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Abstract. We examine the effect of the breaking of vorticity conservation by viscous
dissipation on transport in the underlying fluid flow. The transport of interest is between
regimes of different characteristic motion and is afforded by the splitting of separatrices. A
base flow that is vorticity conserving is therefore assumed to have a separatrix that is either a
homoaclinic or heteroclinic orbit. The corresponding vorticity dissipating flow, with small time-
dependent forcing and viscous parametemaintains an @) closeness to the inviscid flow in

a weak sense. An appropriate Melnikov theory that allows for such weak perturbations is then
developed. A surprisingly simple expression for the leading-order distance between perturbed
invariant (stable and unstable) manifolds is derived which depends only on the inviscid flow.
Finally, the implications for transport in barotropic jets are discussed.
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1. Introduction

Lagrangian trajectories of fluid parcels in a two-dimensional incompressible fluid are
obtained by solving the ordinary differential equation (ODE)

X =u(x,y,t)

. (1.1)
y=uv(x,y,1)
where (u,v) is the Eulerian velocity field which can be expressed in terms of a
streamfunctiony (x, y,¢t) as u = —% and v = % Separatrices consist of

distinguished Lagrangian trajectories that demarcate the boundary between regimes of
different characteristic motion in a fluid flow. If the velocity field, v) is steady (i.e.
independent of time) separatrices are formed by homoclinic or heteroclinic orbits of (1.1),
see figure 14). If, on the other hand, the velocity field is varying in time and only nearly
steady, then the homoclinic, or heteroclinic, orbits that formed the separatrices in the steady
limit may break. Such a breaking will augur the transport of fluid between regimes of
ostensibly different motion. When the separatrix is intact (the steady case) it serves as
an impermeable boundary to fluid parcels and therefore genuinely separates the different
regimes. When the separatrix has split (the time-varying, near-steady case) fluid parcels
can move between these previously distinct regions, see figbje If(the splitting of a
heteroclinic cycle or a homoclinic orbit occurs as a transverse intersection of the stable and
unstable manifolds involved in the separatrix then the transport will have a chaotic signature
and stirring of the fluid is facilitated, see Ottino [21].
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(a) (b)

Figure 1. Separatrices formed by a heteroclinic cycle (or cat's egg)before and If) after
perturbation.

A standard approach in the study of this kind of Lagrangian transport in unsteady flows
is to take a steady velocity fieldy, v) in (1.1), independent of time, and add a time-
dependent perturbation. It is, however, not realistic to consider only cases in which the
perturbing unsteady term has an explicit expression. Indeed, the velocity field is found
by solving a partial differential equation (PDE), the vorticity equation for two-dimensional
incompressible flow, and it is to this equation that the perturbing terms should be added.
These additional terms would represent physical effects that need to be taken into account;
in this paper we focus on the effects of viscosity and forcing. When these terms are added
to the vorticity equation the resulting velocity field found by solving that equation will
have been perturbed. However, there is no reason to expect that we would get an explicit
expression for the perturbed velocity field, even if the unperturbed field happened to be
given in closed form.

We then consider the situation in which an unforced, inviscid velocity field is steady, at
least in a moving frame, and has regions protected by separatrices. If viscosity and forcing
are added to the system, we anticipate an unsteady velocity field resulting and we ask the
question of if, and how, the separatrices split.

To set the scene, let us assume that the streamfunction, the existence of which is
guaranteed by incompressibility, is denoted in the inviscid caseybg, v, 7). The
dynamics obeys, to a first approximation, the conservation of vorticity equation

Dq°
- =0 1.2
D1 (1.2)
where the operatof represents the material derivatiye = 2 — 66—";0% + "3—")”;)% and the
vorticity is given by
q°(x. y. 1) = AYO(x, y. 1) (1.3)

where A is the Laplacian in the spatial variables. Note that (1.2) can be considered as a
nonlinear PDE for the streamfunctiaf® alone:

OAO OAO
D g0 DWOBAYO  0pOaayO

at dy ox dx dy
The Lagrangian trajectories of fluid parcels are then obtained by solving the ODE
: dy°
x=———(x,y1)
dy

5 (1.4)

