-Planck evolution equation emerge from this analysis. Moreover, if an estimate
for the diffusive/noise parameter ε is available, the stochastic sensitivity field allows
for defining robust sets at time zero: regions of initial conditions such that the ex-
pected uncertainty of Lagrangian trajectories with respect to the flow over the given
time [0, T ], is less than a specified threshold lengthscale L. These sets identify regions
in which certainty of Lagrangian conclusions can be ascribed in relation to specified
tolerance levels of the diffusion ε, lengthscale L and the time-of-flow T .

Section 3 demonstrates the usage of the theoretical results in a model which is of-
ten used as a testbed for Lagrangian coherent structure analysis: the double-gyre [69].
All theoretical expressions—the stochastic sensitivity, its anisotropy, relationship to a
probability density function obtained by evolving the relevant Fokker-Planck equation,
robust sets—are computed and validated in this section. Monte Carlo simulations are
performed which additionally verify the theory, and other investigations relating these
results to known properties of the double-gyre (e.g., finite-time Lyapunov exponent
calculations) are also presented. Section 4 concludes with some comments on the-
oretical extensions, as well as the immense potential for applying the theory in the
problem of identifying Lagrangian coherence subject to inevitable uncertainties in ve-
locity data sets. Moreover, since the stochastic sensitivity is an uncertainty field over
the set of initial conditions, it is a new tool which can assign uncertainty levels to
each deterministic Lagrangian trajectory calculation, offering a confidence weighting
of trajectories which can be useful in Lagrangian data assimilation [66, 55, 70, 59, 3].
In summary, a fundamental new theoretical—but computable for realistic data—set
of tools which addresses the pressing need to quantify uncertainty in Lagrangian tra-
jectories has been developed.

2. Stochastic sensitivity measures. Suppose velocity data u is available in a
two-dimensional spatial domain over a finite-time, chosen here to be [0, T ]. This is
Eulerian data, in the sense that u is available as a spatio-temporal function. Typically,
data will be both spatially and temporally discrete, and have uncertainties. The goal
is to examine Lagrangian trajectories generated by u from time 0 to T , which is
governed by

(2.1)
dx

dt
= u(x, t) ,

with initial conditions chosen in the spatial domain Ω0 (an open connected subset of
R

2). An equivalent integral representation of (2.1) is in terms of the flow map F t2
t1

which takes an initial condition at time t1 to its final location at time t2. An initial
point x ∈ Ω0 is mapped to its location at a general time t ∈ [0, T ] by

(2.2) F t
0(x) = x+

∫ t

0

u (F τ
0 (x), τ) dτ ,

where F t
0(x) ∈ Ωt := F t

0(Ω0). In writing (2.2), there is an implicit understand-
ing that u is Lipschitz continuous and thus trajectories are well-defined. In practi-
cal applications–because data is available on a spatial grid—there is usually implicit
smoothening/interpolation of u to all relevant x, thereby hiding any such issue. Using
trajectories of (2.1), or equivalently from the flow map FT

0 (�), there are a multitude of



4 S. BALASURIYA

methods for detecting spatial sets which are important with respect to the finite-time
flow. These include finite-time Lyapunov exponents [69], sets which are associated
with extremal attraction or repulsion [47], coherent sets defined in terms of the transfer
operator [40, 35], stable/unstable manifold obtained by appropriate time-extensions
[5], and assorted diagnostics derived from trajectories of (2.1). Extensive reviews of
these methods are available [5, 47, 64, 12].

Here, the intent is to specifically examine the impact of uncertainty in u, which
exist because of observational errors as well as interpolation errors to subgrid levels.
That is, consider instead the stochastic differential equation

(2.3) dyt = u(yt, t)dt+ εσ(yt, t)dWt ,

where yt evolves in Ωt for t ∈ [0, T ]. The nondimensional noise parameter ε satisfies
0 < ε ≪ 1, and the noise is permitted to be multiplicative in that the 2× 2 diffusion
matrix σ is permitted to depend on space and time. This may be specified based on any
additional information that one has (e.g., in oceanographic flows, dispersion depends
on bottom topography as well as the presence of nearby land boundaries [52]). If there
is no a priori insight into the nature of the diffusion, a default choice could be to take
σ = Id (but retaining dimensions) to address a fairly generic situation [24]. The
Wiener process dWt is the canonical two-dimensional one, composed of independent
one-dimensional Brownian motions in the two coordinate directions. The stochastic
differential equation (2.3) is to be thought of in an Itô sense, and it is noted that
(2.3) could equivalently be formulated in terms of the corresponding Fokker-Planck
equation [56, 67]

(2.4)
∂ρ

∂t
+∇ · (ρu) = ε2

2
∇ · ∇ ·

(

ρ σσ⊤
)

,

which describes how a density field ρ(y, t) evolves. A direct connection between (2.3)
and (2.4) is that if a fixed initial condition x is assigned to (2.3), this corresponds
to a Dirac-delta distribution centred at this location as an initial condition for (2.4)
[32]. The stochastic spread of yT therefore provides information on the deterministic
density function ρ(y, T ).

Broadly speaking, the goal is to quantify the uncertainty of Lagrangian trajecto-
ries of (2.1) if stochasticity in the form of (2.3) is accounted for. As a field on the set of
initial conditions, is it possible to find an uncertainty measure for the location of each
Lagrangian trajectory at the final time T ? While this is clearly of importance in the
study of Lagrangian coherent structures, it can also enable the assignment of a weight-
ing to each initial condition based on how confident one is of its eventual location,
and hence be a useful new tool for Lagrangian data assimilation [66, 55, 70, 59, 3].
Additionally, is it possible to quantify the anisotropic spread that is to be anticipated?
Can one identify sets (‘robust sets’) in which the uncertainty lengthscale is less than a
stipulated threshold value? Precise ways of answering these questions will be sought.

The following convention will be used in expressing smoothness/boundedness con-
ditions. If the norm symbol ‖�‖ is used without additional qualification, it will mean
that: (i) for a vector, it is the standard Euclidean norm (‘vector norm’), (ii) for a
matrix, it will be the spectral norm induced by the vector norm (‘matrix norm’), and
(iii) for a rank-3 tensor, it will be the spectral norm induced by the matrix norm
(‘tensor norm’). Boundedness assumptions will be related to the spatio-temporal set

Ω̃ :=
⋃

t∈[0,T ]

(Ωt, t) ,
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and the gradient symbol, when used, refers only to spatial derivatives on the sets Ωt.

Hypothesis 2.1 (Smoothness/boundedness).
(a) The velocity u is globally Lipschitz in Ω̃, i.e., there exists a constant η > 0

such that for any any t ∈ [0, T ] and x1, x2 ∈ Ωt,

(2.5) |u(x1, t)− u(x2, t)| < η |x1 − x2| .

Additionally, there exists a constant Ku such that for all (x, t) ∈ Ω̃,

(2.6) max {‖u(x, t)‖ , ‖∇u(x, t)‖ , ‖∇∇u(x, t)‖} ≤ Ku .

(b) The flow map F t2
t1 : Ωt1 → Ωt2 is well-defined and invertible for any t1 and t2

in [0, T ], and moreover there exists a constant KF such that for any t ∈ [0, T ]
and any w ∈ ΩT ,

(2.7)
∥

∥∇F t
T (w)

∥

∥ ≤ KF .

(c) The diffusion matrix σ and its spatial derivative are uniformly bounded in
the sense that there exists Kσ such that for any (x, t) ∈ Ω̃,

(2.8) max

{

max
i,j

|σij(x, t)| , ‖σ(x, t)‖ , ‖∇σ(x, t)‖
}

≤ Kσ .

Let x ∈ Ω0 be an initial condition chosen to (2.1), which then evolves determinis-
tically according to (2.2). In contrast, let yt be a solution to (2.3) which satisfies the
identical initial condition y0 = x at time 0. For any ε > 0, this enables the definition
of the random variable zε(x, t) on Ω0 × [0, T ] by

(2.9) zε(x, t) :=
yt − F t

0(x)

ε
, subject to y0 = x .

This represents the deviation of the stochastic trajectory from the deterministic one,
at any time t ∈ [0, T ], scaled by the noise parameter. Now,

yt = x+

∫ t

0

u (yτ , τ) dτ + ε

∫ t

0

σ (yτ , τ) dWτ ,

which is the weak formulation of the SDE (2.3), subject to the initial condition y0 = x.
Subtracting (2.2) from this gives

(2.10) yt − F t
0(x) =

∫ t

0

[u(yτ , τ) − u (F τ
0 (x), τ)] dτ + ε

∫ t

0

σ (yτ , τ) dWτ ,

and consequently

(2.11) zε(x, t) =

∫ t

0

u(yτ , τ)− u (F τ
0 (x), τ)

ε
dτ +

∫ t

0

σ (yτ , τ) dWτ .

This is exact, but determining statistics of zε is intractable in this form. A formal
approach could be to expand the yτ -dependent functions in Taylor series around F τ

0 (x)
and discard higher-order terms in ε, which would result in

zε(x, t) =

∫ t

0

∇u (F τ
0 (x), τ) zε (x, τ) dτ +

∫ t

0

σ (F τ
0 (x), τ) dWτ ,
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Fig. 2.1. Map from time 0 to T associated with the deterministic flow (2.1) [black], and relevant
entities resulting from a stochastic simulation of (2.3) [blue].

or the equivalent differential formulation

(2.12)
∂

∂t
zε(x, t) = ∇u

(

F t
0(x), t

)

zε (x, t) +
∂

∂t

∫ t

0

σ (F τ
0 (x), τ) dWτ .

This linearity of this equation in zε(x, t) may suggest promise of being able to explicitly
solve for zε(x, t), but there are several impediments: (i) the coefficient matrix is
nonautonomous, and hence the homogeneous solution cannot be written explicitly,
(ii) the stochastic nature of the inhomogeneity needs to be accounted for, and (iii) the
legitimacy of discarding higher-order terms in ε—i.e., the effective understanding that
zε = O(1) with respect to ε—has not been justified. The first of these provides a major
impediment in seeking analytical expressions for zε(x, t), and further complications
also exist because u has explicit time-dependence and is not necessarily divergence-
free. Relaxing (some of) these conditions, for example if (2.12) were a Langevin
equation [67, 56, 28, 37] would enable an analytical solution. The second points to the
need to use genuinely stochastic methods, rather than formal variation-of-parameters
manipulations. Finally, the third issue of discarding ‘lower-order’ terms in ε is clearly
unjustifiable, because Brownian motion can possess unbounded variation even over
a finite time. Therefore, a more careful development is essential, and the formal
expression (2.12) will be rejected. Instead, using rigorous methods, it is possible
to prove the preliminary fact (which is useful for later results) that while zε is not
necessarily O(1), the expectation of zε is, in a strong sense:

Lemma 2.2 (Bounds on zε). Let E be the expectation with respect to different
realizations of (2.3). For zε as defined in (2.9), and any q ≥ 1, there exists a constant
Kq

z independent of x ∈ Ω0 and ε such that

(2.13) E

[

sup
t∈[0,T ]

|zε(x, t)|q
]

≤ Kq
z .

