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A class of unsteady two- and three-dimensional velocity fields for which the associ-
ated stable and unstable manifolds of the Lagrangian trajectories are explicitly known
is introduced. These invariant manifolds form the important time-varying flow bar-
riers which demarcate coherent fluids structures, and are associated with hyperbolic
trajectories. Explicit expressions are provided for time-evolving hyperbolic trajec-
tories (the unsteady analogue of saddle stagnation points), which are proven to be
hyperbolic in the sense of exponential dichotomies. Elliptic trajectories (the unsteady
analogue of stagnation points around which there is rotation, i.e., the “centre of a
vortex”) are similarly explicitly expressed. While this class of models possesses inte-
grable Lagrangian motion since formed by applying time-dependent spatially invert-
ible transformations to steady flows, their hyperbolic/elliptic trajectories can be made
to follow any user-specified path. The models are exemplified through two classical
flows: the two-dimensional two-gyre Duffing flow and the three-dimensional Hill’s
spherical vortex. Extensions of the models to finite-time and nonhyperbolic manifolds
are also presented. Given the paucity of explicit unsteady examples available, these
models are expected to be useful testbeds for researchers developing and improving
diagnostic methods for tracking flow structures in genuinely time-dependent flows.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769979]

I. INTRODUCTION

Characterising transport barriers and fluid blobs that move as coherent entities continues to be
an intensive area of study, with many applications in oceanography and atmospheric science. These
govern the transport of key quantities such as potential vorticity, heat, salinity, bio-organisms and
pollutants, and consequently are significant in our environment and climate.1–9 Understanding and
controlling such transport barriers and coherent structures is also one way of attempting to increase
mixing properties in microfluidic devices.10–13

Defining important flow barriers is easy in two-dimensional steady laminar flows, in which the
flow separators which demarcate regions of disparate fluid motion are invariant (stable and unstable)
manifolds of stagnation points. Extending these definitions to time-periodic two-dimensional flows
is well established;14 the manifolds are associated with the Poincaré map which strobes the flow
at time intervals equal to the periodicity of the flow. There is some understanding on the notion
of invariant manifolds when permitting time-aperiodicity15–19 and three-dimensionality,20–23 but
some difficulties remain. Under general time-dependent (unsteady) flow, the entities analogous to
saddle stagnation points are “hyperbolic trajectories.” For example, if viewing a steady flow with
a saddle stagnation point from a boat travelling at a constant speed, the flow would have trivial
unsteadiness, and the entity corresponding to the original stagnation point would be a specialised
trajectory which travels at a constant speed, which therefore cannot be obtained by seeking points
at which the fluid is instantaneously at rest. It is the time-varying stable and unstable manifolds of
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this hyperbolic trajectory which form the crucial flow barriers. While the analysis of instantaneous
stagnation points is useful in many applications, such as groundwater modelling,24, 25 macro- and
micro-mixing devices,26–31 and oceanographic flows,5, 32–36 this example shows that such entities
have no meaning in determining important flow regulators in unsteady flows, except in certain
limiting situations such as when the structures are moving sufficiently slowly.37, 38 Thus hyperbolic
trajectories need to be determined, along with their invariant manifolds, but their definition is based
on “exponential dichotomies,”39, 40 in which the flow is linearised along the purported hyperbolic
trajectory, and the idea is to check whether there is a splitting into directions in which exponential ex-
pansion and contraction occur. In the unsteady situation exponential dichotomies cannot be imputed
based on frozen-time eigenvalues of the linearisation matrix, and hence this definition is extremely
difficult to use to identify hyperbolic trajectories even when the unsteady velocity is explicitly
known. Three-dimensional flows, even in the steady situation, offer additional challenges, since the
stable and unstable manifolds can be associated with periodic orbits (which require computational
effort to determine in contrast to stagnation points), and both one- and two-dimensional invariant
manifolds are generically present.

Even under idealised steady conditions, computing global invariant manifolds is difficult,
and usually requires clever algorithms.41 In real unsteady flows—either observational, experi-
mental or numerical—computing such flow barriers becomes prohibitive. Data from such flows
are typically noisy, discrete in space and time, and also limited to finite times. This last issue
causes immediate problems because hyperbolic trajectories, and stable and unstable manifolds,
require infinite-time velocity fields in order to quantify exponential decays. Therefore, a variety
of finite-time tools for characterising flow barriers and transport have emerged, of which finite-
time Lagrangian coherent structures (LCSs) now play a major role. Their definition20, 42 is as-
sociated with material surfaces which have locally maximal attracting or repelling properties,
and are equally legitimate in the unsteady setting. Nevertheless, computing LCSs (or alternative
entities which are associated with flow barriers) remains a challenging task, for which a vari-
ety of diagnostic methods has been developed.41, 43–45 Ridges of finite-time Lyapunov exponent
(FTLE) fields are one such diagnostic which has increasing popularity across many fluids-related
disciplines,3–5, 46–50 and continues to be developed.51–54 While FTLEs can give false positives or
negatives for LCSs,55–58 it is possible to establish their accuracy under certain conditions.55, 59

Another class of diagnostics is associated with averages along trajectories,60–64 while yet another
deals with Perron-Frobenius (transfer) and Koopman operators.61, 65–70 There are also a variety of
very recently developed methods71–74 which are seemingly unrelated to better established meth-
ods or to one another. Each diagnostic method has its challenges associated with computational
complexity and data requirements, and at the basic level whether the method reliably and unequiv-
ocally identifies LCSs; hence the continuing interest in developing and refining such diagnostic
methods.

Another important aspect which has received less attention (possibly because of the difficulties
in conceptualising these effects both theoretically and diagnostically) is the potential for there to
be a trajectory which is nonhyperbolic in the sense of exponential decays, but which nevertheless
has attached to it stable and unstable manifolds which form crucial flow separators. The analogous
situation in steady flows would be nonhyperbolic fixed points whose nearby phase space behaviour
“looks like” saddle points, even though the rates of decay are not exponential. An example is the
system ẋ = −x3, ẏ = y3, for which the stagnation point (0, 0) is not hyperbolic, since all derivatives
of the velocity field are zero at this point. Technically speaking, there is now a two-dimensional
centre manifold75 and in such situations linearisation fails to provide any information on nearby flow
trajectories. Nevertheless, the phase portrait resembles that of a saddle fixed point, with attracting
and repelling directions being, respectively, along the x- and y-axes. These axes play the role of the
stable and unstable manifolds, respectively, and yet cannot be found by using exponential decay as a
criteria. Determining (or even defining) such entities in unsteady flows is additionally challenging, but
has obvious importance in identifying LCSs in unsteady situations. Note that FTLEs are unlikely to
recover such entities, since they do not satisfy exponential decay criteria. Explicit unsteady examples
in both two and three dimensions which possess exactly such nonhyperbolic behaviour could be
useful in developing both a theoretical understanding and diagnostic tools for such situations, and
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in providing examples to test whether recent tools which do not rely on exponential decay71–73 can
reliably locate such structures.

The idea of seeking invariant manifolds in identifying coherent structures in flows is only several
decades old; vortex structures have long been investigated as signature coherent entities.45, 76–78 Meth-
ods suggested for defining vortices include elliptic versions of the Okubo-Weiss criterion,79, 80 closed
or spiralling pathlines,81 regions of low particle dispersion,82, 83 or stability-based methods.84, 85 It
should be noted that topologically elliptic contours of the frozen-time vorticity field do not neces-
sarily correspond to coherent rotational motion in unsteady flows;85 this highlights the difficulty of
imputing coherently rotating Lagrangian motion based on Eulerian properties. If using Lagrangian
properties one approach would be to consider the linearised flow around a purported elliptic trajec-
tory, and check for rotational motion around it.60 This has several difficulties. First, for unsteady
flows, the eigenvalues of the frozen-time linearisation do not necessarily correspond to the unsteady
motion near the trajectory. Second, even if the flow is steady and thus the eigenvalue criteria may
appear legitimate, eigenvalues with zero real part do not necessarily imply pure rotational motion,
as is easily verified through the example ẋ = α(x2 + y2)x − y, ẏ = α(x2 + y2)y + x (this corre-
sponds to ṙ = αr3, θ̇ = 1 in polar coordinates). The linearisation around the point (0, 0) has complex
conjugate eigenvalues, yet nonlinearities cause nearby behaviour to have potentially different forms:
(i) elliptic rotation if α = 0, (ii) spiral attraction if α < 0, and (iii) spiral repulsion if α > 0. To
avoid difficulties associated with Eulerian characterisations and degenerate linearisations, this arti-
cle thinks of an “elliptic trajectory” in the Lagrangian sense as being at the centre of a Lagrangian
vortex, carrying along with it adjacent trajectories which are slaved to rotating around it without
being attracted or repulsed. This has a pleasing connection to Kolmogorov-Arnold-Moser (KAM)
tori in a time-quasiperiodic two-dimensional86–88 or three-dimensional89–92 setting, but providing a
definition for elliptic trajectories in generically unsteady flows remains elusive. If there were trajec-
tories in an unsteady flow which could be unequivocally identified as being elliptic in the Lagrangian
sense, such would offer excellent test examples in the desire to comprehend ellipticity in unsteady
flows.60, 81, 85, 93