.Y
y=——(xy0.
0x

We add viscosity and forcing to the system. Denoting the streamfunctian(byy, t),
(1.2) is replaced by

Dg
E _S[Aq—‘f_f(xv y’t)] (15)



Viscous perturbations of vorticity-conserving flows 49

where2 = 2 — %% %% and the vorticity and streamfunction are again related by
q(x,y,1) = Ay (x, y,1). (1.6)

The positive parameter represents a measure of the viscosity. The corresponding PDE for
¥ reads

9 ayaAy  ay oAy
5™ "y T T gy AV Ayl

Of interest then is the Lagrangian dynamics associated with (1.5), that is the trajectories of

X = —%(x, V, 1)

9y (1.7)
.0y
y= 8—(x,y,t).

X

We consider (1.7) as a perturbation of (1.4). It is an instructive exercise to consider the
naive application of Melnikov theory which would involve assuming the differentiability
of the streamfunction ir. The Melnikov theory would, in principle, allow us to decide
whether a separatriqz) = (x(¢), y(¢)) of (1.4) breaks under the perturbation. The Melnikov
integral would be given by

) dr
e=0

(1.8)

see corollary 1 and lemma 1 applied #F = /°. Note however that we only know of the
full streamfunctiony and the inviscid streamfunction® that they satisfy their respective
PDEs. Therefore, (1.8) is not very helpful evenjifwere differentiable ire except when
Ly is known explicitly.
Actually, the perturbed streamfunction is in generall differentiable with respect te,
see [16]. Indeed, a fundamental difficulty is that the limiting behaviouy gfse — 0 can
only be established in a weak sense. Even though Ladyzhenskaya [16] proved an estimate

W — ¥ll2 < Ce

on compact time intervals, providet® is smooth enoughy is not differentiable ins at

¢ = 0. This is an inevitable difficulty in problems of vanishing dissipation, see, for instance,
[30]. For our purposes the consequence is that expression (1.8) is formal. It therefore
necessitates an adapted Melnikov theory which works in cases where the perturbation is
only weakly related to the limiting flow. A further complication is that we cannot guarantee
the existence of a perturbed streamfunction, in other words a solution of (1.5), which is close
to © for all time, even if the initial data are close. Since we are interested in the behaviour
of the associated dynamical system and, in particular, its potentially chaotic nature it is
natural to consider velocity fields for the perturbed system that are periodic. The existence,
however, cannot be guaranteed of such velocity fields and in section 7 it is shown that
periodic velocity fields are indeed unlikely to occur. We therefore choose to develop the
theory for the case of bounded velocity fields, and this is the subject of theorem 1.

The key computation, and indeed the main result of this paper, is then to calculate the
distance between stable and unstable manifolds in the ODE phase space after separation
due to a viscous perturbation. An explicit expression is derived for the leading-order term
of this distance. Surprisingly, and in contrast to what might be expected of (1.8), it depends
only on the unperturbed streamfunctigr?, that is the inviscid fluid, and the forcing term,

/OO (3 "(‘(r))ii G, t+1)
ox VO GGV GO 1T
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Figure 2. A typical meandering (cat’s eye) jet.

> “East”

see theorem 3. It is then possible to draw conclusions about the nature of transport after
adding viscosity from the knowledge of the inviscid velocity field alone.

Much of the motivation for these results comes from oceanography. The relevance of
oceanic jets such as the Gulf Stream to fluid transport in the oceans has evoked much recent
interest among oceanographers [3—-6, 11, 14, 18-20, 23-27, 31]. Under some approximations,
these jets can be modelled bgrotropic motion: a reduction to the two horizontal directions
[10, 22]. Satellite photographs show that the Gulf Stream is, close to continental America,
an eastward flowing meandering jet, flanked by recirculating regions cztesleyes [27].

A typical (gross) flow pattern of such a jet is illustrated in figure 2, whose axes loosely
correspond to the local eastward and northward directions. In fact, it is traditional to assume
that a phase portrait of the form of figure 2 arises in a frame moving eastward at some speed
c [11, 20, 23, 24, 26, 31]. However, this apparent regularity of motion is challenged by
the observed motion of floats, which traverse seemingly random trajectories near the Gulf
Stream [5, 6]. The indications are that the Gulf Stream can reasonably be modelled by a
regular Eulerian flow which, nevertheless, has irregular Lagrangian motion.