Proof. See Appendix A; this is a relatively straightforward usage of the Burkhölder-
Davis-Gundy and Gronwall inequalities.

The main desire is to understand the statistics of the size and orientation of
zε(x, t) at the final time T . To this end, define

(2.14) Zε(x) := zε(x, T ) .

Let w be the image of x under the flow of (2.1) at time T , that is

(2.15) w := FT
0 (x) , and so x = F 0

T (w) .
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Next, consider the signed projections of Zε(x) onto a ray emanating from w in a
direction associated with an angle θ ∈ [−π/2, π/2), which are defined by

(2.16) Pε(x, θ) := n̂(θ)⊤ Zε(x) where n̂(θ) =

(

cos θ
sin θ

)

.

See Fig. 2.1. The angle θ is akin to that in polar coordinates centered at w, but
is restricted to [−π/2, π/2) because the projection is permitted to take on a sign:
positive if Zε(x)’s orthogonal projection falls onto the ray associated with the angle
θ ∈ [−π/2, π/2), or negative if it falls onto the extended ray emanating in the opposite
direction. Now, the first—perhaps unsurprising—result on the statistics of Zε(x) is
as follows.

Theorem 2.3 (Expected location is deterministic). For all x ∈ Ω0 and any
angle θ ∈ [−π/2, π/2), lim

ε↓0
E [Pε(x, θ)] = 0, and thus

(2.17) lim
ε↓0

E [Zε(x)] = 0 .

Proof. See Appendix B.

Theorem 2.3 asserts that, to leading-order, the mean of the random quantities
yT lies exactly at the point FT

0 (x) corresponding to deterministic advection. The
potential anisotropy of σ suggests that the result may not be true for non-vanishing
ε (for an analogous result in the context of applying volume-preserving deterministic
dynamics followed by diffusion with zero mean and covariance equal to the identity,
see [35]).

Of particular interest is the behavior of the statistics of Pε(x, θ) as ε ↓ 0. Specif-
ically, an uncertainty in the eventual Lagrangian locations is related to the variance
of Pε(x, θ) (for which the notation V will be used) over many realizations of (2.3).
Explicit analytical expressions for the following important quantities will therefore be
sought.

Definition 2.4 (Uncertainty measures).
(a) The anisotropic uncertainty is a scalar field defined on Ω0 × [−π/2, π/2),

given by

(2.18) A(x, θ) :=
√

lim
ε↓0

V [Pε(x, θ)] .

(b) The stochastic sensitivity is a scalar field defined on Ω0, given by

(2.19) S2(x) := lim
ε↓0

sup
θ

V [Pε(x, θ)] .

Clearly, the quantity εA(x, θ), is a leading-order estimate for the distance un-
certainty of yT along the ray of angle θ; by computing this for all θ, the one-
standard-deviation level of uncertainty in all possible directions can be determined.
The anisotropy (i.e., dependence of the uncertainty on θ) is a consequence of both the
deterministic flow u, and the stochastic model σ. Even if σ = Id, there will generically
be an anisotropy (as will be demonstrated in Section 3).

The stochastic sensitivity S2(x) uses a variance measurement for the leading-order
spread, optimized across all directions θ (much like the optimizing over all directions
used in computing, for example, finite-time Lyapunov exponents). Since S2 provides a
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measure of the eventual Lagrangian position’s uncertainty, it quantifies the sensitivity
towards stochasticity, occurring due to accumulated impact of the uncertainty in the
Eulerian velocity field. Operationally, ε

√

S2(x) gives the leading-order estimate for
the uncertainty of the deviation of yT from the location FT

0 (x), at each initial loca-
tion x. The notation S2 is used to capture both the alliteration in the terminology
(Stochastic Sensitivity), and the fact that it is meant to estimate a standard deviation
squared.

In establishing computable formulæ for both A and S2, first define

(2.20) J :=

(

0 −1
1 0

)

,

which operates on vectors in R
2 as a +π/2-rotation. Furthermore, for w = FT

0 (x) ∈
ΩT and t ∈ [0, T ], define the matrix

(2.21) Λ(w, t) := e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξ σ

(

F t
T (w), t

)⊤
J ∇F t

T (w) .

Note that the gradient operator in (2.21) is with respect to positions w on the spatial
domain at the final time T . If σ = Id (a potentially default choice) and if u were
divergence-free (as would occur in an incompressible flow), Λ takes on a particularly
simply form:

(2.22) Λ(w, t) = J ∇F t
T (w) .

However, generality will be maintained in what follows. Given an Eulerian velocity
field u (either explicitly or as data on a grid), all components of Λ can be numerically
computed by (if necessary) using interpolation when computing the evolving flow
map F t

T of the deterministic system (2.1). Note that the calculation will be done in
backwards time from the location w ∈ ΩT .

Theorem 2.5 (Anisotropic uncertainty). For w ∈ ΩT and θ ∈ [−π/2, π/2),
define

(2.23) Ã(w, θ) :=

(

∫ T

0

|Λ(w, t)J n̂(θ)|2dt
)1/2

.

The field A(�, θ) on Ω0 × [−π/2, π/2) can then be obtained by ascribing the value
Ã(w, θ) to the point x = F 0

T (w), i.e., A(x, θ) = Ã
(

FT
0 (x), θ

)

.

Proof. See Appendix C.

For a chosen point x ∈ Ω0, computing A(x, θ) for each θ allows the determination
of a leading-order (in ε) one-standard-deviation curve around the point w = FT

0 (x),
which elucidates the anisotropy of the spread around w. The stochastic sensitivity
(2.19), on the other hand, is the maximum variance across all directions. Let Λij(w, t)
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be the components of Λ in (2.21), and further define

L(w) :=
1

2

∫ T

0

[

2
∑

i=1

Λ2
i2(w, t) −

2
∑

i=1

Λ2
i1(w, t)

]

dt ,

M(w) :=

∫ T

0

2
∑

i=1

[Λi1(w, t) Λi2(w, t)]dt ,

N(w) :=
√

L2(w) +M2(w) , and

P (w) :=

∣

∣

∣

∣

∣

∣

1

2

2
∑

i=1

2
∑

j=1

∫ T

0

Λ2
ij(w, t) dt

∣

∣

∣

∣

∣

∣

.

Theorem 2.6 (Maximal spreading direction). Given any x ∈ Ω0, the maximal
spreading direction from w = FT

0 (x) in ΩT is given by

(2.24) θmax := argmax
θ

A (x, θ) = −α

2
,

where α ∈ [−π, π) is obtained by solving the pair of equations

cosα =
L(w)

N(w)
and sinα =

M(w)

N(w)
.

Proof. See Appendix D; this theorem is proven in conjunction with the next one.

In numerically determining the angle θmax using (2.24), the four-quadrant inverse
tangent (which is built in to most computational systems) can be employed to find
α ∈ [−π, π) using the expressions for cosα and sinα. The subsequent value for θmax

in (2.24) yields a value in [−π/2, π/2) as desired. Next, noting from Definition 2.4
that

(2.25) S2(x) = A2 (x, θmax)

(Lemma 2.2 along with estimates provided in Appendix D provide the conditions for
using the dominated convergence theorem to move the ε ↓ 0 limit with impunity), the
stochastic sensitivity is easily computed:

Theorem 2.7 (Stochastic sensitivity). Define

(2.26) S̃2(w) := P (w) +N(w) .

for w ∈ ΩT . Then, S2(�) on Ω0 can be obtained by ascribing the value S̃2(w) to each

point x = F 0
T (w), i.e., S

2(x) = S̃2
(

FT
0 (x)

)

.

Proof. See Appendix D.

In the spirit of Lagrangian coherent structure analysis [47, 62, 68, 5, 64, 12],
the importance of Theorem 2.7 is that it provides a field on the initial space Ω0,
which will help demarcate distinct regions based on the value of the field. Given an
unsteady Eulerian velocity field u (from experimental/observational/computational-
fluid-dynamics data or analytically) and any given any model σ for the stochastic
perturbation, (2.26) is readily computable. It should be noted that an additional
generality in the development is that there is no restriction on the velocity field being
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compressible; ∇ · u can be computed numerically from the velocity data, and can be
directly utilized in the S2-formula.

The S2 field on Ω0 contains intrinsic information on the potential for uncer-
tainty in Lagrangian trajectories, and is a theoretical field. That is, it is legitimate
at the stochastic differential equations level— assuming a smooth u defined entirely
on Ω̃—without reference to any particular parameter values on spatial resolution or
diffusivity. Next, two nonlinear scalings of the field which can interrogate these two
physical considerations—and thereby be useful in providing quantifications in nu-
merical computations based on experimental/observational data—are now suggested.
Both scalings—and their advantages in the data-driven context— will be examined
in greater depth in Section 3. The first scaling compares the uncertainty lengthscale√
S2 with the spatial resolution lengthscale of the available data, and then applies a

logarithmic scaling to ensure that variations at lower values of S2 are not brushed
over by enormous values of S2 elsewhere.

Definition 2.8 (Resolution-scaled stochastic sensitivity). Given the spatial res-
olution lengthscale Lr of the Eulerian velocity field, the resolution-scaled stochastic
sensitivity is defined on Ω0 by

(2.27) Sr(x) := ln

√

S2(x)

Lr
.

Given the value of Lr, the nondimensional field Sr—just like S2—can be com-
puted using the available velocity data and nothing else. Either field can be used
in a data-driven situation, bearing in mind that they are simply nonlinearly scaled
versions of each other. Using one rather than the other can help in highlighting the
structure of the field near certain regions. In particular, uncertainty lengthscales be-
low the resolution lengthscale—which are meaningless in experimental/observational
situations because resolving these is futile—will be exemplified as negative values of
Sr.

The second scaling that is suggested is based on additional knowledge: an estimate
for the noise level in the data. Small values of S2 imply that trajectories beginning
at corresponding locations have high predictability. In this sense, they are coherent.
Conversely, large stochastic sensitivity is associated with incoherence. One way of
extracting robust sets in this sense from S2 is the following. Given any flow feature in
Ω0, there is a diffusive timescale (associated with the diffusive flow) and an advective
timescale (associated with the deterministic flow u) which capture the timescales over
which diffusion and advection impact the feature. The Péclet number Pe is the ratio
of the diffusive to the advective timescales. From (2.4), it is clear that Pe = 2/ε2.
Now, since S2 captures the variance of

[

yT − FT
0 (x)

]

/ε, a measure of how far yT is
from FT

0 (x) is quantified by the noise-scaled stochastic sensitivity

(2.28) Sn(x) := ε
√

S2(x) =
√

2S2(x)/Pe .