Formulating, improving, and testing diagnostic tools are invaluable in the quest for under-
standing flow barriers, coherent entities, and fluid transport in real oceanographic, atmospheric, and
micro-fluidic flows. In testing such tools, specific examples with explicit flow barriers would be use-
ful, but are not well known because of the theoretical difficulties of determining stable and unstable
manifolds, and hyperbolic and elliptic trajectories in unsteady flows. This article offers a class of such
unsteady examples, in both two and three dimensions. Explicit expressions for the unsteady velocity
field, the time-varying elliptic and hyperbolic trajectories, and the stable and unstable manifolds are
provided. Even though (by construction) the flow is integrable, the Lagrangian parcel trajectories
can be complicated, thereby presenting a nontrivial challenge for diagnostic schemes. It should be
emphasised that these examples do not possess features such as chaotic mixing or time-dependent
transport of fluid between Lagrangian coherent structures which are of paramount interest to under-
standing fluid motion, but rather provide explicit unsteady solutions (of which there is a paucity) for
testing reliability of numerical diagnostics which are being refined for the analysis of precisely such
phenomena. The general method for the construction of these examples appears in Sec. II, with two-
and three-dimensional examples presented in Secs. III and IV, respectively. The fact that these do
indeed satisfy the theoretical requirements for hyperbolicity and stable/unstable manifolds is estab-
lished in Appendix B. Appendix A provides explanations of the concept of exponential dichotomies,
which is key to a theoretical understanding of invariant manifolds in genuinely unsteady systems.
While using this theoretical definition in real flows may be impossible, the methods outlined in this
article provide insights into its relationship with diagnostic tools. Finally, Secs. V and VI focus on
extending these examples in two physically relevant situations: if the hyperbolicity is restricted to
finite-time in some way, or if the flow separators are nonhyperbolic.

II. DEFINING UNSTEADY VELOCITY

This section outlines the development of the unsteady velocity field for which the hyperbolic
trajectory and its stable and unstable manifolds can be explicitly expressed. Let x ∈ �, where
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� is a closed and connected subset of Rn in which n = 2 or 3. This � represents the spatial
domain available for computational purposes. A steady velocity field u0(x), which need not be
incompressible, is assumed defined in �, for which the Lagrangian trajectories are given by

ẋ = u0 (x). (1)

Suppose m∗ is a stagnation point of (1), that is, u0(m∗) = 0. Define the Jacobian matrix

J = Du0
(
m∗), (2)

in which the D denotes the spatial derivative. The following hyperbolicity condition of the stagnation
point m∗ is now assumed:

(2D) If n = 2, then J has real eigenvalues λs and λu such that λs < 0 < λu.
(3D) If n = 3, then the three eigenvalues of J are in one of the following forms:

(a) they are λ1
s , λ2

s , and λu, such that Re
(
λi

s

)
< 0 for i = 1, 2, and λu > 0, or

(b) they are λ1
u , λ2

u , and λs, such that Re
(
λi

u

)
> 0 for i = 1, 2, and λs < 0.

These conditions guarantee the fact that the stagnation point m∗ possesses both a stable manifold
and an unstable manifold. In the three-dimensional case, one of these is two-dimensional and the
other is one-dimensional (the theory to be developed also works in 3D if a 2D system satisfying
the hyperbolic condition is extended to 3D through the inclusion of ż = constant; this degenerate
situation will not be explicitly discussed). The two-dimensional manifold may be associated with
two purely real eigenvalues, or a complex-conjugate pair of eigenvalues which implies rotational
behaviour on the manifold. While the eigenvectors of J only define the manifolds locally, the explicit
global stable and unstable manifolds of the stagnation point m∗ are assumed known.

Suppose additionally the flow (1) possesses a stagnation point mo (i.e., u0(mo) = 0) which has
the ellipticity condition

(2D) The point mo is locally surrounded by a family of periodic orbits of (1).
(3D) There exists a local two-dimensional manifold containing mo, in which mo is surrounded by

a family of periodic orbits of (1).

The above definition unambiguously implies rotational motion around mo in the steady flow (1).
A definition based on eigenvalues of Du0(mo) lying on the imaginary axis is avoided, since this
by itself cannot guarantee the desired rotational motion nearby. The definition used here is based
on Lagrangian trajectories of (1), sidestepping difficulties associated with Eulerian diagnostics
(vorticity, pressure, Okubo-Weiss criterion, rate-of-strain tensor, etc.) since when made unsteady,
such definitions require careful consideration (see Sec. 1 in Haller’s discussion85).

The unsteady flow built from this steady situation involves an arbitrary but invertible time-
dependent change of coordinates. This will be effected through the family of mappings Qt(x) indexed
by t ∈ R, which maps points from � to Rn . The following notation will be used for derivatives of
Qt(x):

Q̇t (x) := ∂Qt (x)

∂t
and DQt (x) := ∂Qt (xi )

∂x j
(i = 1, · · · , n; j = 1, · · · n) (3)

in which the latter is the n × n matrix derivative (Jacobian). Subject to conditions on differentiability
and invertibility (which will be satisfied due to the hypothesis to follow), the t-dependent (but
spatially independent) matrices G±(t) are defined by

G+(t) := DQt
(
m∗) and G−(t) := DQ−1

t

(
Qt
(
m∗)), (4)

in which Q−1
t is the mapping inverse to Qt, which maps points in Rn from the range of Qt to �. The

following nondegeneracy conditions are imposed on the mappings:

(a) Qt(x) has continuous second derivatives in � for each t ∈ R, and continuous first derivatives
in t for each x ∈ �;

(b) |det DQt(x)| > 0 for all t ∈ R and x ∈ �; and
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(c) for some constant β satisfying

Re
(
λi

s

)
< β < Re

(
λi

u

)
(5)

for the eigenvalues of J as described in the hyperbolicity conditions, there exists constants C1

and C2 such that the spectral norms (matrix norms) of G+ and G− are bounded according to∥∥G+(t)
∥∥ ≤ C1e−βt and

∥∥G−(t)
∥∥ ≤ C2eβt (6)

for all t ∈ R.

Condition (b) ensures that Qt is invertible at each t, and indeed for any x in the codomain of Qt,

Qt
(
Q−1

t (x)
) = x, (7)

which upon differentiating with respect to x and evaluating at Qt(m∗) immediately gives G+G− = I
(the identity). The fact that G−G+ = I is similarly obtained by interchanging Qt and Q−1

t in (7),
and hence G+ and G− are inverses of one another at any t ∈ R, that is

G−(t) = [
DQt

(
m∗)]−1

. (8)

Condition (c) requires some explanation. The existence of a β as in (5) is guaranteed, since
Re
(
λi

s

)
< 0 and Re

(
λi

u

)
> 0 (the superscript i has been included since there may be, say, two

eigenvalues with positive real part if n = 3; in this case, both these necessarily have the same real
value). For example, β = 0 will always be a legitimate choice, and in this case (6) requires that G+(t)
be chosen such that its, and its inverse’s, spectral norms are bounded. However, the less restrictive
condition (6), in which one of the norms is permitted to grow exponentially (but with exponential
rate controlled by the eigenvalues of J) in forwards time, turns out to be sufficient. It may be worth
recalling that the spectral norm (or the “natural” matrix norm, sometimes indicated by ‖ · ‖2) for
n × n real matrices G can be thought of as94

‖G‖ =
√

largest eigenvalue of
(
GT G

)
, (9)

in which the superscript T stands for the matrix transpose. More technical details on this norm are
available in Appendix A.

Based on these conditions, an unsteady velocity field for which any user-specified time-varying
hyperbolic/elliptic trajectory exists will now be constructed. This velocity u(x, t) and its associated
particle paths are defined by

ẋ = u (x, t) = Q̇t
(
Q−1

t (x)
)+ DQt

(
Q−1

t (x)
)

u0
(
Q−1

t (x)
)

(10)

for all (x, t) for which Q−1
t (x) ∈ �. It is possible to show that for the particular unsteady velocity as

given in (10), the time-varying fluid trajectory defined by

x∗(t) = Qt
(
m∗) (11)

satisfies hyperbolicity. While filling in the details of such hyperbolicity requires a little work (see
Appendix B), the basic reason this works is that if the invertible nonlinear transformation

m(t) = Q−1
t (x(t)) (12)

is applied to (10), then (1) results. In other words, the flow of (10) is steady in a frame moving
according to (12), and therefore all flow structures of (1) can be mapped to those in (10) via mapping
using (12) and its inverse

x(t) = Qt (m(t)). (13)

It is easy to verify that this transformation leads to (10) by taking the t-derivative of (13), by utilising
ṁ = u0 (m) since the m-coordinate satisfies the steady flow (1), and then by substituting for m
in terms of x from (12). Verification of the fact that (11) is a hyperbolic trajectory in the sense
of exponential dichotomies requires more work, and it is here that (6) becomes necessary (details
are relegated to Appendix B). Thus, the stable and unstable manifolds of the hyperbolic trajectory
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(11) of (10) can be explicitly obtained by applying the inverse transformation (13) to the known
manifolds in the m-frame.