We expect that perturbations will destroy the heteroclinic separatrices of figure 2,
producing interaction between fluid parcels of disparate origins. Many authors have
exploited this fact irkinematic models to obtain, numerically and otherwise, chaotic mixing
[3, 14, 19, 26, 31]. However, these perturbations are often imposed without regard to the
dynamical equations that the velocity field must obey. Also, streamfunctions are often
used which satisfy the vorticity equation ondgproximately, see, for instance, [11, 24].
Equation (1.2) is linearized about an appropriate jet. A superposition of eigenfunctions of
the linearized operator is then added to the jet solution. Finally, the resulting function is used
as a velocity field in the ODE (1.7) describing Lagrangian trajectories, and chaotic mixing
may be found, see [11, 23, 24]. Note that vorticity is, however, not exactly conserved
since (1.2) is linearized. Here, we introduce a dynamically consistent approach in that only
velocity fields are considered which satisfy either (1.2) or (1.5), and hence either conserve
vorticity or dissipate it in a planned and predictable fashion.
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An apparent key to the dynamics of the ocean is the near conservation jpdtéméal
vorticity, which generalizes the notion of vorticity to the oceanographic context by including
the effect of planetary vorticity. Thiearotropic g-plane potential vorticity is then given by
adding a linear term iry to the ambient vorticity

q°(x, y, 1) = AYO(x, y, 1) + By. (1.9)

The positive constang is the Coriolis parameter. The set-up described above can be
re-interpreted in the oceanographic context by replacing (1.3) with (1.9). Under this re-
interpretation, and for the case of a meandering jet, the phase portrait of (1.4) in a frame
moving eastward at speeds then assumed to have the structure of figure 2, and particular
examples are given in [1, 7, 11, 24].

As pointed out by Brown and Samelson [7], the conservation of (potential) vorticity
exerts significant restrictions on the Lagrangian trajectories of the velocity field. Indeed, it
adds a second integral to the Hamiltonian system (1.1) and if the velocity field is periodic,
and the vorticity and Hamiltonian are functionally independent then the system is integrable
and the kind of Lagrangian transport afforded by broken separatrices cannot occur. Taking
a steady velocity field, in a moving frame, for the inviscid, unforced limit is designed to
capture the dynamics enforced by the conservation of potential vorticity.

The issue of oceanographic interest is then to see if a velocity field resulting from a
situation under which potential vorticity is not conserved does indeed involve transport
between the jet, the cat's eyes and the ambient water. This will be addressed exactly as
above but with the potential vorticity replacing the usual two-dimensional vorticity. Since
the non-oceanographic case is achieved by just seftiag0, in the following we shall cast
all the results in oceanographic terms and refer to the potential vorticity.

This paper is organized as follows. In section 2, we develop the Melnikov theory for
weak perturbations. Estimates for the distances of inner separatrices of perturbed cat’s
eyes are derived in section 3. Section 4 deals with the validity of considering the Eulerian
velocity field resulting from the viscous dynamics (1.5) as a regular perturbation on that
produced by the inviscid limit (1.2). We combine these results in sections 5 and 6, where
we compute the distance between manifolds in the phase space after separation due to a
viscous perturbation. In section 7, we return to the Eulerian equations, and comment on
whether periodic streamfunctions occur. Finally, the implications on transport in barotropic
jets are discussed in section 8.

2. Méelnikov theory for weak perturbations

This section presents a Melnikov theory for base flows in two dimensions which possess
heteroclinic structures. The point here is that the perturbations are not necessarily continuous
in . We also allow for non-periodic time dependencies. The approach is motivated by that
presented in [8, section 11.3] for the smooth case. Supposetthata two-dimensional
smooth surface, and € Q. Let g : @ — R? such thatg® € C"(Q), r > 2. Consider as

the unperturbed flow of the autonomous ODE

i = g%u). (2.1)
First, we assume the presence of a heteroclinic orbit in the unperturbed system (2.1).