The quantity Sn is a physical (dimensional) lengthscale. If this lengthscale is less than
an acceptable uncertainty lengthscale of predictability L, the corresponding initial
condition x ∈ Ω0 shall be considered robust:

Definition 2.9 (Robust sets). Given a Péclet number Pe = 2/ε2 and a length-
scale L, then the set

(2.29) R (L,Pe) :=

{

x ∈ Ω0 : S2(x) <
L2Pe

2

}



STOCHASTIC SENSITIVITY 11

shall be called robust at the lengthscale L and Péclet number Pe with respect to a noise
model (i.e., σ) operating over the time [0, T ]. Maximal connected subsets Ri(L,Pe) of
R(L,Pe) will be called robust connected sets (at this lengthscale and level of diffusion).

Thus, the stochastic sensitivity field provides a way of extracting sets from Ω0

(the time 0 spatial locations, i.e., the allowable initial conditions) which are robust
as defined in the following sense: the expected uncertainty in Lagrangian predictions
by the time T will be less than L. Pertinent to applications is the choice of the
scales L (relevant to identifying features one cares about, or the resolution of the
data) and Pe (associated with anticipated uncertainty, e.g., estimates of oceanic eddy
diffusivity [52, 18, 72, 76, 24] or measurement error). Assigning robustness with re-
spect to the uncertainty lengthscale L and diffusion scale Pe is a significant new idea,
taking into account precisely the factors which influence the level of robustness one
seeks. Extracting connected robust sets using Definition 2.9—being mindful of the
precise interaction model chosen to relate L to available spatial resolution and Pe to
available diffusive estimates—might be considered one way of quantifying coherence
of Lagrangian predictions.

The above two scalings will help highlight different physical considerations, as
will be illustrated in the numerical simulations in Section 3. Significant applications
of these results are to be anticipated, and are discussed in more detail in Section 4.

3. Computability of uncertainty measures. This section will illustrate the
computability of the theoretical expressions, in a situation in which the Eulerian ve-
locity is assumed known in the sense of data possessing a certain spatial and temporal
resolution. While much future work is anticipated, for this article (whose purpose is
to establish the theoretical framework for stochastic sensitivity measures), the sim-
plest situations of an incompressible flow, and σ = Id will be used. Velocity data
will be taken from a model flow which has been extensively used (see the citations
in [63, 31]) as a testbed for Lagrangian coherent structure analysis: the double-gyre
model introduced by Shadden et al [69]. This choice has the added advantage of hav-
ing well-understood properties, which can therefore be compared to the theoretical
values for A, θmax, S

2, Sr and R.
The velocity field u for the double-gyre flow for x = (x1, x2) ∈ Ω0 := [0, 2]× [0, 1]

is given by [69]

(3.1) u(x, t) =

( −πAdg sin [πφ(x1, t)] cos [πx2]

πAdg cos [πφ(x1, t)] sin [πx2]
∂φ
∂x1

(x1, t)

)

,

in which φ(x1, t) := εdg sin (ωt)x
2
1 + (1− 2εdg sin (ωt))x1. Here, Ωt = F t

0 (Ω0) = Ω0

for any t. This possesses two counter-rotating gyres when εdg = 0: one in (0, 1)×(0, 1)
and the other in (1, 2)× (0, 1). When εdg 6= 0 but is small, chaotic transport occurs
between the gyres due to the splitting of the heteroclinic manifold along x1 = 1 into
stable and unstable manifolds which intersect infinitely often [63]. The splitting of
Ω0 into separate regions (almost coherent within the gyres, with chaotic mixing in
the flange areas related to manifold intersections) has led to the double-gyre being
a well-established paradigm for methods for identification of coherent regions (see
[63] for an extensive list of such uses). For the first time, an explicit assessment
of the impact of noise on the variation from deterministic trajectories can now be
performed, without having to restrict oneself to any particular definition of ‘coherence’
in the multitude of methods which seek Lagrangian coherent structures. Instead, the
intuitively straightforward idea of uncertainty in the eventual Lagrangian location
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(a) ε = 0.1, Eq. (2.3)
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(b) ε = 0.04, Eq. (2.3)

(c) ε = 0.1, Eq. (2.4) (d) ε = 0.04, Eq. (2.4)

Fig. 3.1. (a,b) Probability density functions arising from stochastic simulations of (2.3) with
initial condition x = (1.4, 0.1) to time T = 0.4, at two different ε values. (c,d) Density evolution of
the Fokker-Planck equation (2.4) by time T , with initial condition a Dirac mass at x.

is what is used. For all calculations, the parameter choices are Adg = 1, ω = 2π
and—unless specified otherwise—εdg = 0.05. Velocity data will be taken from the
expression in (3.1), but subject to a spatial grid on Ω0 and temporal grid on [0, T ],
to mimic how data would be available in a realistic situation.

First, the anisotropic uncertainty expression (2.23) will be investigated in relation
to the initial condition x = (1.4, 0.1) subjected to the flow until time T = 0.4. Stochas-
tic simulations of (2.3), using the Euler-Maruyama scheme [53] with ∆t = 0.0001 was
performed 10, 000 times to obtain a cluster of final conditions. Those conditions
which remained in Ω0 were binned into square bins of side 0.02, and the probability
density function computed (simulations exiting Ω0 were excised when performing the
normalization). This is shown for two values of ε in Fig. 3.1(a,b). Superimposed
on these Monte Carlo simulation results is a computation of the final deterministic
location w = FT

0 (x) (black ‘x’), the one-standard-deviation region a distance εA(x, θ)
computed in each direction θ (dashed black curve), and the two-standard-deviation
region 2εA(x, θ) (solid black curve). In computing A(x, θ) using (2.23), it is necessary
to deterministically advect—using (2.1) and the standard third-order Runge-Kutta
scheme— a ‘star-grid’ of conditions located at w and its ‘north,’ ‘south,’ ‘east’ and
‘west’ points a distance 0.001 away, in order to numerically compute the flow map
gradient as required in (2.23). Moreover, the blue line in Fig. 3.1 is the (theoreti-
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(a) ε = 0.2 (b) ε = 0.04
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(d) Variance

Fig. 3.2. (a,b) Probability density ψ of Pε in the direction θmax (as computed from (2.24))
from the stochastic simulation data of Fig. 3.1 for two values of ε, and (c,d) Errors ΓE and ΓV

between the theoretical and computed standard deviation as ε varies.

cal) maximal deviation direction computed using (2.24). The anisotropic uncertainty
neighborhoods indicated by the black curves display a ‘keyhole’ structure, elongated
in the direction of maximal spreading, and pinched inwards in the perpendicular
direction; this appears to be generic in situations in which there is large determinis-
tic stretching. The stochastic simulations—whose distribution is shown by the color
background—certainly reflects the theoretical predictions on the anisotropic spread
of the uncertainty, stretching out in the direction of the (maximal) blue line, with the
one- and two-standard-deviation regions apparently confining the probability density
as expected. The agreement is stronger for smaller ε, as expected from the theory.

In Figs. 3.1(c,d), a comparison is done with analogous solutions to the Fokker-
Planck equation (2.4). In this case, a Dirac mass initial condition (approximated
by a Gaussian with standard deviation 0.001) is positioned at x, and the Fokker-
Planck equation is numerically solved to determine the density distribution at time
T . Periodic boundary conditions are imposed, thereby allowing for usage of a pseudo-
spectral code: fast Fourier transforms in space, and a Crank-Nicolson scheme with
∆t = 0.0001 for time evolution. The spatial discretization was adjusted until a con-
vergent result was obtained. The smaller ε value (0.04) required a high-resolution grid
(side length 0.00005) for convergence. The results from the Fokker-Planck simulations
(Figs. 3.1(c,d)) are consistent with the corresponding stochastic differential equation
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Fig. 3.3. Probability density distributions arising from simultaneous stochastic simulations
with ε = 0.05 for six different initial conditions, along with the theoretical anisotropic uncertainty
neighborhoods (see description in Fig. 3.1), as the time T evolves.

statistics (Figs. 3.1(a,b)), both in the sense of scaling of the probability distribution,
and in how it is spread. Moreorer, both are consistent with the anisotropy indicated
theoretically via A(x, θ) and θmax.

To examine this more quantitatively, Fig. 3.2(a,b) uses stochastic simulations
as in Figs. 3.1(a,b) to compute the projection Pε (x, θ) onto the ray θ = θmax for
two values of ε. The probability density distribution of P0.2 and P0.04 are shown
in Figs. 3.2(a,b). While asymmetric for larger ε, symmetry is approached as ε ↓ 0.
However, normality is not claimed for the limiting distribution. By Theorems 2.3 and
2.5, the expectation and standard-deviation computed from this must decay to 0 and
A (x, θmax) respectively. Thus, the error measures

ΓE(ε) := |E [Pε(x, θmax)]− 0| and ΓV (ε) :=
∣

∣

∣

√

V [Pε(x, θmax)]−A (x, θmax)
∣

∣

∣

for x = (1.4, 0.1) can be used. These measures are shown in Figs. 3.2(c,d) by the red
circles, based on stochastically simulating (2.3) 10, 000 times for different values of
ε. The lines of best fit for each log-log plot indicates that ΓE ∼ ε and ΓV ∼ ε1.85

validating Theorems 2.3 and 2.5 (which claim these errors go to zero with ε).
Fig. 3.3 illustrates the same types of plots as in Figs. 3.1(a,b), but with six different

initial conditions chosen simultaneously. Three of these remain relatively robust (the
scatter is limited) and have fairly isotropic neighborhoods. These are initial conditions
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which are known to be within the regular gyres of the double-gyre. Even when T
increases, the scatter of points (from the Monte Carlo simulations), and the anisotropic
neighborhoods (from the theory) are fairly well confined. In contrast, the other three
initial conditions display a distinct anisotropy, with keyhole neighborhoods emerging
by T = 0.4. The scatter of the stochastic simulations show that they do indeed get
stretched out in the direction of θmax (blue line). This gives additional credence to the
fact that using S2, which captures exactly the stretching in this direction, is highly
effective in quantifying the dominant uncertainty; there is much less uncertainty in
other directions because of the ‘keyhole’ structure of the neighborhoods. The observed
curvature in the dominant spreading—which the current (locally linear) theory is
not able to capture—reduces as ε gets smaller. By T = 1, three of the anisotropic
uncertainty neighborhoods are so large that they have gone well outside Ω0, and
indeed the stochastic simulations appear to have scattered well outside. These are
associated with regions which are within the chaotic region of the double-gyre, and
thus this behavior is to be expected. If the quantity εA(x, θ) is large enough to
extend well outside ΩT , this is a caution that deterministic conclusions associated
with that initial condition are questionable. There is currently no such sanity check
in standard deterministic Lagrangian coherent structure analysis illustrating, firstly,
a ‘leading-order’ usefulness of the current theory.