Now, the elliptic point mo under this transformation goes to the trajectory

xo(t) = Qt
(
mo
)
. (14)

Defining ellipticity for trajectories of unsteady flows is contentious (see the discussion by Haller85),
but (14) corresponds to an elliptic trajectory of (10) in the following sense. The periodic trajectories
surrounding the stagnation point mo of (1) are mapped by the inverse transformation (13) to a
collection of trajectories which circle around xo(t). Due to unsteadiness, these do not necessarily
form periodic orbits of (10), but still remain slaved to xo(t) by the smoothness of the transformation
(13). Therefore, in the sense of possessing an open two-dimensional manifold of points surrounding
xo(t) at each time t which, as time evolves, continues to rotate about xo(t), the trajectory xo(t) can
be thought of as elliptic. Indeed, the transformation (13) includes affine transformations of the form
A(t)x + b(t) that are used in continuum mechanics to define objectivity: a quantity invariant under
such a transformation is defined to be objective.95, 96 If a definition for ellipticity is objective, then
when mo transforms to xo(t) under such a transformation, xo(t) must also remain elliptic.

A particularly simple sub-case is if Qt(x) = x + ct; this relates to a moving frame travelling at
a constant velocity c. It is worth noting that in this instance the flow (10) is

ẋ = u0 (x − ct) + c, (15)

whose instantaneous stagnation points have nothing to do with the true hyperbolic entity of interest,
which is x∗(t) = m∗ + ct from (11). This highlights the futility of investigating potential flow
regulators in unsteady flows by examining the behaviour of instantaneous stagnation points, which
fails even in the simplest situation of a steadily translating frame.

In the full situation for general Qt(x), seemingly unruly Lagrangian motion for fluid structures
(fluid parcels, hyperbolic/elliptic trajectories, stable/unstable manifolds) can be created, in which
the motion of these structures is nevertheless known exactly. Such models will form useful testbeds
for numerical methods for tracking important flow structures which move unsteadily with time. It
should however be noted that arbitrarily complicated transport and mixing is not achievable in (10),
since the trajectories collectively remain topologically consistent with those of the steady flow (1).

III. 2D EXAMPLES

The Duffing equation is a standard example in nonlinear oscillator theory,97 but also has
been used in fluid mechanics as a testbed for double-gyres59, 63, 98–101 and capillary liquid
oscillations.102, 103 At its simplest, the steady Duffing flow is given by the steady streamfunction
ψ(x, y) = − x2

2 + x4

4 + y2

2 with the associated flow trajectories obeying

ẋ = ∂ψ

∂y
= y

ẏ = −∂ψ

∂x
= x − x3

⎫⎪⎪⎬
⎪⎪⎭. (16)

This has a saddle stagnation point at the origin associated with two homoclinic trajectories forming
a “bow-tie” manifold structure enclosing two gyres. See Figure 1 for a picture of the streamlines;
the flow along all the closed streamlines is in a clockwise sense, and the manifolds are shown by
the thick curve. These manifolds are collectively defined by ψ(x, y) = 0, that is, by the curve

y2 = x2

(
1 − x2

2

)
. (17)

The Duffing flow (16) also possesses two elliptic points, mo
1 ≡ (1, 0) and mo

2(−1, 0), around which
nearby trajectories rotate. Equations (16) and (17) represent the flow in the m-frame, with u0 as
given in (16).
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FIG. 1. The flow of the steady version of Duffing’s equation (16), with the “bow-tie” manifold structure shown as the thick
curve.

As a first example of an unsteady flow derived from this, consider the class of transformations

Qt (x) = A(t) x + b(t) (18)

for n × n matrices A and n × 1 vectors b, both of which are smooth in t. Considering such affine
transformations is motivated by the “objectivity criteria” from continuum mechanics; conditions
which are invariant under transformations of the form (18) are defined to be “objective,” and hence
of intrinsic importance.95, 96 It is easy to see that for affine transformations (18), the nondegeneracy
conditions are associated with det A(t) �= 0, and that G+(t) = ‖A(t)‖ and G−(t) = ‖A−1(t)‖. As a
particular example of transformations of the form (18), consider

Qt (x, y) = (sin 7t + 2)

(
cos π t − sin π t
sin π t cos π t

)(
x
y

)
+
(

t
t − t2

3

)
. (19)

In this case, det A(t) = (sin 7t + 2)2, ‖A(t)‖ = |sin 7t + 2| and ‖A−1(t)‖ = |sin 7t + 2|−1. The matrix
norms are both bounded, and hence satisfy the condition (6) with β = 0. This form of A(t) achieves
rotation with frequency π coupled with pulsation with frequency 7. Using (10), the associated flow
is

ẋ = cos π t
[(

t2 − 3t + 3y
)

cos π t + 3 (t − x) sin π t
]

3
− π

3

(
t2 − 3t + 3y

)− 7 (t − x) cos 7t

sin 7t + 2
+ 1

−
sin π t

[(
3 (t −x) cos π t −(t2−3t +3y

)
sin π t

)3+9
(
t2−3t +3y

)
(sin 7t +2)2 sin π t −27 (t −x) (sin 7t +2)2 cos π t

]
27 (sin 7t + 2)2

ẏ = sin π t
[(

t2 − 3t + 3y
)

cos π t + 3 (t − x) sin π t
]

3
+ π (x − t) − 2t

3
+ 7

(
t2 − 3t + 3y

)
cos 7t

3 (sin 7t + 2)
+ 1

+
cos π t

[(
3 (t −x) cos π t −(t2−3t +3y

)
sin π t

)3+9
(
t2−3t +3y

)
(sin 7t +2)2 sin π t −27 (t −x) (sin 7t +2)2 cos π t

]
27 (sin 7t + 2)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(20)
The evolution of the elliptic trajectories of (20), from (14), is given by

xo
1,2(t) =

( ± (sin 7t + 2) cos π t + t
± (sin 7t + 2) sin π t + t − t2

3

)
(21)
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FIG. 2. Five snapshots in time of the manifolds associated with (20) the Duffing equation with transformation (19).

with the plus and minus signs being associated with the elliptic trajectories “1” and “2” respectively.
From (11), the hyperbolic trajectory of (20) moves according to

x∗(t) =
(

t
t − t2

3

)
, (22)

and the bow-tie invariant manifolds structure associated with it evolves according to

[
3 (t − x) sin π t + (

t2 − 3t + 3y
)

cos π t

3 (x − t) cos π t + (
t2 − 3t + 3y

)
sin π t

]2

= 1 −
[
3 (x − t) cos π t + (

t2 − 3t + 3y
)

sin π t
]2

18 (sin 7t + 2)2 .

(23)
Some time slices of the manifolds as given in (23) are shown in Figure 2 to illustrate these features.

As a second and more general illustration of an unsteady flow, set

Qt (x, y) =
(

tanh (x + ey sin t)

x − t2 − 3ey

)
, (24)

a fully nonlinear transformation. This satisfies the nondegeneracy requirements: det DQt

= −ey sech2(x + eysin t)(3 + sin t) is never zero, and moreover

G+(t) =
(

sech2 (sin t) sin t sech2 (sin t)
1 −3

)
and G−(t) = 1

3 + sin t

(
3 cosh2 (sin t) sin t
cosh2 (sin t) 1

)
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FIG. 3. Evolution of the first elliptic trajectory (solid curve) associated with the transformation (24), and several nearby
trajectories (dashed curves).

have bounded entries for all t. The corresponding velocity field associated with this transformation
is given by

ẋ = (
1 − x2

) [
ln

tanh−1 x − y − t2

3 + sin t
+ tanh−1 x − y − t2

3 + sin t
cos t

]

+
(1 − x2)

(
tanh−1 x − y − t2

) (
3 tanh−1 x + [

t2 + y
]

sin t
) (

[3 + sin t]2 − [
3 tanh−1 x + (

t2 + y
)

sin t
]2)

(3 + sin t)4

ẏ = −2t + ln
tanh−1 x − y − t2

3 + sin t

−
3
(
tanh−1 x − y − t2

) (
3 tanh−1 x + [

t2 + y
]

sin t
) (

[3 + sin t]2 − [
3 tanh−1 x + (

t2 + y
)

sin t
]2)

(3 + sin t)4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(25)
Using (14), it can be shown that the unsteady elliptic trajectories follow the paths

xo
1(t) =

(
tanh (1 + sin t)

−2 − t2

)
and xo

2(t) =
(− tanh (1 − sin t)

−4 − t2

)
. (26)

In Figure 3, the evolution of xo
1 (solid curve) and of several nearby trajectories (dashed curves)

are shown. The nearby trajectories remain close for all time, and appear to be “crossing” the
elliptic trajectory. Indeed, by construction, all nearby trajectories will revolve around the elliptic
trajectory. On the other hand, if only observing the time-evolution of these trajectories, it is difficult
to distinguish the elliptic trajectory—hence the difficulty in defining elliptic trajectories for such
unsteady situations. The explicit expressions (26) however are exact elliptic trajectories for (25), and
can be used for testing assorted numerical diagnostics.

The hyperbolic trajectory associated with the transformation (24) follows

x∗(t) =
(

tanh (sin t)
−3 − t2

)
, (27)
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FIG. 4. Several time slices of the heteroclinic manifold structure of the Duffing equation subject to the transformation (24).

and its heteroclinic manifold structure evolves with time explicitly according to

(3 + sin t)2

(
ln

tanh−1 x − y − t2

3 + sin t

)2

= (
3 tanh−1 x + [

t2 + y
]

sin t
)2

(
1 −

(
3 tanh−1 x + [

t2 + y
]

sin t
)2

2 (3 + sin t)2

)
. (28)

Several time slices of these manifolds are shown in Figure 4. A good diagnostic method should
be able to recover these explicitly known manifolds, hyperbolic trajectories and elliptic trajectories
from the velocity field (25).