Hypothesis 1. There exist hyperbolic equilibria Ag and By of (2.1) with one-dimensional
stable and unstable manifolds. A branch of the stable manifold of By (denoted Wgo) coincides

with a branch of the unstable manifold of Ao (denoted W) ). This heteroclinic orbit is denoted
by i (z).
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Let V be the gradient operator with respect to the two-dimensional variabfe such
that Vg© is the Jacobian matrix of any functig? : @ — R2.
As a consequence of hypothesis 1, the adjoint variational equation

= —Vgoua) u (2.2)
along the heteroclinic orbik(z) possesses a unique, up to a constant multiple, bounded

non-zero solutiorp(z). If, for instance, (2.1) possesses a first integPdlu), the solution
@(¢) is readily computed.

Lemma 1 ([13]). If hypothesis 1 is met and (2.1) possesses a first integral Q%(u), that is,
4 0%u(r)) = 0 for any solution u(r) of (2.1), then ¢(r) = V(i (1)) satisfies (2.2).

Let ¢ be a parameter in the interval= [0, o], Wheregg is a positive number assumed
to be as small as required. We now consider the perturbed equation

i =g + gtu,t, e (2.3)

where the functiorg?® satisfies the following hypothesis. The operataras before, will
pertain only to the spatial variable

Hypothesis 2. ¢! : Q@ x R x 7 — R? satisfies the conditions:
(i) g* € C"(Q x R) for each ¢ e Z with uniform bounds, where r > 2;
(ii) g%(u,t,0) = Ofor all (u,t) € @ x R; and
(iii) there is a positive constant C such that

g™, t, &) + Vg (u,t, )| < Cle|
holds uniformly in (u, 7) € Q x R.

Note that we deliberately do not assume any smoothnessagwe cannot guarantee
such smoothness in the application to fluid flow. Condition (iii) is a form of Lipschitz
continuity ate = 0. On the other hand, if hypothesis 2 is satisfied, implicit function
theorems are applicable since the perturbation is smooth in the spatial variable and its
Jacobian is small.

Under such a perturbation, the hyperbolic equilibridgperturbs to a bounded solution
A.(t). Its stable and unstable manifolds persist for small enaygdinceg? is uniformly
bounded by hypothesis 2, and similarly fBg. The proof of this persistence is provided
via exponential dichotomies by the roughness theorem of Coppel [9]. The intention now is
to develop adistance function d(z, ¢) which measures the separation between the unstable
manifold of A,(¢) and the stable manifold a8, (¢) in the time slice{r = 7}. We begin by
defining the space

B(R) = {G : R — R? bounded and continuojs

with the norm|G| = supg |G (7).
Thus, () € B(R), and moreover decays to zero exponentiallyr as +oco. Define
the continuous projection operatér on B(R) by

1 [o.¢]
L — f 9(s) - G(s) .
f_oo lp(s)|?ds —00
The following lemma, which is essentially a Lyapunov—Schmidt reduction, now holds.

Lemma 2. If G € B(R), the equation
i =Vglua)u+ G() (2.4)

has a solution in B(R) if and only if PG = 0. If the initial condition u(0) of (2.4) is
such that (1(0), g°(i(0))) = 0, then the solution is unique. Moreover, the solution operator
Q0 : (id—P)B(R) — B(R) islinear and continuous.
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Proof. See lemma 3.2 in section 11.3 of [8]. O

The result of lemma 2 can be used to provide a mathematical characterization for the
existence of a heteroclinic point of (2.3) near the unperturbed manifold.u zgtsatisfy
(2.3), and set

u(t) =it — 1) + &t — 1).

The idea is to find a solution(t) which remains close to the (unperturbed) heteroclinic
orbit u(t — 7). Thus, a small solutiog(z) is sought which must satisfy

£ =Vglu)E + gt + &) — g ) — Vgh(u(t)E + g'u(t) + &, + 1, 8)
= V@) +GE t+1,¢) (2.5)

where the above serves as a definition for the functiog, ¢, ¢). The existence of a
heteroclinic point of (2.3) near the heteroclinic orbit of the unperturbed case depends on the
existence of a bounded solution to (2.5), see [8]. By lemma 2, this problem is equivalent
to solving the pair of equations

PGE,-+1,6)=0 (2.6)
S = Q(Id _P)G(Sﬂ ° + T, 8)' (2.7)
We now state the main theorem which gives a characterization of the existence of a

(transverse) heteroclinic point in terms of a Melnikov-type function. Recall ¢itat is
the unique bounded solution of the adjoint equation (2.2).