In contrast with selected initial conditions, the stochastic sensitivity S2 seeks to
provide an uncertainty measure as a field across Ω0, thereby helping to identify regions
at time 0 which will be associated with robust (small S2) behavior. To compute
this, particles are numerically seeded on [0, 2] × [0, 1] in a 800 × 400 uniform grid,
corresponding to a resolution of Lr = 0.0025 in each direction. Each particle here
corresponds to choosing a w ∈ ΩT . The grid at time 0 is backward advected using
(2.1) and the standard third-order Runge-Kutta scheme until time 0, using a time-step
∆t = 0.01. At each general intermediate time t ∈ [0, T ], Λ(w, t) in (2.21) is in this
case simply J∇F t

T (w) as given in (2.22) because (3.1) is area-preserving, and σ = Id.
This data enables the estimation of S̃2 on ΩT using (2.26). Since S2(x) = S̃2

(

F 0
T (w)

)

,

the computed S̃2 enables the determination of S2 on a set of values x ∈ Ω0 which are
non-uniform because they are generated by x = F 0

T (w) rather than being specified.
Matlab’s gridfit algorithm is then used to extend S2 uniformly to Ω0.

Fig. 3.4(a) displays the S2 field computed thus for the flow from time 0 to T = 5.
There are very large values along the peripheries, and near x1 = 1, rising sharply
from regions of very low values. Fig. 3.4(b) shows the S2 field as a contour plot,
which is a more effective method of illustrating the structures on Ω0. The observed
‘wrapping back and forth’ of the extremely large value ridges is associated with the
well-known behavior of the stable manifold. In contrast, there are large yellow regions
in Figs. 3.4(a,b), indicating regions of very low S2 values. Initial conditions which are
chosen in these regions are therefore not highly influenced by velocity uncertainties.
These regions related to the two gyres of the double-gyre. The S2 field is the intrinsic
Lagrangian uncertainty field, the computation of which does not require knowledge
of the scale ε of the uncertainty in the Eulerian velocity. As such, it is computable
for any given velocity data u, and is hence suggested as the ‘go-to’ field to compute
for any system. It provides a measure of uncertainty of Lagrangian prediction at each
initial condition, relative to the rest.

Another relative measure is given by the resolution-scaled stochastic sensitivity
field (2.27), in which S2 is scaled by the resolution lengthscale Lr = 0.0025 used
in these calculations, and a logarithm is applied. This field, too, can be computed
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(a) S2 (height plot) (b) S2 (contour plot)

(c) Sr (d) Sn

Fig. 3.4. The S2 field, with illustrations of its two scalings for the double-gyre flow in the time-
interval [0, 5]: (a) S2 field as a graph (height plot), (b) S2 field as a contour plot, (c) resolution-scaled
stochastic sensitivity field Sr (2.27) with lengthscale Lr = 0.0025, and (d) noise-scaled stochastic
sensitivity field Sn with Péclet number Pe = 100, 000.

directly from the available velocity data (as long as the spatial resolution is uniform
at Lr), without having any additional information. Shown in Fig. 3.4(c), this field
elucidates more structure, because moderate values are not smeared out by the pres-
ence of extremely large values. Indeed, regions associated with the stable manifold
are shown to have an uncertainty level of an order of magnitude higher than the res-
olution length on a logarithmic scale (blue regions). Moreover, highly robust regions
at the centre of the gyres are more clearly identified (light yellow blobs). There are
no negative values in this instance, because the uncertainties are all well above the
resolution lengthscale. Thus, uncertainties are observable (are not at subgrid scales),
and need to be taken into account.

The noise-scaled stochastic sensitivity field Sn in (2.28) is an absolute uncertainty
measure which gives a physical lengthscale of uncertainty. Computing Sn requires
an estimate for the size of the diffusion (Eulerian velocity uncertainty) in terms of
ε or Pe. With the choice Pe = 100, 000, Sn is shown in Fig. 3.4(d). This nonlinear
scaling of S2 offers the physical interpretation that, under this diffusive level, there
is an uncertainty lengthscale of over 2 in the chaotic regions. This is larger than the
width of Ω0! Indeed, many stochastic trajectories starting at these high S2 locations
are likely to exit the domain Ω0 completely, despite the fact that all deterministic
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Fig. 3.5. Robust sets (shaded) extracted from the stochastic sensitivity field in Fig. 3.4, with a
noise scale given by the Péclet number 100, 000: (a) robust set with lengthscale 0.05, and (b) robust
set with lengthscale 0.02.

trajectories remain within Ω0. So, if the Péclet number has this size, computing
deterministic trajectories with initial conditions starting in these regions makes no
sense whatsoever; inevitable uncertainties mean that the calculated trajectories are
spurious. The scaled S2 fields therefore enable fundamental decisions of this nature.

In Fig. 3.5(a), the robust set R(0.05, 100000) (shaded) is extracted from the Sn

field. (These are regions in Fig. 3.4(d) with uncertainty lengthscale Sn < 0.05.) In
addition to well-defined blobs in the cores of the gyres, there are other regions which
are robust at this level. On the other hand, if robustness of lengthscales 0.02 is sought
(Fig. 3.5(d)), then this occurs only in the gyre core regions. The robust sets (and their
maximal connected subsets) can therefore be identified explicitly in terms of specified
physical characteristics (diffusion level and lengthscale) using Definition 2.9, which is
easily computed having found the field S2.

The different behaviors of the six initial conditions of Fig. 3.3 are now examined
in terms of robust sets. A lengthscale L = 0.1 (representing an estimate threshold
size of one-standard-deviation level of the stochastic blobs in Fig. 3.3 before they
become too broken apart) will be chosen, and here ε = 0.05 (thus Pe = 800). Based
on this information S2 can be computed on each of the four time-intervals [0, T ] in
Fig. 3.3, and the robust set R(0.1, 800) (as in Definition 2.9) at time 0 identified
for each instance. This is displayed by the shaded regions in Fig. 3.6. Note that
different sets are identified for the four situations because the time-interval over which
the stochastic sensitivity is computed is different. As is reasonable, the uncertainty
increases if a longer time interval is considered, and as a result the robust sets shrink
in size as larger values for the final time T is chosen. All subfigures here display sets
at the initial time t = 0, thereby identifying flow regions at time 0 based on expected
uncertainties for Lagrangian trajectories computed over different time durations. The
six initial conditions used for generating Fig. 3.3 are indicated by red stars.

Now, Fig. 3.3 showed via stochastic simulations that three of the initial conditions
exhibited increasingly spreading (and anisotropic) behavior as T progressed, whereas
the other three remained more focussed and isotropic. This behavior—obtained by
stochastic simulations—can be inferred easily using the location of the initial condi-
tions in relation to the robust sets in Fig. 3.6 (which has been prepared with exactly
the times of duration associated with Fig. 3.3). Given that all six initial conditions
in Fig. 3.3(a) are firmly within the robust set of lengthscale 0.1, the expectation is
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(a) T = 0.1 (b) T = 0.4

(c) T = 0.7 (d) T = 1

Fig. 3.6. The robust sets R(0.1, 800) in Ω0 (shaded) corresponding to flow in [0, T ], computed
for direct comparison with Fig. 3.3, with the six initial conditions shown by red stars.

that the uncertainties of Lagrangian trajectories, if initiated at each such initial con-
dition at time 0 and evolved till time T = 0.1, will all be within a size of 0.1. This
is confirmed by Fig. 3.3(a). Fig. 3.6(b) shows that if the flow is considered for the
time interval [0, 0.4] instead, then three of the initial conditions are well within the
robust set, but the other three–while being within the set—are on its outskirts. This
would suggest that stochastic simulations over this time duration will exhibit some
evidence of spreading beyond a size of 0.1, which is mildly indicated in three of the
probability distributions in Fig. 3.3(b). If the flow is considered for the longer time
interval [0, 0.7], then Fig. 3.6(c) now has three initial conditions which are outside
the robust set, indicating that the probability density of stochastic simulations in this
case is expected to spread out larger than the specified lengthscale L = 0.1, and this
is indeed displayed in Fig. 3.3(c). Finally, Fig. 3.6(d) shows that for the flow till time
T = 1, the same three initial conditions offer a certainty of less than L = 0.1, whereas
the other three initial conditions give a larger uncertainty—-features which are read-
ily seen in Fig. 3.3(d), which clearly shows that three of the densities continue to
remain focussed, whereas the other three have spread out well beyond the stipulated
lengthscale of L = 0.1.

Robust sets offer predictions on the distribution of stochastic Lagrangian trajec-
tories, as evidenced by the comparison between Figs. 3.3 and 3.6. In this case, since
the double-gyre flow is well-known, the reasons for this particular behavior can be
deduced: the two clearly distinguished robust sets in Fig. 3.6(d) are the ‘cores of
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(a) Sr (εdg = 0.2) (b) FTLE (εdg = 0.2)

(c) Sr (εdg = 5) (d) FTLE (εdg = 5)

Fig. 3.7. The resolution-scaled stochastic sensitivity Sr [left] and forward FTLE field [right] at
time 0 for the double-gyre flow associated with the flow in the time [0, 5] with resolution Lr = 0.0025,
at εdg = 0.2 [top] and 5 [bottom].