IV. 3D EXAMPLES

Hill’s spherical vortex104 is a classical steady three-dimensional entity, and a prototypical exam-
ple which illustrates the generic integrability105 of three-dimensional steady Euler flows. While well
understood in its simplest form, it continues to be a useful testbed for three-dimensional flows mod-
elling spherical vortices and bubbles,106–109 their stability,110–112 transport mechanisms,22, 74, 113–115

and visualisation.116 Most conveniently expressed in terms of a Stokes streamfunction in spherical
polar coordinates,104 the flow of the no-swirl Hill’s spherical vortex is expressed in Cartesian co-
ordinates in (C1)+(C2). It has positive parameters c and U with length and velocity dimensions,
respectively. The main flow structure of the flow in (C1)+(C2) is illustrated in Figure 5. The flow
has two hyperbolic stagnation points, corresponding to the north and the south pole of the sphere
S defined by x2 + y2 + z2 = c2. The north pole has a one-dimensional stable manifold with two
branches: {(x, y, z): x = y = 0 and z > c} and {(x, y, z): x = y = 0 and − c < z < c}. The first of
these is a straight line going to +∞ along the z-axis, while the second lies along the interior axis
of S and approaches the south pole. The north pole also has a two-dimensional unstable manifold
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FIG. 5. A schematic of the stagnation points and their invariant manifolds in the steady Hill’s spherical vortex.

which is the sphere S punctured at the poles. The eigenvalue associated with its one-dimensional
stable manifold can be easily computed to be λs = −3U/c, and the (repeated) eigenvalue associated
with its two-dimensional unstable manifold is λu = 3U/(2c). Trajectories on this sphere are south-
wards along the longitudes. The south pole is analogous but with the stability interchanged, with its
two-dimensional stable manifold being exactly the unstable manifold of the north pole, and it is a
one-dimensional unstable manifold consisting of the branches {(x, y, z): x = y = 0 and z < −c} and
{(x, y, z): x = y = 0 and − c < z < c}, the latter of which coincides with a branch of the stable
manifold of the north pole. Thus, the hyperbolic trajectories of the steady flow (C1)+(C2) are the
north and south poles, given by

x∗
n = (0, 0, c)T and x∗

s = (0, 0,−c)T , (29)

in which the subscripts represent the north and south hyperbolic trajectories. The associated two-
dimensional manifold structure is a heteroclinic manifold connecting the two hyperbolic points in
(29), and given by

x2 + y2 + z2 = c2, (30)

in which the points associated with (29) need to be excluded. The one-dimensional manifold is the
z-axis, once again excluding the hyperbolic points.

Hill’s spherical vortex also possesses a ring of stagnation points given by the curve

E =
{

(x, y, z) : z = 0 and x2 + y2 = c2

2

}
. (31)

The axisymmetry of Hill’s spherical vortex ensures that the trajectories in each azimuthal plane
are identical, and since E intersects such a plane at exactly one point around which there is a one-
parameter family of periodic trajectories, each point of E may be considered elliptic. For a chosen
transformation leading to an unsteady flow (10), it is now easy to determine the hyperbolic, elliptic,
and invariant manifold structures.

As a first example, suppose

Qt (x, y, z) =

⎛
⎜⎝

−2 7 − 5 cos Ut
c 0

1 4 0

0 0 −3

⎞
⎟⎠
⎛
⎜⎜⎝

2 + sin Ut
c 0 0

0 3 − cos 4Ut
c 0

0 0 7

⎞
⎟⎟⎠
⎛
⎜⎝

x

y

z

⎞
⎟⎠+

⎛
⎜⎜⎝

c cos Ut
c

3c sin Ut
c
√

2

2c2√
c2+U 2t2

⎞
⎟⎟⎠ ,

(32)
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FIG. 6. The evolution of the ring of elliptic points in Hill’s spherical vortex transformed using (32), that is, for the flow given
by (C3)+(C4), for the parameter choice U = 1, c = 1, μ = −1/2, and ω = 2π .

which is in the form of transformation (18) related to objectivity. Now

det DQt = 105

(
3 − cos

Ut

c

)(
2 + sin

Ut

c

)(
3 − cos

4Ut

c

)

is never zero, and moreover ‖G±(t)‖ is bounded for all t since each matrix consists of bounded
elements. This is hence a legitimate transformation to use, and its associated unsteady velocity field
is given in (C3)+(C4). Important features of this unsteady flow can now be expressed explicitly by
applying the transformation Qt to the corresponding known entities of the steady flow (C1)+(C2).
For example, the family of elliptic points, parametrised by θ ∈ [0, 2π ), follows the trajectories

xo
θ (t) =

⎛
⎜⎜⎜⎜⎝

√
2c cos θ

(
sin
(

tU
c

)+ 2
)+ c sin θ(5 cos( tU

c )−7)(cos( 4tU
c )−3)√

2
+ c cos

(
tU
c

)
c cos θ(sin( tU

c )+2)√
2

− 2
√

2c sin θ
(
cos

(
4tU

c

)− 3
)+ 3c sin

(
tU√

2c

)
2c√

t2U2

c2 +1

⎞
⎟⎟⎟⎟⎠. (33)

The surface traced out by evolving these elliptic points in time is shown in Figure 6. The two
hyperbolic trajectories are

x∗
n(t) =

⎛
⎜⎜⎝

c cos Ut
c

3c sin Ut
c
√

2

−21c + 2c2√
c2+U 2t2

⎞
⎟⎟⎠ and x∗

s (t) =

⎛
⎜⎜⎝

c cos Ut
c

3c sin Ut
c
√

2

21c + 2c2√
c2+U 2t2

⎞
⎟⎟⎠, (34)
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and the two-dimensional heteroclinic manifold structure evolves according to⎛
⎝ z − 2c2√

c2+U 2t2

21

⎞
⎠

2

+
(

x + 2y − c cos Ut
c − 6c sin Ut

c
√

2

5
(
cos Ut

c − 3
) (

cos 4Ut
c − 3

)
)2

+
⎛
⎝4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

]
5
(
cos Ut

c − 3
) (

2 + sin Ut
c

)
⎞
⎠

2

= c2. (35)

While this is an ellipsoid at each instance in time, its axis lengths and orientations are changing with
respect to time. This was accomplished by using a product of two matrices in the transformation
(32): the second (diagonal) matrix causes the axis lengths to pulsate, while the first matrix provides
a mechanism for the relative orientation between the axes to change quasi-periodically. Meanwhile,
the one-dimensional part of the manifold structure continues to be the straight line connecting the
two hyperbolic trajectories, and can be represented parametrically by

r(s, t) =

⎛
⎜⎝

c cos Ut
c

3c sin Ut
c
√

2
2c2√

c2+U 2t2 − 21s

⎞
⎟⎠ (36)

at each instance in time t, in which s ∈ R is the parametric coordinate.
As a second example which corresponds to a genuinely nonlinear transformation, consider

Qt (x, y, z) =

⎛
⎜⎜⎝

eμt

c4
(z − 3c) (x + 3c)3

eμt (2 + cos (ωt)) tan−1 y

4c
eμt ez/c

⎞
⎟⎟⎠, (37)

in which μ and ω are two parameters. It can be shown that invertibility is satisfied within the
time-varying domain[(

xe−μt

log z − 3 − tμ

)1/3

− 3

]2

+ [
ln
(
ze−μt

)]2 + 16 tan2 ye−μt

2 + cos ωt
< 4, (38)

which is a subset of z > 0; see Appendix C. For the two hyperbolic trajectories, one can calculate
that ∥∥G+

n,s(t)
∥∥ = K +

n,s

1

c2
e2μt and

∥∥G−
n,s(t)

∥∥ ≤ K −
n,sc2e−2μt (39)

for explicit constants K ±
n,s as shown in Appendix C. Thus, the nondegeneracy condition (6) is

achievable if μ is chosen to satisfy

− 3U

4c
< μ <

3U

4c
. (40)

The velocity field corresponding to this transformation is given in equations (C8)+(C9), and the
following discussion on flow structures is in relation to this unsteady flow. The evolution of the
family of elliptic trajectories can be given explicitly by

xo
θ (t) =

⎛
⎜⎜⎝

− 3
8 eμt

(
6 + √

2 cos θ
)3

eμt (2 + cos ωt) tan−1
(

sin θ

4
√

2

)
eμt

⎞
⎟⎟⎠. (41)

The relevant hyperbolic trajectories are

x∗
n(t) =

⎛
⎝−54 eμt

0
eμt+1

⎞
⎠ and x∗

s (t) =
⎛
⎝−108 eμt

0
eμt−1

⎞
⎠, (42)
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FIG. 7. The heteroclinic manifold for Hill’s spherical vortex transformed using (32), that is, for the flow given by (C3)+(C4),
for the parameter choice U = 1, c = 1, μ = −1/2, and ω = 2π . The four panels show (a) t = −1, (b) t = −0.5, (c) t = 0, and
(d) t = 0.5.

and the two-dimensional heteroclinic manifold structure evolves according to[(
xe−μt

log z − 3 − tμ

)1/3

− 3

]2

+ [
ln
(
ze−μt

)]2 + 16 tan2 ye−μt

2 + cos ωt
= 1. (43)