Theorem 1. Suppose hypothesis 1 holds for the unperturbed flow (2.1), and that the
perturbation g*(u, t, &) satisfies hypothesis 2. Then, there exists a unique solution £ (z, &) (1)
of (2.7) for small enough ¢. Furthermore,

§(z, )| < Cle]
for some positive constant C uniformly in z. Define the distance function

d(t,e) = / (1), GE(t.e)(1), t +1,8)) dr (2.8)
then there exists a heteroclinic point of (2.3) in a neighbourhood of WUD = W;,?0 for |e| < &g
if and only if ¢ and 7 satisfy d(r, ¢) = 0. Moreover, the intersection is transverse if and
only if 2d(, &) #0.

In other words, the unique solutiof(z, )(r) of (2.7) satisfies (2.6) if and only if
d(t,e) =0.

Proof. We fix r € R. By hypothesis 2, the Jacobianhg® is small fore small. Thus, the
operator

TE,e)=0(@(d—-P)G(E, -+ 1,¢)

which consists of the sum of a quadratic termgimnd the perturbatiog?, is therefore a
uniform contraction or§ for small enougk, and for¢ in a sufficiently small neighbourhood
around zero irB(R). Suppose that the contraction constant with respegfdo this operator

is v € (0,1). By the contraction mapping principle of Banach—Caccipoli (see, for example,
[8]), this implies that (2.7) has a unique solutiétr, ¢)(r) for small enougte. Recall that

¢! is of order Qe) by hypothesis 2. Hencd; (&, ¢) satisfies

1T, &) =T, 0) < Clel
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for some positive constarit. Consider the solutios(e) of (2.7). Sincet(0) = 0, we have
1E@) =T &), &) <|TE(e),e) —T (), e)+|T(0,¢e) —T(0,0)] < ()| + Cle|

for some positive constaidt, where the last step is becauB&, ¢) is a uniform contraction
in & and is small ins. Hence,

C
(el < mlsl

and the solutiorf (t, £)(¢) of (2.7) is small ine. Now, the existence of a heteroclinic point

is equivalent to the existence of solutions to equations (2.6) and (2.7) as has been described;
theorem 3.3 of [8] discusses this fact in greater detail. Therefore, a heteroclinic point exists
in the neighbourhood oWU0 = Wgo for ¢ € 7 if and only if there is a solution to (2.6) or
equivalently, if there exists ande € Z such thatd(z, ¢) = 0. The proof of transversality

is analogous to that given in [8]. O

An expansion of the distance functiafiz, ¢) is given in the following corollary.
Coroallary 1. Suppose all the assumptions of theorem 1 are met, and write
gtu,t,e) = egtu,1,¢).
The distance function can then be written in the form
d(z,e) = eM(z, ¢) + O(e?)

o0 o 2.9)
M(z, s)=/ (@), F(@(0), t + 1, 8)) dr.

]

Proof. Since we have sufficient smoothnessgfhand g?,

g2ty + &) — g0 — Vg°u(r))E = O(l€|%)
gl + &t +1,e) = gHut), t + 7, &) + Oe|€])

using hypothesis 2. However, theorem 1 asserts&t@t= O(e) holds. Thusd(z, ¢) has
the required form. O

We calld(z, ¢) the distance function, while the leading-order teMiiz, ¢) is referred
to as the Melnikov function. It is useful to note that the functid(r, ) measures a
signed distance between perturbed stable and unstable manifolds. Indeeﬂ-(’tete)(t)
and uf?(r, €)(t) be trajectories in the unstable manifold af(z) and the stable manifold
of B.(¢t) for equation (2.3), respectively, with the property that their scalar product with
g%@@(0)) vanishes at = 0. Then,

d(t, &) = (p(0), u{(z, £)(0) — u3y(z, £)(0)). (2.10)

In particular, the sign of(z, ¢) indicates the direction in which the heteroclinic connection
is broken.
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ug(r,e)

(&) (®)

Figure 3. (a) Unperturbed andh) perturbed cat’'s eye.