the two gyres’ of the double-gyre model, which are well-known to move ‘coherently’
according to many different definitions used in analyzing Lagrangian coherent struc-
tures [69, 45, 12, 47], whereas the region around x1 = 1 is a chaotic, incoherent,
region. However, rather than trying to demarcate these—or define precisely what
these characterizations mean—using various methods popular in Lagrangian coher-
ent structures, these are identifiable by stipulating robustness in relation to stochastic
perturbations in the Eulerian velocity field using Definition 2.9. It must be emphasized
that this robustness is specified in relation to the time-of-flow [0, T ], the diffusive level
(encoded in Pe = 2/ε2), and the lengthscale L of features to be considered. Stan-
dard Lagrangian coherent structure methods also often have thresholds/coherence-
measures in their computations—sometimes explicit (e.g., the minimum threshold if
thresholding finite-time Lyapunov exponents to identify chaotic regions [69, 12], deci-
sion on number of spectral elements to choose and/or spectral gap [35, 36], clustering
criterion [39, 65]), but sometimes implicit in the numerical algorithm used (e.g., a dis-
tance a trajectory is allowed to venture into a nonallowable set before computations
are stopped [30], threshold condition for eigenvectors in identifying almost coherent
structure when using transfer operators [34]). In this case, the threshold numbers
relate explicitly to noise level and uncertainty lengthscale.
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Finally, the stochastic sensitivity field will be compared to a well-established
coherence measure—the Finite-Time Lyapunov Exponent (FTLE)— computed by
forward advection from time 0 to T = 5, using the identical grid spacing and time-
stepping as used for the stochastic sensitivity calculations. The FTLE specifically
measures exponential separation of nearby trajectories following the deterministic
flow, and is computed here using standard methods [69, 47]. As for S2, the FTLE at
each point is defined by maximizing a quantity (in this case, exponential separation
under the deterministic flow) over all directions. A difference, though, is that the
directions for the FTLE are at the initial time (asking the question ‘In which direction
should initial conditions be perturbed to elicit the greatest eventual stretching?’) as
opposed to for S2 which are at the final time (‘In which direction will there be maximal
spreading at the final time?’). For Fig. 3.7 the default εdg value of 0.05 is changed
to investigate regimes which are not in the typical ‘separation between gyres and
chaotic zones’ regime. The Sr field is used (with spatial resolution Lr = 0.0025 as
used in the data) as the version of the scaled S2 field which most closely resembles
the scaling of the FTLE. For εdg = 0.2, the stochastic sensitivity and the FTLE
fields display strong similarities. However, the εdg = 5 pictures have a difference: the
FTLE figure possesses four elliptic regions in the four corners with negative stretching
(i.e., compression) which are not indicated in the Sr figure. The Sr field, in contrast,
displays a patchwork of larger uncertainties in the region x1 ∈ [1.6, 2], x2 < 0.5, which
the FTLE field fails to reveal—indeed, this is an area in which the FTLE is small! It is
not surprising that the most sensitive regions to stochasticity match up reasonably well
with the largest exponential separation regions, since disturbances in an exponentially-
stretching region will tend to amplify. The fact that there are differences should also
not be a surprise: S2 tracks the impact of any specified stochastic model σ, does
so continuously with time, and consequently captures the influence of ∇F t

0 across all
t ∈ [0, T ] while in contrast FTLEs only require ∇FT

0 and are confined to deterministic
effects. Moreover, in instances in which σ is spatio-temporally dependent, the S2 field
can be significantly different from the FTLE field than in the σ = Id situation pictured
in Fig. 3.7, because the S2 field incorporates nonuniformity while the FTLE field does
not. In general the S2 field (not shown, since its scaled version Sr is shown instead)
appears to be much sharper than the FTLE field, with anomalously large values being
concentrated along curves. Indeed, the ability of the stochastic sensitivity to reveal
‘ridge-like’ objects related to stable/unstable manifolds is a sharper fashion than the
FTLE is visible in the dark-blue curve emanating upwards from near (1.05, 0) in
Fig. 3.7(a) in contrast with this appearing less distinctly in Fig. 3.7(b).

While an explicit expression for the velocity field was available for the compu-
tations demonstrated here, it must be emphasized that this procedure has been de-
veloped so that it can also be done using velocity data (obtained from observations,
experiments, or computational fluid dynamics simulations), by choosing ∆t to be the
time-spacing of the data, and utilizing the spatial resolution Lr of the data to form
the relevant grid. The utility of the expressions for S2, Sr, Sn, A, θmax and R is that
they can (and will) be applied in such more realistic situations, thereby allowing the
quantification of uncertainty in identifying important flow structures.

4. Conclusions and outlook. Interest in the impact of uncertainties in the
Eulerian velocity field is only recently emerging: finite-time Lyapunov [44, 8] and
Lagrangian diagnostics [13] calculations using ensembles of stochastic realizations,
fattening of material curves [6], fuzziness imparted on stable/unstable manifolds and
consequent mixing [9], surfaces across which diffusive flux is minimal [50], and a
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numerical method for transfer operator computation which supplants the standard
initial- and/or end-time set diffusion by continuous-time diffusion [26]. The current
article presents a particular framework for quantifying resulting Lagrangian uncer-
tainties as a physically interpretable field which is easily computable using velocity
data. The uncertainty in the Eulerian data can be because of unavoidable accuracy
issues in the data, measurement error, availability only on a spatial and temporal
grid, the presence of turbulence at subgrid levels, and other uncaptured effects. For
two-dimensional Eulerian velocity data which is available only for a finite-time, the
method works independent of whether the data is divergence-free, or whether there
is complicated time-dependence. Specifically, tools which quantify the uncertainty in
the final Lagrangian positions, including the anisotropy and a method for extracting
robust sets, have been developed using a stochastic differential equation approach.

One can choose fairly general stochastic models for the Eulerian uncertainties by
specifying different spatio-temporally dependent diffusion matrices σ. This is pow-
erful because, for example, diffusion which is nonuniform and anisotropic appears
to be present in oceanic flows [18, 72, 76]. Moreover, σ’s (x, t)-dependence can be
used to model various experimentally/observationally relevant uncertainties: cloud
cover over some regions at some times when taking satellite measurements, the fact
that measurement uncertainties are greater in the periphery of a camera’s visual
range, having σ identically zero at gridpoints but nonzero off them to assess reso-
lution error, etc. An alternative investigation of the role of spatial resolution is to
investigate the connection between the lengthscale predicted from stochastic sensi-
tivity analysis (i.e., Ls = ε

√

S2(x)) and the optimal spatial resolution lengthscale;
preliminary results based on turbulent experiments and available oceanographic data
suggest that using resolutions finer than Ls is not only unnecessary, but counter-
productive [29]. Additional investigations on the issue of spatial resolution Lr—using
also the resolution-scaled stochastic sensitivity (2.27)—are underway. The ability to
deal with two-dimensional non-divergence-free Eulerian velocities is also useful be-
cause available data often has these features. For example, oceanic velocity data is
mainly deduced from satellite measurements of sea-surface heights, and particle image
velocimetry data is easiest to obtain in two dimensions. In such instances, even though
the full three-dimensional velocity field is expected to be divergence-free because wa-
ter is incompressible, the two-dimensional signature is not. Thus, the methodology
can also be applied to dynamically-evolving models in non-fluids contexts in which
area-preservation is violated.

These tools are expected to have a significant impact on the research area of
‘Lagrangian coherent structures’ in which there has hitherto been little explicit in-
corporation of uncertainty. (Numerical diffusivity of course affects any deterministic
computations in these approaches, but does so in an uncontrolled fashion.) Many
Lagrangian coherent structure methods use ad hoc definitions to extract coherent
structures. An extensive discussion is provided in [12]; quick examples include ridges
of finite-time Lyapunov exponent fields [69], curves/surfaces to which there is ex-
tremal attraction [47], stable/unstable manifold curves defined by extensions of time
[4], contours which are convex [49]), and clustering methods which attempt to group
together sets or particles which have ‘similar’ behavior [65, 39]. Most of these methods
are explicitly confined to deterministic Lagrangian advection of (2.1). It should be
mentioned that entities extracted from each method do not necessarily match those
from another method, as is indicated for example in comparisons in Fig. 1 in [45]
and Fig. 4 in [12]. Rather than follow the more established (and hence determin-
istic) Lagrangian coherent structure methods, stochastic sensitivity extracts robust
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sets explicitly in terms of robustness towards noise, with the essential ability to spec-
ify threshold values for the Péclet number and lengthscale of fluid elements whose
robustness is quantified (see Definition 2.9). At different levels of these physical char-
acteristics, different robust sets can be extracted (see Fig. 3.4(c,d)); these identify
sets at time 0 associated with the flow from time 0 to a time T . There is no claim
(or attempt to capture) material advection of such sets, because they are defined
precisely in terms of uncertainties in Lagrangian prediction; changing T , for example,
will identify a different set at time 0, whereas the lengthscale L and Péclet number
Pe parametrize the level of robustness in the set. As such, the stochastic sensitiv-
ity measures developed here form a natural, physically motivated, way of identifying
structures which are robust to velocity perturbations. Of course, this can be construed
an alternative way of defining ‘coherence’ which is completely different from standard
methods in Lagrangian coherent structure analysis.

It is possible that the impact of uncertainties in eventual Lagrangian locations
can be incorporated into many standard Lagrangian coherent structure methods, be-
cause they are (mostly) assessed based on the deterministic flow map from time 0 to
T . Thus, a spatially-varying uncertainty can be assigned to this map, and the con-
sequences investigated. A study on the uncertainty inherited by one method—finite-
time Lyapunov exponents— has already been performed [8]. Others are anticipated
in the future, allowing for uncertainties to be assigned to different types of ‘coherence’
claims.

The models used here—namely, stochastic differential equation for the velocity
field, and Fokker-Planck equation for density evolution—have had usage in porous
media and contaminant spreading work [27, 28]. In these cases, the first of these
is typically a Langevin equation (with incompressible [28] and either steady [27] or
statistically homogeneous [28] velocity field and constant isotropic diffusion [27, 28]),
resulting in the second becoming a classical advection-diffusion equation. In these
situations, due to the availability of methods such as Green’s functions, and ma-
nipulations using Fourier transforms [27] or assumed probability models [28], some
formal results on the contaminant dispersion and center of mass variance have been
obtained. Stochastic fluctuations are a natural way to model the pore-scale variations;
however, the setting is somewhat different in these studies because the present paper
relies on available velocity measurements, which is typically difficult in porous flows.
More specifically, the present work relates to using velocity data to predict spatial
structures which are robust under stochasticity. With these observations in mind,
relationships to porous media which use stochastic fluctuation models [54, 27, 28] are
being pursued.

The approach of this article is strongly connected to ideas in uncertainty quan-
tification. Uncertainties engendered in evolving systems are generically due to two
aspects: (i) uncertainty in the initial position in Ω0, and (ii) uncertainty in the evolv-
ing dynamics from time 0 to T . Type (i), in the context of Lagrangian trajectories,
possibly has a ‘simple’ solution within the present framework: an uncertainty δx in
the location x at time 0 will translate to a leading-order uncertainty ∇FT

0 (x)δx in ΩT .
Indeed, this or derived quantities are what is used in many basic Lagrangian coherent
structure work; the idea is to determine what happens when sets are changed slightly
at time 0, but the flow map FT

0 is kept fixed. Some typical examples which illustrate
how uncertainty type (i) applies to Lagrangian coherent structure methods include

• Maximizing ∇FT
0 (x)δx/ |δx| over all initial directions gives the FTLE field

on Ω0 [69, 47, 10];
• Haller’s variational approaches [46, 47, 48] ask questions about varying curves
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or surfaces in Ω0, in relation to a deterministic FT
0 ;

• Froyland’s Perron-Frobenius (transfer) operator approaches [34, 35, 38] some-
times apply ‘fattening’ of sets at time 0 before pushing forward by the deter-
ministic map FT

0 . (However, it must be noted that in many implementations
of this process [40, 45, 12, 57], such a diffusion/fattening is not explicitly
included, and the transfer operator is numerically computed as the push-
forward operator on densities in Ω0 by the deterministic map FT

0 . Uncon-
trolled and implicit numerical diffusion is of course present in this process.)