This is now not a standard ellipsoid at each time instance, but a more general closed surface.
Illustrations of the heteroclinic structure is presented in Figure 7 at various instances in time. The
one-dimensional manifold structure (the z-axis in the steady Hill’s flow) for the unsteady flow
(C8)+(C9) is the curve given parametrically by

r(s, t) =

⎛
⎜⎝

27(s−3c)eμt

c

0

es/ceμt

⎞
⎟⎠, (44)

where s ∈ R is the parameter. This is now a curved entity at each time t.
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V. FINITE-TIME CONSTRUCTIONS

As well understood, real flows (observational data, or experimentally or numerically generated
velocity fields) are by their very nature not infinite-time objects. However, for a theoretical definition
of hyperbolic trajectories, exponential decay estimates as time progresses to infinity are needed (see
Appendix A). Obtaining finite-time versions of these definitions, applicable for example in real
flows in which flow barriers appear to exist on the meso-scale, continues to be an intense area of
study.5, 22, 55, 57, 64 Asserting that the exponential dichotomy estimates in (A4) occur only on finite
times5, 22 is equivalent to the statement that the relevant quantities are bounded by choosing the
prefactors in (A4) to be sufficiently large, which then fails to pick up on decay rates. One approach is
to define Lagrangian coherent structures42, 55, 57 (which are proxies for manifolds), typically defined
as entities associated with maximum decay rates over a specified time. Many other diagnostic
techniques for identifying flow barriers have their own versions designed for different types of
finite time limitations.20, 37, 60, 63, 70, 74 Several theoretical methods also venture into the finite-time
realm, but differ in their interpretation of what finite-time means. Some deal with flow maps
over a finite duration,55, 70, 117 others examine flows which diverge from an infinite-time flow field
in some specified time-dependent fashion23, 118 and yet others focus on issues of defining finite-
time hyperbolicity.55, 119, 120 These offer several ideas on how to extend the infinite-time models
constructed previously to finite-time situations.

A. Departing forms

Any numerical method is of necessity confined to some finite closed spatial domain, say S. If Qt

in constructing u is chosen so that a relevant hyperbolic trajectory leaves S at a certain time instance,
this can be construed a temporary hyperbolic structure in relation to S. This can be easily realised
by choosing an additive term in Qt which is unbounded in time, as in the first Duffing example (19)
which results in an unbounded hyperbolic trajectory (22). Now if the computational domain were S
= [− 10, 10] × [− 10, 10], say, the hyperbolic trajectory would exit S by t = 10. A strong diagnostic
method should be able to capture these structures while they are within the computational domain.
This scenario can be complicated by choosing an additive term such that the hyperbolic trajectory
departs from S and then returns, possibly repeating this process several times.

B. Transitory forms

Here, one takes any of the models built previously, with velocity field u(x, t), and adds it to
a known steady flow U(x) in a transitory way. This is achieved by setting u to zero outside a finite
interval [T1, T2], i.e.,

ẋ = U(x) + [H (t − T1) − H (t − T2)] u(x, t), (45)

in which H is the Heaviside (unit-step) function. This accomplishes the appearance of the relevant
hyperbolic structure within the time [T1, T2], on top of any such structures that exist for all time
corresponding to U. While the transitory structures do not obey exponential dichotomy conditions,
models of the form (45) form a nice paradigm for transitory hyperbolic structures in 2D or 3D
flows. One could, of course, add arbitrarily many such transitory elements to (45), operating over
different time intervals at different locations. Such “transitorily hyperbolic” trajectories will satisfy
finite-time diagnostics such as mesohyperbolicity,60 which attempts to identify trajectories which
are hyperbolic on average over a given time interval. Smoother transitory structures are obtainable
by replacing the box function H(t − T1) − H(t − T2) in (45) by a smoothened version, which either
decays only at infinity (e.g., a Gaussian), or which smoothly approaches zero at finite endpoints.
An interesting scenario emerges if this function were replaced by sin ωt; within each sign definite
time-interval associated with this, there would be transitorily hyperbolic decay, which then reverses
direction in the next time interval.

Such examples are suggestive testbeds for practitioners seeking explicit examples for testing
diagnostic methods for locating finite-time manifolds. Whatever their definition happens to be, these
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do act as temporary flow barriers or regulators, and the methods of this article apparently offer a
method for developing explicit examples which mimic this behaviour in a certain way.

VI. NONHYPERBOLIC CONSTRUCTIONS

As discussed in the Introduction, there is another class of important flow separators which has
relevance in flows: those which are nonhyperbolic. To the author’s knowledge, there is as yet no
accepted definition for these entities in unsteady flows. Since many diagnostic methods (in particular,
finite-time Lyapunov exponents) use exponential decay as an essential part of their algorithm, these
too are unlikely to recover these flow barriers. By modifying the examples of this article, it is possible
to generate models which by construction have nonhyperbolic time-varying trajectories which have
attached to them flow separating invariant manifolds.

A. Nonhyperbolicity in steady flow

For the steady flow u0(x), consider the system ẋ = −x3, ẏ = y3 as discussed in the Introduction;
this possesses a saddle-like stagnation point at (0, 0) which is nevertheless not hyperbolic in the sense
of the linearisation matrix J. Consider an invertible map Qt(x) which does not necessarily satisfy the
nondegeneracy condition (6), from which an unsteady flow (10) is generated. For example, either of
the maps (19) or (24) could be used for Qt(x). Now, flow structures of the steady flow are mapped
to those of the unsteady flow, and thus Qt(0) is a specialised trajectory of (10) to which is attached
important flow separators: Qt (x-axis) is the stable manifold and Qt (y-axis) the unstable manifold.
These are nonhyperbolic in general, and cannot be defined theoretically or identified diagnostically
by using exponential decays, but are still flow barriers. A similar construction can be made for a
three-dimensional example, by starting with a steady situation with degenerate linearisation and
applying a transformation Qt(x) to it.

As a specific example of such a construct, consider the following modification of the Duffing
flow, which shall be called the nonhyperbolic Duffing flow:

ẋ = y
ẏ = x3 − x5

}
. (46)

The stagnation point x∗ at the origin is nonhyperbolic, but the nearby behaviour is easily obtained
since (46) is associated with a steady streamfunction ψ(x, y) = − x4

4 + x6

6 + y2

2 , whose contours are
shown in Figure 8. The important separating curve between the interior vortices and the exterior
is given by ψ(x, y) = 0, and is indicated by the bold red curve which becomes tangential to itself
at the origin. This is the “heteroclinic structure” associated with the nonhyperbolic point x∗ = (0,
0), which is nonetheless an important flow trajectory since its accompanying manifolds form an
important flow boundary. The elliptic trajectories of (46) are the points (− 1, 0) and (1, 0) as before.
Now, suppose the transformation (24) were used, leading to the unsteady flow

ẋ =
(
1 − x2

)
sin t

(
tanh−1 x − y − t2

) (
[3 + sin t]2 − [(

t2 + y
)

sin t + 3 tanh−1 x
]2) ([

t2 + y
]

sin t + 3 tanh−1 x
)3

(3 + sin t)6

+
(

1 − x2
)[

ln
tanh−1 x − y − t2

3 + sin t
+ cos t

(
tanh−1 x − y − t2

)
3 + sin t

]

ẏ = −2t + ln
tanh−1 x − y − t2

3 + sin t

+
3
(
y + t2 − tanh−1 x

) (
[3 + sin t]2 − [

(t2 + y) sin t + 3 tanh−1 x
]2) ([

t2 + y
]

sin t + 3 tanh−1 x
)3

(3 + sin t)6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(47)
Using (14), it can be shown that the unsteady elliptic trajectories of (47) follow the paths

xo
1(t) =

(
tanh (1 + sin t)

−2 − t2

)
and xo

2(t) =
(− tanh (1 − sin t)

−4 − t2

)
. (48)
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FIG. 8. The flow of the steady version of the nonhyperbolic Duffing equation (46), with deformed bow-tie manifold structure
shown as the thick curve.

The specialised trajectory playing the role of the hyperbolic trajectory of (47) follows

x∗(t) =
(

tanh (sin t)
−3 − t2

)
, (49)

and its heteroclinic manifold structure evolves with time explicitly according to

(3 + sin t)4

(
ln

tanh−1 x − y − t2

3 + sin t

)2

= (
3 tanh−1 x + [

t2 + y
]

sin t
)4

(
1

2
−
(
3 tanh−1 x + [

t2 + y
]

sin t
)2

3 (3 + sin t)2

)
. (50)

These are important flow structures in the flow (47), demarcating regions of distinct motion and hence
identifying LCSs associated with (47). Nevertheless, they cannot be recovered using techniques such
as FTLEs since exponential decay does not occur; (49) is not hyperbolic in the sense of exponential
dichotomies. An interesting question would be whether any diagnostic technique could recover these
nonhyperbolic flow separating entities.