3. Distance between invariant manifolds near perturbed heteroclinic loops

As indicated in figure 2, a key component to a meandering jet are the flanking cat’s eyes,

that is, two heteroclinic orbits forming a loop as depicted in figu@).3Chaotic transport

may occur if the loop is broken. In this section, estimates for the distances between stable
and unstable manifolds in a perturbed cat's eye are presented. Since equations (1.7) for
Lagrangian trajectories are Hamiltonian, we define

0 -1
=5 %)
and consider
= JVHou) + hiu,t + 1, ¢) (3.1)

for u € Q. The functionsh® and ! satisfy the following hypothesis.

Hypothesis 3. The nonlinearities 1° and 1 are C"** for somer > 2. Furthermore, Vi°%(u)
vanishes at most at isolated pointsin ©, and g! := JVh(u, 1, ¢) satisfies hypothesis 2.

Next, we assume that (3.1) has a cat’s-eye structure.

Hypothesis 4. For ¢ = 0, there exist hyperbolic equilibria Ag and By of (3.1) such that
branches of their one-dimensional stable and unstable manifolds Wy and W as well as
Wgo and Wﬁo, respectively, coincide forming a cat’s eye for the unperturbed flow of (3.1).
Denote the heteroclinic trajectories by i1 (¢) and i2(t), respectively, see figure 3(a).

Under these assumptions, we may therefore apply the theory developed in the previous
section for each of the two heteroclinic orbits(r) with j = 1,2. By lemma 1, bounded
solutionsg; (¢) of the adjoint equation (2.2) along; () are given byVi°(i;(¢)). It then
follows that Vho(ﬁj(O)) is not zero since otherwis§’h°(12<,~(t)) would vanish for allz
contradicting hypothesis 3. Therefokg,(¢) is not the trivial zero solution.

We are interested in estimates for the distances between stable and unstable manifolds
of A.(r) for small non-zerc, see figure 3{). Denote the eigenvalues 8%h°%(Bg) by +1
with A > 0. Define sectiond.; and L, by

Li={ueQluj0)—uce spathO(ﬁ_,«(O)), lit; (0) — u| < &}

for some smalb > 0 andj = 1, 2. Letui(r, g)(t) and uﬁ((r, €)(t) be trajectories in the
stable and unstable manifold df,(z) for equation (3.1) such thai;i(r, £)(0) € L, and
uY(z,€)(0) € Ly, see figure 3. Similarlyufg(r, e)(t) anduy(z, e)(r) denote trajectories
contained in the perturbed stable and unstable manifolds @f satisfyingu(z, €)(0) € L;
andug(r, €)(0) € Ly, respectively. Lety > 0 be arbitrary but fixed.
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The next lemma gives a determination of any solution startinfy;irand ending inL,
in terms of the time needed to pass the solutiiy).

Lemma 3. Suppose hypotheses 3 and 4 are met, then there exist &g > 0 and sg such that
for any 7, ¢ and s with |¢] < g9 and s > s the following holds: there is a unique solution
us(t, €)(¢) of equation (3.1) defined for ¢ € [0, 2s5] such that

us(t,e)(0) € Ly and us(t, €)(2s) € L. (3.2)
Moreover,
(VA%(i1(0)), u}y (z, £)(0) — uy(z, £)(0))
=di(t,¢) — (Vho(ﬁl(s)), uz(—s) — Bo) + Ri(z, ¢, ) (3.3)
(VRO (i12(0)), u (T, £)(25) — ulj (T + 25, £)(0))
=dy(t + 25,¢8) + (Vho(ﬁz(—s)), i1(s) — Bo) + Ro(t + 2s, ¢, 5) (3.4)
where the remainder terms satisfy the estimate
IR; (7, &, )| < Cy(le] + e 2%)g s (3.5)

for any y > 0. Moreover, d;(t,¢), j = 1,2 are the distance functions for the two
inter sections of stable and unstable manifolds defined in the previous section computed with

respect to ¢; (t) = VAh%(ii; (1)).