In the first two examples δx is thought of as a deterministic quantity (over which an
optimization is performed), and hence not typically imagined to be ‘an uncertainty.’
Nevertheless, the approaches rely on understanding the sensitivity towards changes
δx in Ω0. The third example, when using an explicit diffusion, may be viewed as pos-
sessing a stochastic δx, and so can be considered to fall within the type (i) uncertainty
quantification realm. It is highlighted that uncertainties of type (ii)—the impact of
uncertainties in the evolving dynamics on eventual Lagrangian locations—do not seem
to have been explicitly addressed until the present article (though hints of this appear
in some recent diffusive approaches [26, 50, 6, 9]). Thus, a fundamental contribution
to uncertainties in Lagrangian trajectories has been made.

The Fokker-Planck equation (2.4) is intimately connected to the idea of uncer-
tainties, because it captures the evolution of a probability density function. Addition-
ally, when the Lagrangian transport of various scalar quantities—as opposed to mere
trajectories—is relevant, the governing advection-diffusion equation [75, 73, 74, e.g.]
falls within the framework of a Fokker-Planck equation. Therefore, the connection
between the stochastic sensitivity measures developed here, and the Fokker-Planck
equation (2.4), invites further exploration [7], particularly because simulations (as in
Fig. 3.1) confirms this promising connection. An intriguing question is whether both
aspects of uncertainty quantification (uncertainty in initial position, and uncertainty
in evolving dynamics) can be tackled together within the framework of the Fokker-
Planck equation. The initial uncertainty can be considered as smearing out of a Dirac
mass initial condition for this equation (consonant with the approaches in [35, 34, 38]),
whereas what is done in this article is equivalent to having an exact Dirac mass ini-
tial condition, and then quantifying the eventual spread of the evolved density. In
this sense, type (i) uncertainties are associated with a choice of initial condition to
the Fokker-Planck equation (2.4), while type (ii) are velocity uncertainties which are
captured by the diffusion term σ in the Fokker-Planck equation. Investigations of
this connection, and possible amalgamation of these two ideas relating to eventual
uncertainty, is being pursued in both a theoretical and computational sense.

One method of improving uncertainties in predictions is by using data assimilation
[66, 55, 70, 59, 3], in which additional existing knowledge is used to decide on reliability
of model predictions, and/or tp discard questionable information. The stochastic
sensitivity field S2(x) and its scaled versions given here may provide new tools in such
data assimilation methods, because S2(x) can be thought of as assigning a confidence
weight to each predicted Lagrangian trajectory by identifying with an initial condition
x ∈ Ω0. Put another way, stochastic sensitivity can quantify the model error [3, 58] (in
a spatially nonuniform fashion) in using Eulerian velocity measurements to predict
Lagrangian particle trajectories. This application is currently being pursued with
collaborators with expertise in data assimilation.

Clearly, an important extension of the current theory would be to three-dimensions—
which initially seems to provide significant stumbling blocks because the proof pre-
sented in Appendix B relies on two-dimensionality. Incorporating aspects of Melnikov-
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like developments in higher-dimensions [42, 11, 78, 77] seems called for; however the
stochastic sensitivity, unlike those developments, cannot have any prescribed geom-
etry and must genuinely provide a global scalar field on Ω0. Extensions to higher
dimensions has the conceptual benefit of thinking of u in (2.1) not merely as a ve-
locity field, but rather as any deterministic model which describes the evolution of
multiple species (encoded as components of a state vector x). Then, the stochas-
tic sensitivity measures would describe the susceptibility of the model’s conclusions
towards uncertainty in the model.

Another theoretical extension would be to pursue higher moments of the random
deviation. (There is no reason to expect normality in the statistics of Zε, as evidenced
by related work on stochastic advection [74, 9] and Fig. 3.2.) This would be an attempt
to garner more detail on the statistics of the Lagrangian deviation, and may enable a
connection to Freidlin-Wentzell large deviation theory [33, 22, 25].

Finally, the efficacy and accuracy of using the stochastic sensitivity measures—in
comparison to other Lagrangian coherent structure methods [12]—to noisy and/or
low-resolution velocity data to identify robust structures, is currently under inves-
tigation with experimental colleagues. Using toy models such as the double-gyre is
well and good, but realistic flows display many other features (turbulence, energy at
different scales, energy cascades, etc) which cannot possibly be included in any model
with specified Eulerian velocity. Data obtained from such systems inevitably suffer
spatial resolution issues, and any computational work done with this data implicitly
or explicitly smoothly interpolates it. In smooth flows, velocities are only correct to
leading-order in the spatial resolution; in turbulent ones, a smooth velocity field is
deduced ignoring the fact that the Eulerian velocity may not be Lipschitz continuous.
Therefore, there are clear model uncertainties whether the advection performed is
‘deterministic’ or not. Using stochastic sensitivity measures allows for a practical way
to quantify and evaluate the impact of these effects. Specifically, spatial resolution
and system diffusion are respectively exemplified by the two scalings of S2 suggested:
Sr and Sn. For example, preliminary work indicates that the stochastic sensitivity is
able to identify structures even when spurious noise is introduced into an experimental
velocity field, significantly more robustly than does finite-time Lyapunov exponents
[29]. Studying the robustness of the stochastic sensitivity measure to such noise, and
low resolution data, is ongoing.

In view of these applications, stochastic sensitivity, its anisotropic quantification,
and robust sets provide a novel set of tools allowing (for the first time) uncertainties
to be ascribed to Lagrangian motion in fluid flows. The fact that these uncertainties
can be parametrized in terms of both the diffusion parameter and the lengthscale,
as well as its nonuniform distribution across initial conditions, will allow for power-
ful new applications in the areas of Lagrangian coherent structures, Lagrangian data
assimilation, and Lagrangian motion in turbulent flows, and in particular will pro-
vide links to experimental/observational considerations including spatial resolution,
diffusion, stochastic parametrization and nonuniform uncertainties.

Acknowledgments: Conversations with Nick Buchdahl and Nick Ouellette are grate-
fully acknowledged. The author was partially supported by the Australian Research
Council via grant DP200101764.

Appendix A. Proof of Lemma 2.2.

A preliminary lemma will be necessary.

Lemma A.1. If yτ is a solution of (2.3) for τ ∈ [0, T ], then for any p > 0, there
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exists a constant Kp
Σ such that

(A.1) E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

σ(yτ , τ) dWτ

∣

∣

∣

∣

2p
]

≤ Kp
Σ .

Proof. This proof relies on a special case of the Burkhölder-Davis-Gundy inequal-
ity (e.g., Theorem 5.6.3 in [51]) which, given any local martingale Nt, asserts the
existence of Cp for any p > 0 such that

(A.2) E

[

sup
t∈[0,T ]

|Nt|2p
]

≤ Cp E [Np
T ] .

Set

Nt :=

∫ t

0

σ(1)
τ dWτ ,

in which σ
(1)
τ is the first row of the matrix στ (yτ , τ); this is a local martingale because

σ is uniformly bounded as given in (2.8). Applying (A.2) with p = 1 yields the
existence of C1 such that

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

σ(1)
τ dWτ

∣

∣

∣

∣

2
]

≤ C1 E

[{

∫ T

0

∣

∣

∣
σ(1)
τ

∣

∣

∣

2

dτ

}]

≤ 2C1K
2
σT ,

with the second inequality arising from (2.8). Now let p > 0 be arbitrary. An identical

bound can be applied to σ
(2)
τ , the second row of σ, and so

E



 sup
t∈[0,T ]

∣

∣

∣

∣

∣

∫ T

0

σ(yτ , τ) dWτ

∣

∣

∣

∣

∣

2p


 = E



 sup
t∈[0,T ]







∣

∣

∣

∣

∣

∫ T

0

σ(1)
τ dWτ

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∫ T

0

σ(2)
τ dWτ

∣

∣

∣

∣

∣

2






p



≤ E

[

{

2C1K
2
σT + 2C1K

2
σT
}p
]

=
(

4C1K
2
σT
)p

=: Kp
Σ ,

as desired.

Now, turn to the proof of Lemma 2.2. In (2.10), the (exact) stochastic differential
equation for yt − F t

0(x) has already been established. Taking absolute values of both
sides,

(A.3)
∣

∣yt − F t
0(x)

∣

∣ ≤
∣

∣

∣

∣

∫ t

0

u(yτ , τ)− u (F τ
0 (x), τ) dτ

∣

∣

∣

∣

+ ε

∣

∣

∣

∣

∫ t

0

σ (yτ , τ) dWτ

∣

∣

∣

∣

.

Noting that |a1 + a2|q ≤ 2q−1 (|a1|q + |a2|q) for q ≥ 1, the qth power of (A.3) yields

∣

∣yt − F t
0(x)

∣

∣

q ≤ 2q−1

(

∣

∣

∣

∣

∫ t

0

u(yτ , τ)− u (F τ
0 (x), τ) dτ

∣

∣

∣

∣

q

+ εq
∣

∣

∣

∣

∫ t

0

σ (yτ , τ) dWτ

∣

∣

∣

∣

q
)

≤ 2q−1

(

T q−1

∫ t

0

|u(yτ , τ) − u (F τ
0 (x), τ)|q dτ + εq

∣

∣

∣

∣

∫ t

0

σ (yτ , τ) dWτ

∣

∣

∣

∣

q
)

≤ 2q−1

(

T q−1ηq
∫ t

0

|yτ − F τ
0 (x)|q dτ + εq

∣

∣

∣

∣

∫ t

0

σ (yτ , τ) dWτ

∣

∣

∣

∣

q
)
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by using Hölder’s inequality and the Lipschitz condition (2.5) on u respectively. Next,
consider applying the supremum over all t ∈ [0, T ], to both sides of the above inequal-
ity, followed by taking the expectation. This gives

E

[

sup
t∈[0,T ]

∣

∣yt − F t
0(x)

∣

∣

q

]

≤ 2q−1T q−1ηq E

[

sup
t∈[0,T ]

∫ t

0

|yτ − F τ
0 (x)|

q
dτ

]

+ 2q−1εq E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

σ (yτ , τ) dWτ

∣

∣

∣

∣

q
]

≤ 2q−1T q−1ηqE

[

∫ T

0

|yτ − F τ
0 (x)|q dτ

]

+ 2q−1εqK
q/2
Σ

≤ 2q−1T q−1ηq
∫ T

0

E

[

sup
ξ∈[0,τ ]

∣

∣

∣
yξ − F ξ

0 (x)
∣

∣

∣

q
]

dτ + 2q−1εqK
q/2
Σ

by utilizing (A.1). Applying Gronwall’s inequality now gives the bound

E

[

sup
t∈[0,T ]

∣

∣yt − F t
0(x)

∣

∣

q

]

≤ 2q−1εqK
q/2
Σ exp

(

2q−1T q−1ηqT
)

,

which leads to the desired result

E

[

sup
t∈[0,T ]

|yt − F t
0(x)|

q

εq

]

≤ 2q−1K
q/2
Σ exp

(

2q−1T qηq
)

:= Kq
z .