B. Nonhyperbolicity in transformation

If the nondegeneracy conditions (5) and (6) were not satisfied, the proof of hyperbolicity (as es-
tablished in Appendix B) would fail. The second map (37) used to adapt Hill’s spherical vortex gives
an immediate example: if one chooses μ to not satisfy (40), then hyperbolicity is not inherited by
the transformed northern and southern specialised trajectories. On the other hand, these trajectories
continue to be important players in the unsteady flow (C8)+(C9), since they live in the congru-
ence of the important flow separators (43) and (44). Commonly used methods such as finite-time
Lyapunov exponents are unlikely to recover these flow structures since they are unrelated
to exponential decay. The efficacy of more recently developed methods such as minimum
curve length increase,72 ergodic quotient,74 finite-time entropy,73 topological braids,71 or Perron-
Frobenius/Koopman operator methods61, 65–70 on locating nonhyperbolic but significant trajectories
can be tested through this example in which μ does not satisfy (40).
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The first of these methods is particularly easy to implement to create unsteady nonhyperbolic
invariant manifolds, which would form excellent examples for testing diagnostic methods’ efficacy
in recovering nonhyperbolic flow entities. Recently, developing methods which do not necessarily
create their algorithms based on exponential decay rates71–74 are possible contenders; establishing
ability to recover nonhyperbolic Lagrangian coherent structures would enhance their applicability.
These classes of models could also be useful in helping define such nonhyperbolic flow separators
in unsteady flows.

VII. CONCLUDING REMARKS

With a view to providing testbeds for elliptic trajectories, hyperbolic trajectories and their invari-
ant manifolds in genuinely unsteady two- and three-dimensional flows, this article has so far outlined
a method for developing an explicit class of such examples in infinite-time situations. By following
the construction of an unsteady flow as given in (10), it is possible to obtain explicit expressions for
the time evolution of these important flow entities. Since the definition of a hyperbolic trajectory—
the unsteady analogue of a stagnation point—is not obvious in many instances, a careful explanation
of such a definition (in terms of exponential dichotomies) has been provided in Appendix A.
While this definition is extremely difficult to use in any given flow, it was shown that the specific
trajectories generated by the methods of this article were indeed hyperbolic. A variety of examples
has been given, which can easily be built upon by following the procedure outlined if more compli-
cated examples are needed. It should be noted that the class of examples in this article is developed
specifically from steady flows, and as such does not provide examples in which chaotic mixing
occurs, even though complicated Lagrangian trajectories can be achieved by choosing complicated
maps Qt(x) in (10).

The preceding discussion indicates that the models developed here can be extended in several
ways with hardly any additional work. First, any known steady flow which has desired flow kinemat-
ics can be used for the steady Euler flow u0, and corresponding unsteady flows generated from (10).
Second, the freedom of choosing the maps Qt(x) enables one to exemplify a large range of behaviours
(such as highly oscillatory hyperbolic trajectories, time scale separations in rotation/translation/axis-
reorientation, seemingly erratic flow trajectories, warping of invariant manifolds, etc). Third, the
models are easily extended to finite-time and nonhyperbolic situations as discussed in Secs. V and VI,
providing explicit knowledge of important flow structures in a more realistic class of problems for
which theoretical and diagnostic methods are continuing to be developed. This class of models can
therefore be highly useful as more sophisticated diagnostic tools are developed in the quest for
understanding flow barriers in complex time-varying two- and three-dimensional flows.
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APPENDIX A: TECHNICAL DEFINITIONS

1. Hyperbolicity

The idea is to decide whether trajectory x∗(t) of a general unsteady (non-autonomous)
n-dimensional system

ẋ = u (x, t) (A1)

is hyperbolic. To examine “nearby” motion, define a solution to (A1) by x(t) = x∗(t) + y(t), and
confine attention to when y(t) is small (i.e., linearise around x∗(t)). Substituting in (A1), utilising
Taylor expansions along with the fact that x∗(t) is also a solution to (A1), and neglecting terms of
order |y|2 leads to the variational system

ẏ = Du
(
x∗(t), t

)
y. (A2)
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The matrix derivative Du above is evaluated along the purported hyperbolic trajectory x∗(t) and
general time t. Now, the definition for a trajectory being hyperbolic is:

� A solution x∗(t) of (A1) is a hyperbolic trajectory of (A1) if its variational system (A2)
possesses an exponential dichotomy, with projection matrix P being neither the identity nor the
zero matrix.

2. Exponential dichotomies

A linear system of the form

ẏ = B(t) y (A3)

for a time-varying n × n matrix B(t) is said to possess an exponential dichotomy16, 39, 40 if there exists
an n × n projection matrix P and positive constants K1, K2, α1, and α2 such that a n × n fundamental
matrix solution Y(t) to (A3) satisfies∥∥Y (t)PY −1(s)

∥∥ ≤ K1 e−α1(t−s) for t ≥ s and∥∥Y (t) (I − P) Y −1(s)
∥∥ ≤ K2 e−α2(s−t) for s ≥ t

⎫⎬
⎭. (A4)

3. Fundamental matrix solution

The fundamental matrix solution Y(t) of (A3) is the n × n matrix solution to

Ẏ = B(t) Y (t), Y (s) = Ys . (A5)

The “initial” condition for the matrix is posed at t = s, and the matrix initial condition Ys is assumed
to possess linearly independent columns. Since the evolution of each of the linearly independent
column vectors of Ys (which form a basis for Rn) are simultaneously captured in the fundamental
matrix solution Y(t) of (A5), all solutions to (A3) are captured by Y(t). If y(s) = ys is any n × 1
vector initial condition to (A3), it is easy to verify that the corresponding solution at time t to (A3)
can be expressed in terms of the fundamental matrix solution by

y(t) = Y (t) Y −1(s) ys . (A6)

4. Matrix norm

The matrix norm used in (A4) is the “2-norm” induced by the standard Euclidean norm on
vectors in Rn . For n × n matrices G, this norm is defined by

‖G‖ = sup
w�=0

‖Gw‖
‖w‖ . (A7)

The “sup” indicates the “supremum” over all vectors in Rn , and each of the norms on the right-hand
side of (A7), being applied to vectors in Rn , is the standard Euclidean “2-norm” (distance norm)
given component-wise by

‖w‖ =
√

w2
1 + w2

2 + · · · + w2
n. (A8)

It turns out94 that for real matrices, the definition (A7) is equivalent to (9), that is, the square-root
of the largest eigenvalue of GTG. (It should be noted that the eigenvalues of GTG are real and
non-negative.)

5. Projections and intuition regarding exponential dichotomies

The n × n matrix P is a projection defined by P2 = P, and is associated with the projection
operator to the stable manifold at time s. The constant α1 is the decay rate associated with the stable
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manifold, as can be seen as follows. If w is an arbitrary n × 1 vector and if t ≥ s, then∥∥Y (t)Y −1(s)Y (s)Pw
∥∥ = ‖Y (t)Pw‖ = ‖Y (t)P Pw‖ = ∥∥Y (t)PY −1(s)Y (s)Pw

∥∥
≤ ∥∥Y (t)PY −1(s)

∥∥ ‖Y (s)Pw‖
≤ K1e−α1(t−s) ‖Y (s)Pw‖ , (A9)

where the second and third equalities use the fact that P2 = P and Y−1Y = I, the next inequality
utilises the matrix norm as defined in (A7) applied to the matrix Y(t)PY−1(s) and the vector Y(s)Pw,
and the final inequality the first exponential dichotomy condition (A4). Now, imagine (A3) subject
to the initial condition y(s) = Y(s)Pw. Then, using (A6) and (A9) can be written as

‖y(t)‖ ≤ K1e−α1(t−s) ‖y(s)‖ ift ≥ s. (A10)

This gives a pleasing intuitive interpretation of the first exponential dichotomy condition in (A4). The
solution y(t) corresponding to an initial condition chosen in the range of P, decays exponentially with
t. Thus, in the time slice t = s, P projects onto the stable manifold. In the autonomous situation (that
is, if B(t) in (A3) does not depend on t), the α1 in (A10) is associated with the stable eigenvalue(s)
of B. This is relevant to the original steady flow (1) that forms the backbone for the unsteady flows
constructed in this article, since the linearisation of (1) about the stagnation point m∗ is

ẏ = J y, (A11)

which is in the form of (A3) with B(t) = J. Here, (A10) can be interpreted with α1 = −Re
(
λi

s

)
,

and P represents the projection onto the linear stable subspace of the origin. Now, I represents the
n × n identity, and so I − P is the complementary space associated with P, and thus the second
equation in (A4) indicates that there is exponential decay in backwards time t in this direction. Once
again, if B(t) = J, this means that α2 = Re

(
λi

u

)
. Thus, in the steady case the two equations in (A4)

represent the exponential decays associated with the stable and unstable manifolds. The conditions
(A4), therefore, provide an intuitively pleasing method to extend such hyperbolicity to unsteady
flows.