Proof. Existence and uniqueness follow as in [17]. In [17] only autonomous, smooth
perturbations are considered. It is straightforward to adapt the proof given there to the
situation studied here. We therefore refer to [17] for details. |

Note that we do not claim any smoothness propertiesufdt, ) nor the remainder
termsR;. By [28,lemma 1.1], we have
(VRO(1(s)), iz(—s) — Bo) = K182 + Ra(s)
(VhO(ita(—s)), 1 (s) — Bo) = K2€ 2 + Ra(s)
for some positive constants; and K>, and, for any smaly > 0,
|R3(s)| + | Ra(s)| < C e P77

holds ass — oco. We will need the relatiork; = K, proved in the next lemma.

(3.6)

Lemma 4. Under the assumptions of lemma 3, K; = K».

Proof. The constantk; and K, are determined by the unperturbed flow foe= 0. Let
us(t, 0)(t) =: us(¢) be independent of. We then have

h®(i11(0)) — h°(u;(0)) = VA%(i11(0)) - (i£1(0) — u,(0)) 4+ O(|i1(0) — u,(0))

(VR®(i11(0)), i1 (0) — u;(0)) + O(|ii1(0) — us(0)|)

— _ Kle—st _,’_O(e—3k(1—y)s')

and similarly obtain

Vh®(i12(0)) - (i12(0) — uy(2s)) + O(|it2(0) — uy(2s)[%)

— (VE°(i12(0)), us (25) — i12(0)) + O(lit2(0) — uy(25)[%)
— _ K2872)ns + O(e73)u(lfy)3).
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Sinceh® is a conserved quantity for equation (3.1) witk= 0, we conclude
h0(1(0)) — h°(u;(0) = h°(i2(0)) — hO(uy (2s)).

Indeed,h%(u, (0)) = h%(u,(2s)) andh%(ii1(0)) = h°(it2(0)) hold. Thereforek; = K, by
choosingy sufficiently small. O

The particular formJVht(u, ¢, €) of the perturbation guarantees that the flow is area-
preserving. Next, we assume that the splitting of stable and unstable manifolds is, to first
order, independent of the time slice. This assumption is very restrictive, since we expect
transverse intersections of the invariant manifolds for almost any perturbation. However, it
is often enforced in the application to oceanography we are interested in, since then only
those perturbations are allowed which are solutions of the vorticity equation, see section 8.

Hypothesis 5. Suppose that d; (7, ) = e M (¢) + O(&?), where M;(e) is independent of .
It then follows that the splitting distances coincide to first order.

Lemma 5. Suppose that hypotheses 3-5 are satisfied, then |M1(g) + M2(e)| < Cle|.

Proof. Note that diJV (h°(u) + h'(u, t, €))) = 0 vanishes identically, and therefore the
flow of (3.1) is area-preserving. Denote the area enclosed by the unperturbed cat’s eye by
Vo. Then, the are&,(r) enclosed by the perturbed cat's eye in the time dlice t} can

be estimated by

[Ve(r) — Vol < Ce (3.7

uniformly in ¢ andz. Here, the perturbed cat's eye refers to the piegs +s, ¢)(—s) and
uY(t +s,¢)(—s) as well asus (t — s, £)(s) anduy,(z — s, €)(s) of the invariant manifolds
in the time slice{r = r} together with the pieces of the sectiohs connecting them, see
figure 3p). Here,s € R*.

Note that the gradient§4°(ii1(0)) and VA°(it2(0)) point either both inside the interior
of the cat's eye, or else both outside, since the equilibria are hyperbolic, tR&h:%Aq)
is invertible. Setc = 1 if both point inside, and set = —1 if both point outside. We shall
quantify the effects of volume leaving or entering the perturbed cat's eye. The distances
of stable and unstable manifolds in the time slice= t} measured in the direction of
VhO(u;(0)) are given by

Dy = uf{(z, £)(0) — u3(t, £)(0) = ex M1 (e)|[Vh(i12(0)| ™ + O(?)
Dy = uj(z, £)(0) — uj (7, £)(0) = exc Ma(e)| VA (i12(0)|* + O(e?).