Appendix B. Proof of Theorem 2.3.

The strategy used here builds up expressions for usage in the main goal (obtaining
the variance of Pε(x, θ) as per Theorems 2.5 and 2.7), rather than merely establishing
Theorem 2.3, which can be obtained by simpler means as well.

While a major impediment in using the (formal) integral equation (2.12) to quan-
tify Zε(x) was the nonautonomous nature of the coefficient matrix, classical (deter-
ministic) Melnikov methods [5, 42, 4, 11, 77] are able to deal with a specific pro-
jection of Zε(x) associated with stable/unstable manifolds. (For a recent stochastic
Melnikov approach—with the goal of establishing intersections between stable and
unstable manifolds for a particular realization of noise—see [78].) Here, a Melnikov-
like approach is combined with stochastic calculus to obtain the variance of a general
projection (onto any direction θ) of Zε(x). Since F t

0(x) gives the flow map of the
deterministic flow (2.1),

(B.1)
∂

∂t
F t
0(x) = u

(

F t
0(x), t

)

.

Taking the gradient with respect to x yields

(B.2)
∂

∂t
∇F t

0(x) = ∇u
(

F t
0(x), t

)

∇F t
0(x) ,

which states that ∇F t
0(x) is a solution to the equation of variations of (2.1). The

projection of Zε(x) shall be sought in the directions defined by θ ∈ [−π/2, π/2). To
this end, choose the infinitesimal quantity

δw = −δ J n̂(θ) =

(

sin θ
− cos θ

)
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for some small δ > 0. With the observation that the differentials associated with the
map x → w in (2.15) are connected by

δw = ∇FT
0 (x)δx and hence Jδw = J∇FT

0 (x)δx ,

it is easy to see that the direction θ in which projections of Zε(x) are sought (as given
in (2.16)) obeys

n̂(θ) =

(

cos θ
sin θ

)

= J
δw

|δw| =
J∇FT

0 (x)δx
∣

∣∇FT
0 (x)δx

∣

∣

.

Upon defining the scalar Itô process

(B.3) Mt(yt) :=
[

J∇F t
0(x)δx

]⊤ [

yt − F t
0(x)

]

= ε
[

J∇F t
0(x)δx

]⊤
zε(x, t)

for times t ∈ [0, T ], (2.16) and (B.3) indicate that the required projection is

(B.4) Pε(x, θ) =
MT (yT )

ε
∣

∣J∇FT
0 (x)δx

∣

∣

.

Understanding the final outcome of the Itô process MT is therefore a first step in
finding the statistics of the projection Pε(x, θ) (it is clear that E [Pε] = O(1) because
Lemma 2.2 implies that for fixed δx, E [Mt(yt)] = O(ε)).

A solvable differential equation for Mt is now sought, following the spirit of the
derivation of Melnikov theory in dynamical systems [5, 43], but in the stochastic
context and independent of any invariant manifolds. Itô’s lemma [51] applied to (B.3)
in conjunction with yt’s evolution equation (2.3) gives that

dMt =

{

∂Mt

∂t
+ (∇Mt)

⊤
u+

1

2
Tr
[

(εσ)
⊤
(∇∇Mt) (εσ)

]

}

dt+ (∇Mt)
⊤
(εσ) dWt ,

where all the quantities above are evaluated at (yt, t). The quantity ∇∇Mt is the
Hessian with respect to the spatial argument yt which, given the linearity of Mt with
respect to yt in (B.3), disappears, and so

(B.5) dMt =

{

∂Mt

∂t
+ (∇Mt)

⊤ u

}

dt+ (∇Mt)
⊤ (εσ) dWt .

Expressions for the various terms in (B.5) will now be built up. First, from Mt as
defined in (B.3),

∂Mt

∂t
=
[

J∇F t
0(x)δx

]⊤

[

− ∂

∂t
F t
0(x)

]

+

[

J
∂

∂t

(

∇F t
0(x)

)

δx

]⊤
[

yt − F t
0(x)

]

=
[

J∇F t
0(x)δx

]⊤ [−u
(

F t
0(x), t

)]

+ ε
[

J∇u
(

F t
0(x), t

)

∇F t
0(x)δx

]⊤
zε(x, t) ,

where (B.1) and (B.2) have been used. The next term in (B.5) can be expressed by
first taking the gradient of (B.3) with respect to the spatial variable yt, and so

(∇Mt(yt))
⊤
u (yt, t) =

[

J∇F t
0(x)δx

]⊤
u (yt, t)

=
[

J∇F t
0(x)δx

]⊤ [

u
(

F t
0(x), t

)

+∇u
(

F t
0(x), t

) (

yt − F t
0(x)

)]

+
1

2

[

J∇F t
0(x)δx

]⊤
[

(

yt − F t
0(x)

)⊤ ∇∇u (ξ1, t)
(

yt − F t
0(x)

)

]

=
[

J∇F t
0(x)δx

]⊤ [

u
(

F t
0(x), t

)

+ ε∇u
(

F t
0(x), t

)

zε(x, t)
]

+
ε2

2

[

J∇F t
0(x)δx

]⊤ [

zε(x, t)
⊤∇∇u (ξ1, t) zε(x, t)

]
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where the second equality is by Taylor expanding u around F t
0(x), and ∇∇u(ξ1, t)

is the second-derivative tensor of u evaluated at some spatial point ξ1. By a similar
argument,

(∇Mt(yt))
⊤
(εσ(yt,t))=

[

J∇F t
0(x)δx

]⊤
ε
[

σ
(

F t
0(x), t

)

+∇σ (ξ2, t)
(

yt − F t
0(x)

)]

=ε
[

J∇F t
0(x)δx

]⊤[

σ
(

F t
0(x),t

)]

+ε2
[

J∇F t
0(x)δx

]⊤∇σ(ξ2,t)zε(x,t),

in which ξ2 is a spatial point. Substituting each of these three expressions into (B.5)
gives the expression

dMt = ε
{

(

J∇u∇F t
0(x)δx

)⊤
zε(x, t) +

(

J∇F t
0(x)δx

)⊤ ∇u zε(x, t)
}

dt

+ ε
(

J∇F t
0(x)δx

)⊤
σ dWt +

ε2

2

[

J∇F t
0(x)δx

]⊤
zε(x, t)

⊤∇∇u (ξ1, t) zε(x, t)dt

+ ε2
[

J∇F t
0(x)δx

]⊤ ∇σ (ξ2, t) zε(x, t)dWt ,

where, when omitted for u and σ, the arguments are (F t
0(x), t). For the first line in

the final expression above, set A = ∇u, b = zε(x, t) and c = ∇F t
0(x)δx, and invoke

the identity

(JAc)
⊤
b+ (Jc)

⊤
Ab = (TrA) b⊤Jc

for 2 × 2 matrices A and 2 × 1 vectors b and c which is well-established in various
contexts (see Equation (A5) in [6], Equation (2.39) in [5], Equation (4.5.8) in [43], or
Section 3.1 in [4]), thereby arriving at

dMt = ε [∇ · u] zε(x, t)⊤
(

J∇F t
0(x)δx

)

dt+ ε
(

J∇F t
0(x)δx

)⊤
σ dWt

+ ε2
[

J∇F t
0(x)δx

]⊤

(

1

2
zε(x, t)

⊤∇∇u (ξ1, t) zε(x, t)dt+∇σ (ξ2, t) zε(x, t)dWt

)

.

However, from (B.3), the term multiplying Tr (∇u) = ∇ · u in the first line above is
simply Mt(yt), and so the above reduces to

dMt = [∇ · u]
(

F t
0(x), t

)

Mtdt+ ε
[

J∇F t
0(x)δx

]⊤
σ
(

F t
0(x), t

)

dWt

+ ε2
[

J∇F t
0(x)δx

]⊤

(

1

2
zε(x, t)

⊤∇∇u (ξ1, t) zε(x, t)dt+∇σ (ξ2, t) zε(x, t)dWt

)

.

Using the standard integrating factor approach allows this to be rewritten as

d
[

e−
∫

t

0
[∇·u](F ξ

0
(x),ξ)dξMt

]

= εe−
∫

t

0
[∇·u](F ξ

0
(x),ξ)dξ (J∇F t

0(x)δx
)⊤

σ
(

F t
0(x), t

)

dWt

+
ε2

2
e−

∫
t

0
[∇·u](F ξ

0
(x),ξ)dξ [J∇F t

0(x)δx
]⊤

zε(x, t)
⊤∇∇u (ξ1, t) zε(x, t)dt

+ ε2e−
∫

t

0
[∇·u](F ξ

0
(x),ξ)dξ [J∇F t

0(x)δx
]⊤∇σ (ξ2, t) zε(x, t)dWt .

Next, the above is integrated from 0 to T , bearing in mind that y0 = x, and thus
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M0(y0) = 0, to yield

MT (yT ) = ε

∫ T

0

e
∫

T

t
[∇·u](F ξ

0
(x),ξ)dξ (J∇F t

0(x)δx
)⊤

σ
(

F t
0(x), t

)

dWt

(B.6)

+
ε2

2

∫ T

0

e
∫

T

t
[∇·u](F ξ

0
(x),ξ)dξ [J∇F t

0(x)δx
]⊤
zε(x, t)

⊤∇∇u (ξ1, t) zε(x, t)dt

+ ε2
∫ T

0

e
∫

T

t
[∇·u](F ξ

0
(x),ξ)dξ[J∇F t

0(x)δx
]⊤ ∇σ (ξ2, t) zε(x, t) dWt .