APPENDIX B: ESTABLISHING HYPERBOLICITY OF (11)

It was claimed in Sec. II that (11) is a hyperbolic trajectory of the complicated unsteady flow
(10). To check this, the matrix B(t) associated with the linearised system in the form (A3) needs to
be formed by finding the spatial derivative of u(x, t) in (10), and then evaluating at (x∗(t), t). So from
(10),

Du (x, t) = DQ̇t
(
Q−1

t (x)
)

DQ−1
t (x) + D2Qt

(
Q−1

t (x)
)

DQ−1
t (x) u0

(
Q−1

t (x)
)

+DQt
(
Q−1

t (x)
)

Du0
(
Q−1

t (x)
)

DQ−1
t (x) ,

in which D2Qt is the n × n × n tensor second-derivative of g and DQ−1
t is the n × n spatial derivative

of Q−1
t . By evaluating at x∗(t) as given in (11),

Du
(
x∗(t), t

) = DQ̇t
(
m∗) DQ−1

t

(
Qt
(
m∗))+ DQt

(
m∗) Du0

(
m∗) DQ−1

t

(
Qt
(
m∗))

= DQ̇t
(
m∗)G−(t) + G+(t) J G−(t)

since u0(m∗) = 0, and by using the definitions (2) and (4). The variational equation
ẇ = Du (x∗(t), t) w becomes

ẇ = [
DQ̇t

(
m∗)G−(t) + G+(t) J G−(t)

]
w. (B1)

Exponential dichotomy conditions are not immediately obvious for (B1). However, define

z(t) = G−(t)w(t), (B2)
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and hence w(t) = G+(t)z(t). Thus ẇ = DQ̇t (m∗) + G+(t)ż, enabling (B1) to be written in terms of
the z variable as

ż = J z. (B3)

By virtue of the matrix coefficient being time-independent and the hyperbolicity condition imposed
in Sec. II, (B3) possesses an exponential dichotomy. Hence there exist a projection P and positive
constants Ki, αi such that (A4) is satisfied with a fundamental matrix Z of (B3) replacing Y. Let W be a
fundamental matrix associated with (B1), which can then be related to Z through Z (t) = G−(t)W (t).
Substituting into the first inequality in (A4) leads to the condition∥∥G−(t)W (t)PW −1(s)G+(s)

∥∥ ≤ K1e−α1(t−s)fort ≥ s.

In order to establish the first exponential dichotomy condition for W , consider for t ≥ s,∥∥W (t)PW −1(s)
∥∥ = ∥∥G+(t) G−(t)W (t)PW −1(s)G+(s)G−(s)

∥∥
= ∥∥G+(t)

(
G−(t)W (t)PW −1(s)G+(s)

)
G−(s)

∥∥
≤ ∥∥G+(t)

∥∥ ∥∥G−(t)W (t)PW −1(s)G+(s)
∥∥ ∥∥G−(s)

∥∥
≤ C1e−βt K1e−α1(t−s) C2eβs

= C1C2 K1 e−(α1+β)(t−s), (B4)

in which the first inequality is using the standard sub-multiplicative property of matrix norms,94 and
the second is using the norm-bound conditions (6). Now, −α1 is the decay rate associated with the
stable manifold of (B3); that is, −α1 = Re

(
λi

s

)
. By the condition on β given in (5), γ 1 = α1 + β

> 0. Thus, by defining L1 = C1C2K1 the condition∥∥W (t)PW −1(s)
∥∥ ≤ L1e−γ1(t−s) for t ≥ s (B5)

emerges. Next, the second exponential dichotomy condition in (A4) is tackled by assuming that
s ≥ t. Following a similar argument to (B4),∥∥W (t) (I − P) W −1(s)

∥∥ ≤ C1C2 K2 e−(α2−β)(s−t). (B6)

Now define L2 = C1C2K2 and γ 2 = α2 − β, and note from (5) that γ2 = Re
(
λi

u

)− β > 0. Therefore,∥∥W (t) (I − P) W −1(s)
∥∥ ≤ L2e−γ2(s−t) for s ≥ t, (B7)

which is the second exponential dichotomy condition. Since exponential dichotomy conditions have
been established for Eq. (B1), x∗ as given in (11) is a hyperbolic trajectory of (10).

APPENDIX C: LENGTHY EQUATIONS ASSOCIATED WITH THE 3D EXAMPLES

This appendix collects together equations which, because of their length, have been extracted
from the main text.

1. Steady Hill’s spherical vortex

Trajectories of the no-swirl version of Hill’s spherical vortex obey

ẋ = 3Uc3xz(
x2 + y2 + z2

)5/2

ẏ = 3Uc3 yz(
x2 + y2 + z2

)5/2

ż = Uc3

2
(
x2 + y2 + z2

)5/2

(
2z2 − x2 − y2

)− U

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C1)
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for x2 + y2 + z2 ≥ c2, and

ẋ = 3U xz

2c2

ẏ = 3U yz

2c2

ż = 3U

2
− 3U

2c2

[
z2 + 2

(
x2 + y2

)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C2)

for x2 + y2 + z2 < c2.

2. Hill’s spherical vortex modified according to (32)

Define the quantity

h1(x, y, z, t) =
⎛
⎝ z − 2c2√

c2+U 2t2

21

⎞
⎠

2

+
(

x + 2y − c cos Ut
c − 6c sin Ut

c
√

2

5
(
cos Ut

c − 3
) (

cos 4Ut
c − 3

)
)2

+
⎛
⎝4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

]
5
(
cos Ut

c − 3
) (

2 + sin Ut
c

)
⎞
⎠

2

.

The unsteady flow is now defined as follows. If h1(x, y, z, t) ≥ c2, the flow obeys

ẋ =
Uc3

(
2c2√

c2+U 2t2
− z

) (
7 − 5 cos Ut

c

) (
x + 2y − c cos Ut

c − 6c sin Ut
c
√

2

)
35
(
3 − cos Ut

c

)
h1(x, y, z, t)5/2

+
2Uc3

(
2c2√

c2+U 2t2
− z

)(
4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

])
35
(
3 − cos Ut

c

)
h1(x, y, z, t)5/2

− U sin
Ut

c

+
U
[
5
(
cos 4Ut

c − 3
)

sin Ut
c + 4

(
5 cos Ut

c − 7
)

sin 4Ut
c

] [
c cos Ut

c + 6c sin Ut
c
√

2
− x − 2y

]
5c
(
cos Ut

c − 3
) (

cos 4Ut
c − 3

)
+

2U cos Ut
c

(
7y − 4x − 21c sin Ut

c
√

2
+ cos Ut

c

[
4c − 5y + 15c sin Ut

c
√

2

])
5c
(
cos Ut

c − 3
) (

sin Ut
c + 2

)

ẏ =
4Uc3

(
2c2√

c2+U 2t2
− z

)(
x + 2y − c cos Ut

c − 6c sin Ut
c
√

2

)
35
(
3 − cos Ut

c

)
h1(x, y, z, t)5/2

−
Uc3

(
2c2√

c2+U 2t2
− z

)(
4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

])
35
(
3 − cos Ut

c

)
h1(x, y, z, t)5/2

+ 3U√
2

cos
Ut

c
√

2

+
16U sin 4Ut

c

(
x + 2y − c cos Ut

c − 6c sin Ut
c
√

2

)
5c
(
cos Ut

c − 3
) (

cos 4Ut
c − 3

)
+

U cos Ut
c

(
4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

])
5c
(
cos Ut

c − 3
) (

sin Ut
c + 2

)
ż = 21U − 2c2U 2t(

c2 + U 2t2
)3/2

+

21c3U

⎡
⎢⎣2

⎛
⎝ 2c2√

c2+U2 t2
−z

21

⎞
⎠

2

−
(

x+2y−c cos Ut
c −6c sin Ut

c
√

2

5
(

cos Ut
c −3

)(
cos 4Ut

c −3
)
)2

−
(

4x−7y+21c sin Ut
c
√

2
+cos Ut

c

[
5y−4c−15c sin Ut

c
√

2

]
5
(

cos Ut
c −3

)(
sin Ut

c +2
)

)2
⎤
⎥⎦

2h1(x, y, z, t)5/2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(C3)
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while if h1(x, y, z, t) < c2 it is given by

ẋ =
U
(

c2z − 2c2
√

c2 + U 2t2 + U 2zt2
) (

5 cos Ut
c − 7

) (
6c sin Ut

c
√

2
+ c cos Ut

c − x − 2y
)

70c2
(
c2 + U 2t2

) (
cos Ut

c − 3
)

−
U

(
2c2√

c2+U 2t2
− z

)(
4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

])
35c2

(
cos Ut

c − 3
)

+
U
(
30 sin Ut

c − 15 sin 3Ut
c + 56 sin 4Ut

c − 25 sin 5Ut
c

) (
x + 2y − c cos Ut

c − 6c sin Ut
c
√

2

)
10c

(
cos Ut

c − 3
) (

cos 4Ut
c − 3

)
+

2U cos Ut
c

(
7y − 4x − 21c sin Ut

c
√

2
+ cos Ut

c

[
4c − 5y + 15c sin Ut

c
√

2

])
5c
(
cos Ut

c − 3
) (

sin Ut
c + 2

) − U sin
Ut

c

ẏ =
2U

(
−c2z + 2c2

√
c2 − U 2t2 − U 2zt2

) (
6c sin Ut

c
√

2
+ c cos Ut

c − x − 2y
)

35c2
(
c2 + U 2t2

) (
cos Ut

c − 3
)

+
U

(
2c2√

c2+U 2t2
− z

)(
4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

])
70c2

(
cos Ut

c − 3
)

+
16U sin 4Ut

c

(
x + 2y − c cos Ut

c − 6c sin Ut
c
√

2

)
5c
(
cos Ut

c − 3
) (

cos 4Ut
c − 3

)

+
U cos Ut

c

(
4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

])
5c
(
cos Ut

c − 3
) (

sin Ut
c + 2

) + 3U√
2

cos
Ut

c
√

2

ż = −63U

2
− 2c2U 2t(

c2 + U 2t2
)3/2

+63U

2c2

⎡
⎢⎣
⎛
⎜⎝ z − 2c2√

c2+U 2t2

21

⎞
⎟⎠

2

+ 2

(
x + 2y − c cos Ut

c − 6c sin Ut
c
√

2

5
(
cos Ut

c − 3
) (

cos 4Ut
c − 3

)
)2
⎤
⎥⎦

+63U

2c2

⎡
⎢⎣2

⎛
⎝4x − 7y + 21c sin Ut

c
√

2
+ cos Ut

c

[
5y − 4c − 15c sin Ut

c
√

2

]
5
(
cos Ut

c − 3
) (

2 + sin Ut
c

)
⎞
⎠

2⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(C4)

3. Hill’s spherical vortex modified according to (37)

The inverse of transformation (37) is given by

Q−1
t (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c

([
xe−μt

ln z − 3 − μt

]1/3

− 3

)

4c tan
ye−μt

2 + cos ωt

c ln
(
ze−μt

)
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C5)

By explicit computation from (37),

det DQt (x) = −12e3μt ez/c (3c + x)2 (3c − z) (2 + cos ωt)

c4
(
16c2 + y2

) . (C6)
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Now, this needs to be nonzero in Qt−1(x), which can be ensured by insisting on Q−1
t (x) lying within

the sphere of radius 2c, for example. Expressing this condition in terms of the inverse transformation
(C5) results in the domain restriction as given in (38).