From (B.4), in computing Pε(x, θ), it is necessary to divide the above expression
through by the quantity

∣

∣J∇FT
0 (x)δx

∣

∣. All three terms above also possess a factor

(J∇F t
0(x)δx)

⊤
, and so the generated ratio will be rewritten in a useful way. Since

x = F 0
T (w), for any t,

F t
0(x) = F t

0

(

F 0
T (w)

)

= F t
T (w) ,

and hence,

∇F t
0(x)δx = ∇F t

T (w)δw and J∇F t
0(x)δx = J∇F t

T (w)δw .

This means that

[J∇F t
0(x)δx]

⊤

∣

∣J∇FT
0 (x)δx

∣

∣

=
[J∇F t

T (w)δw]
⊤

∣

∣J∇FT
T (w)δw

∣

∣

=

[

J∇F t
T (w)

δw

|Jδw|

]⊤

=

[

J∇F t
T (w)

(

sin θ
− cos θ

)]⊤

.

Defining for θ ∈ [−π/2, π/2) the quantity

(B.7) Qθ(w, t) := −J ∇F t
T (w)J n̂(θ) ,

allows the rewriting
(B.8)

[J∇F t
0(x)δx]

⊤

∣

∣J∇FT
0 (x)δx

∣

∣

=

[

J∇F t
T (w)

(

sin θ
− cos θ

)]⊤

=
[

J∇F t
T (w) (−J) n̂(θ)

]⊤
= Qθ(w, t)

⊤ .

Substituting (B.6) into the projection definition (B.4) and utilizing (B.8) results in

(B.9) Pε(x, θ) = I1(θ) + εI2(θ) + εI3(θ) ,

in which

I1(θ) :=

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξ Qθ(w, t)

⊤σ
(

F t
T (w), t

)

dWt ,(B.10)

I2(θ) :=
1

2

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξ Qθ(w, t)

⊤zε(x, t)
⊤∇∇u (ξ1, t) zε(x, t) dt ,

I3(θ) :=

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξ Qθ(w, t)

⊤∇σ (ξ2, t) zε(x, t) dWt .

In the above, some of the x-dependence has been transformed to w-dependence using
F t
0(x) = F t

T (w) and F ξ
0 (x) = F ξ

T (w). Equation (B.9) provides an explicit expression
for Pε in terms of stochastic integrals. Now,

(B.11) lim
ε↓0

E [Pε(x, θ)] = lim
ε↓0

E [I1(θ)] + lim
ε↓0

(εE [I2(θ)]) + lim
ε↓0

(εE [I3(θ)]) .
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The presence of the prefactor ε in the last two terms in (B.11) indicates that, as long
as the expectations are bounded, they can be discarded. For I2,

E [|I2(θ)|]≤
1

2
E

[∣

∣

∣

∣

∣

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξQθ(w, t)

⊤zε(x, t)
⊤∇∇u (ξ1, t) zε(x, t) dt

∣

∣

∣

∣

∣

]

≤ 1

2
E

[

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξKFKu |zε(x, t)|2 dt

]

=
1

2

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξKFKuE

[

|zε(x, t)|2
]

dt < ∞ .

In the above, a bound on Qθ (defined in (B.7)) has been obtained as

(B.12) |Qθ(x, t)| =
∣

∣J∇F t
T (w)Jn̂(θ)

∣

∣ ≤
∣

∣∇F t
T (w)

∣

∣ ≤ KF

resulting from the boundedness of the flow (2.7). Moreover, the second-derivative of
u is bounded using the smoothness conditions on u given by (2.6), and the zε terms
are bounded using Lemma 2.2 with q = 2. For the stochastic integral I3,

E [|I3(θ)|] ≤
√

E [I3(θ)2]

(B.13)

=







E





(

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξQθ(w, t)

⊤∇σ(ξ2, t)zε(x, t)dWt

)2










1/2

=

{

E

[

∫ T

0

e2
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξ ∣

∣Qθ(w, t)
⊤∇σ (ξ2, t) zε(x, t)

∣

∣

2
dt

]}1/2

≤
{

E

[

∫ T

0

e2
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξK2

FK
2
σ |zε(x, t)|2 dt

]}1/2

= KFKσ

{

∫ T

0

e2
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξ

E

[

|zε(x, t)|2
]

dt

}1/2

< ∞ .

In the above, the Itô isometry [51] has been used in the second equality, and the final
boundedness result comes from Lemma 2.2 and the fact that the t-integral is bounded
over the finite domain [0, T ]. Thus, the terms I2 and I3 in (B.11) do not contribute.
Hence,

lim
ε↓0

E [Pε(x, θ)] = lim
ε↓0

E [I1(θ)]

= lim
ε↓0

E

[

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξQθ(w, t)

⊤σ
(

F t
T (w), t

)

dWt

]

= 0 ,

because the bounds on Qθ (B.12) and σ (2.8) ensure that the integrand is square
summable over t, and thus the expectation of the stochastic integral is zero [51].
Now, this establishes that, in the limit ε ↓ 0, the expectation of the projection of
Zε(x) in any direction is zero. Thus, the expectation of Zε(x) is zero in this limit.

Appendix C. Proof of Theorem 2.5.
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From (B.9), and using the result of Theorem 2.3,

lim
ε↓0

V [Pε(x, θ)] = lim
ε↓0

E

[

|Pε(x, θ)|2
]

− lim
ε↓0

|E [Pε(x, θ)]|2(C.1)

= lim
ε↓0

E

[

|I1(θ) + εI2(θ) + εI3(θ)|2
]

− 0

= lim
ε↓0

E

[

|I1(θ)|2
]

+ 2 lim
ε↓0

εE [I1(θ)(I2(θ) + I3(θ))]

+ lim
ε↓0

ε2E
[

|I2(θ) + I3(θ)|2
]

.

As long as the expectations in the last two terms are bounded, the presence of the
prefactors of ε will ensure that those two terms will vanish. Using the Cauchy-Schwarz
inequality,

E

[

|I2(θ)|2
]

=
1

4
E





∣

∣

∣

∣

∣

∫ T

0

e
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξQθ(w, t)

⊤zε(x, t)
⊤∇∇u(ξ1,t) zε(x,t) dt

∣

∣

∣

∣

∣

2




≤ 1

4
E

[(

∫ T

0

e2
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξdt

)

×
(

∫ T

0

∣

∣Qθ(w, t)
⊤zε(x, t)

⊤∇∇u (ξ1, t) zε(x, t)
∣

∣

2
dt

)]

≤ 1

4

(

∫ T

0

e2
∫

T

t
[∇·u](F ξ

T
(w),ξ)dξdt

)

E

[

∫ T

0

K2
FK

2
U |zε(x, t)|4 dt

]

< ∞ ,

because of Lemma 2.2 with q = 4. Since E

[

|I3(θ)|2
]

’s boundedness has already been

established in (B.13),

E

[

|I2(θ) + I3(θ)|2
]

≤ 2E
[

|I2(θ)|2 + |I3(θ)|2
]

< ∞ .

Moreover,

E [|I1(θ) (I2(θ) + I3(θ))|] ≤ E [|I1(θ)I2(θ)|] + E [|I1(θ)I3(θ)|]

≤
√

E

[

|I1(θ)|2
]

E

[

|I2(θ)|2
]

+

√

E

[

|I1(θ)|2
]

E

[

|I3(θ)|2
]

,

which is bounded by the results above. This allows for the discarding of the last two
of the three terms in (C.1), and hence

lim
ε↓0

V [Pε(x, θ)] = lim
ε↓0

E

[

|I1(θ)|2
]

=

∫ T

0

∣

∣

∣
e
∫

T

t
[∇·u](F ξ

T
(w)),ξ)dξQθ(w, t)

⊤σ
(

F t
T (w), t

)

∣

∣

∣

2

dt

=

∫ T

0

∣

∣

∣
e
∫

T

t
[∇·u](F ξ

T
(w)),ξ)dξ σ

(

F t
T (w), t

)⊤
Qθ(w, t)

∣

∣

∣

2

dt

=

∫ T

0

∣

∣

∣
e
∫

T

t
[∇·u](F ξ

T
(w)),ξ)dξ σ

(

F t
T (w), t

)⊤
(−J) ∇F t

T (w)J n̂(θ)
∣

∣

∣

2

dt

=

∫ T

0

|Λ(w, t)J n̂(θ)|2 dt ,
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where the first step is by using Itô’s isometry on (B.10), the second is by rewriting
the magnitude of a row vector as that of the corresponding column vector, the third
is by invoking the definition for Qθ in (B.7), and finally the fourth is by using Λ’s
definition (2.21). Taking the square-root gives Ã(w, θ) in (2.23). The fact that this is
equal to A(x, θ) is simply because of the invertible relationship w = FT

0 (x).

Appendix D. Proofs of Theorems 2.6 and 2.7.

Theorems 2.6 and 2.7 will be proven together in this appendix. First, the oper-
ation supθ is applied to (C.1). In view of the boundedness of all of expectations of
the quadratic terms IiIj as established in Appendix C, the dominated convergence
theorem allows for swapping the ε ↓ 0 limit and the supremum over θ. Thus,

S2(x) = lim
ε↓0

sup
θ

E

[

|I1(θ)|2
]

= sup
θ

lim
ε↓0

E

[

|I1(θ)|2
]

= sup
θ

[A(x, θ)]
2
,

in which the ε-multiplied terms of (C.1) have been discarded because of the bound-
edness properties established in Appendix C. Therefore, from (2.23),

S2(x) = sup
θ

∫ T

0

∣

∣

∣

∣

Λ(w, t)

(

− sin θ
cos θ

)
∣

∣

∣

∣

2

dt =: sup
θ

H(θ)

Expanding in terms of the components of Λ, and using standard trigonometric equal-
ities allows H(θ) to be written as

H(θ) =
1

2

∫ T

0

2
∑

i=1

2
∑

j=1

Λ2
ij(w, t)dt

+
cos 2θ

2

∫ T

0

[

2
∑

i=1

Λ2
i2(w, t)−

2
∑

i=1

Λ2
i1(w, t)

]

dt− sin 2θ

∫ T

0

2
∑

i=1

[Λi1(w, t)Λi2(w, t)]dt

=
1

2

∫ T

0

2
∑

i=1

2
∑

j=1

Λ2
ij(w, t)dt+N(w) [cos 2θ cosα− sin 2θ sinα]

=
1

2

∫ T

0

2
∑

i=1

2
∑

j=1

Λ2
ij(w, t)dt+N(w) cos (2θ + α) ,

using the definitions of α and N(w) as given in Theorem 2.6, where α ∈ [−π, π).
Clearly, H(θ) achieves its maximum value when cos (2θ + α) = 1, and it is easily
verified that choosing θ = −α/2 achieves this for a value θ ∈ [−π/2, π/2). This
completes the proofs of Theorems 2.6 and 2.7.
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