The matrix norms of the relevant G matrices are explicitly computable using (9), leading to the
claim (39). They are

∥∥G+
n (t)

∥∥ = 1

c2
e2μt 3645 + e2 + √

13286025 − 4374e2 + e4

2
≈ 3646.48

1

c2
e2μt ,

∥∥G+
s (t)

∥∥ = 1

c2
e2μt 1 + 12393e2 + √

1 − 21870e2 + 153586449e4

2e2
≈ 12393

1

c2
e2μt ,

∥∥G−
n (t)

∥∥ = c2e−2μt 16

(2 + cos ωt)2 ≤ 16 c2 e−2μt ,

∥∥G−
s (t)

∥∥ = c2e−2μt 16

(2 + cos ωt)2 ≤ 16 c2 e−2μt .

In order to express the unsteady flow, define the quantity

h(x, y, z, t) :=
[(

xe−μt

ln z − 3 − tμ

)1/3

− 3

]2

+ (ln z − μt)2 + 16 tan2 ye−μt

2 + cos ωt
. (C7)

Thus, the domain constraint (38) is simply stated as h(x, y, z, t) < 4, and the two-dimensional
manifold (43) given by h(x, y, z, t) = 1. For h(x, y, z, t) ≥ 1, the unsteady velocity is given by

ẋ = U x

c (tμ + 3 − ln z)
− U p(x, y, z, t)

2c (tμ + 3 − ln z) h(x, y, z, t)5/2
−

9U (tμ − ln z)
(

1 + 3
[ tμ+3−ln z

xe−μt

]1/3
)

c h(x, y, z, t)5/2
+ μx

ẏ = 3Ueμt (2 + cos ωt) (ln z − μt) sin 2ye−μt

2+cos ωt

2 c h(x, y, z, t)5/2
− ωy sin ωt

2 + cos ωt
+ μy

ż = −U

c

⎛
⎜⎜⎜⎝
[(

xe−μt

ln z−3−tμ

)1/3
− 3

]2

− 2 (ln z − μt)2 + 16 tan2 ye−μt

2+cos ωt

2h(x, y, z, t)5/2
+ 1

⎞
⎟⎟⎟⎠+ μz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(C8)
and for h(x, y, z, t) < 1, it is

ẋ = x

(
2cμ + U

(
78

tμ + 3 − ln z
− 6μt − 9

)
+ 6U ln z

)
+ 36U x4/3e−μt/3

(tμ + 3 − ln z)4/3 + 96U x tan2 ye−μt

2+cos ωt

tμ + 3 − ln z

+ 6U x5/3e−2μt/3

(tμ + 3 − ln z)5/3
+ 27U x2/3 (tμ + 3 − ln z)1/3 (ln z − tμ) eμt/3

ẏ = eμt

4c

(
4cye−μt (μ cos ωt − ω sin ωt + 2μ)

2 + cos ωt
+ 3U (2 + cos ωt) (ln z − μt) sin

2ye−μt

2 + cos ωt

)

ż = 3U z

2c

⎛
⎝1 − [ln z − μt]2 − 32 tan2 ye−μt

2 + cos ωt
− 2

[(
xe−μt

ln z − 3 − tμ

)1/3

− 3

]2
⎞
⎠+ μz
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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74 M. Budisšić and I. Mezić, “Geometry of ergodic quotient reveals coherent structures in flows,” Physica D 241, 1255–1269

(2012).
75 J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer,

New York, 1983).
76 A. R. Robinson, “Overview and summary of eddy science,” in Eddies in Marine Science, edited by A. R. Robinson

(Springer, Berlin, 1983).
77 E. J. Hopfinger and G. J. F. van Heijst, “Vortices in rotating fluids,” Annu. Rev. Fluid Mech. 25, 241–289 (1993).
78 M. V. Nezlin and E. N. Snezhkin, Rossby Vortices, Spiral Structures, Solitons (Springer, Berlin, 1993).
79 A. Okubo, “Horizontal dispersion of floatable trajectories in the vicinity of velocity singularities such as convergencies,”

Deep-Sea Res. 17, 445–454 (1970).
80 J. Weiss, “The dynamics of enstrophy transfer in two-dimensional hydrodynamics,” Physica D 48, 273–294 (1991).
81 H. J. Lugt, “The dilemma of defining a vortex,” in Recent Developments in Theoretical and Experimental Fluid Mechanics,

edited by U. Müller, K. G. Riesner, and B. Schmidt (Springer, Berlin, 1979), pp. 309–321.

Downloaded 11 Dec 2012 to 192.43.227.21. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3278173
http://dx.doi.org/10.1016/S0167-2789(01)00330-X
http://dx.doi.org/10.1146/annurev.fluid.31.1.55
http://dx.doi.org/10.1063/1.3483220
http://dx.doi.org/10.1007/s00382-009-0632-6
http://dx.doi.org/10.3354/meps09212
http://dx.doi.org/10.1111/j.1600-0870.2011.00533.x
http://dx.doi.org/10.1063/1.3647339
http://dx.doi.org/10.1016/j.physd.2005.10.007
http://dx.doi.org/10.1063/1.3270044
http://dx.doi.org/10.1063/1.3270049
http://dx.doi.org/10.1002/nme.3101
http://dx.doi.org/10.1016/j.physd.2010.11.010
http://dx.doi.org/10.1016/j.physd.2011.09.013
http://dx.doi.org/10.1063/1.3690153
http://dx.doi.org/10.1063/1.1477449
http://dx.doi.org/10.1063/1.3579597
http://dx.doi.org/10.1126/science.1194607
http://dx.doi.org/10.1063/1.3458896
http://dx.doi.org/10.1103/PhysRevLett.105.038501
http://dx.doi.org/10.1063/1.3056050
http://dx.doi.org/10.1175/2007JPO3677.1
http://dx.doi.org/10.1142/S0218127497001655
http://dx.doi.org/10.1063/1.166399
http://dx.doi.org/10.1016/j.physd.2004.06.015
http://dx.doi.org/10.1016/j.physd.2009.03.002
http://dx.doi.org/10.1016/j.physd.2010.03.009
http://dx.doi.org/10.1063/1.3502450
http://dx.doi.org/10.1016/j.physd.2011.10.002
http://dx.doi.org/10.1016/j.physd.2012.06.012
http://dx.doi.org/10.1016/j.physd.2012.06.010
http://dx.doi.org/10.1016/j.physd.2012.04.006
http://dx.doi.org/10.1146/annurev.fl.25.010193.001325
http://dx.doi.org/10.1016/0011-7471(70)90059-8
http://dx.doi.org/10.1016/0167-2789(91)90088-Q


127101-27 Sanjeeva Balasuriya Phys. Fluids 24, 127101 (2012)

82 R. Cucitore, M. Quadrio, and A. Baron, “On the effectiveness and limitations of local criteria for the identification of a
vortex,” European Journal of Mechanics - B/Fluids 18, 261–282 (1999).

83 D. Elhmaı̈di, A. Provenzale, and A. Babiano, “Elementary topology of two-dimensional turbulence from a Lagrangian
viewpoint and single-particle dispersion,” J. Fluid Mech. 257, 533–558 (1993).

84 M. Tabor and I. Klapper, “Stretching and alignment in chaotic and turbulent flows,” Chaos, Solitons Fractals 4, 1031–1055
(1994).

85 G. Haller, “An objective definition of a vortex,” J. Fluid Mech. 525, 1–26 (2005).
86 A. N. Kolmogorov, “On the conservation of conditionally periodic motions for a small change in Hamiltonians function,”

Dokl. Akad. Nauk SSSR 98, 527–530 (1954).
87 V. I. Arnold, “Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a

small perturbation of the Hamiltonian,” Russ. Math. Surveys 18, 9–36 (1963).
88 J. Moser, “On invariant curves of area-preserving mappings of an annulus,” Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl.

II, 1–20 (1962).
89 H. W. Broer, G. B. Huitema, and F. Takens, “Unfolding of quasi-periodic tori,” Mem. Amer. Math. Soc. 83(421), 1–82

(1990).
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