by lemma 3 and hypothesis 5. In particular)/; < 0 and«M; > 0 correspond to
volume leaving and entering the perturbed cat’'s eye through the sdctjospectively,

for j = 1, 2. For small time intervals of lengtfi, the amount of volume flowing through
the sectionZ; is given by

0 Ve(r) = D; T (IVA°(i1;(0))] + O(e)).
Substituting the expression fd@»;, we obtain
9;Ve(r) = exT(M;(e) + O(e)) (3.8)

where the sign of; V() indicates whether volume is entering or leaving the perturbed cat’s
eye. However, sincd/; (¢) is independent of, this amount of volume keeps adding up by
considering several disjoint time intervals of lendth and it cannot be compensated by a
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change of the area due to the remainder tertx) @ (3.7). Therefore, area conservation is
only possible ifMy(e) = —M>(g) + O(e). O

In section 2, the intersections between the unstable manifold ofind the stable
manifold of B, were analysed. Here, we are interested in intersections of the unstable and
stable manifolds ofd,, that is, orbits homoclinic tai,, see figure %) for the geometry.
Since the unstable manifold of, would then pass neaB,, these homoclinic solutions
are reminiscent of multiple or secondary homoclinic orbits in autonomous systems, see, for
instance, [12, 15, 28, 29]. After the separatrigg&) are broken fore # 0, the unstable
manifold of A, may pass neaB, and intersect with the stable manifold 4f. We therefore
define

dhom(t, £) 1= (Vh%(i12(0)), uy (t, £)(25,) — uy (v + 2s., £)(0))

wheres, is chosen such thaif{(r, £)(¢) intersectsL, for the first time atr = 2s,. The
guantity dnom(z, €) measures the distance between stable and unstable manifolds of the
solution A, at the sectionL, in the time slice{r = t + 2s,}. Of course, the unstable
manifold u{(z, ¢)(t) of A, may not intersect_, at all; however, whenever it does, the
quantity dnom(t, €) is well defined. We then have the following result which shows that the
intersections associated with an orbit homoclinicAtooccur only at higher order.

Theorem 2. Assume that hypothesis 3-5 are met. Fix some v € (0, 1), then, whenever
dnom(t, €) is defined, |dhom(t, £)| < Cu|8|1+v-

Proof. By lemma 5,M1(¢) = M>(¢) + O(g). We setM(g) := M1(¢). Consider equation
(3.3)

(VA%(i1(0)), uf (z, £)(0) — uy(z, £)(0))

= di(t, &) — (VA®(i1(s)), iz(—s) — Bo) + Ru(z, &,5) = 0. (3.9)
Substituting (3.3), (3.6) and using lemma 5, we obtain the equation
eM(e) — K1€?° + Rs(z,6,5) =0 (3.10)

for some remainder term satisfying
|Rs(z, &, 9)] < Cy (|l + (le| + & 2)e 7).

On account of the uniqueness statement in lemma 3, the unstable manifal of
will intersect L, if and only if (3.10) has a solution. Then the solutiomg(r, e)()
and u,(t, €)(¢t) coincide and we can therefore use equation (3.4) to estiggtgz, ¢).
Assuming that a solutiofiz, €, s) = (t, €4, s;) Of (3.10) has been found, we obtain the
estimate

e 2% < Cley| (3.11)
by inspecting (3.10). It remains to estimate
dhom(Te, £) = (VA (i12(0)), s (To, £)(255) — u’j (z4 + 25, £,)(0))
= — 8. M(ey) + K262 + Re(ts, &4, 5x) (3.12)
where we substituted (3.4), (3.6) and used lemma 5. Here,
[Re(t, &, 5)| < Cy(le]* + (|| + &) 7).
Adding (3.10) evaluated dat,, ¢., s,) and (3.12) yields

dhom(f*» 8*) = RS(t*» Exs S*) + RG(T*a Exs S*)~
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Indeed,K; = K> holds by lemma 4. Thus, using estimate (3.11), we obtain
|dnom(Ts, €)1 < Cy (le2] + (ex] + €25 )e " 77%)

2 1+3a- 1
< Cy ([l + e +al V)) < Colesl i

for anyv < 1. O

4. Viscous dynamics and vanishing viscosity

Throughout, we use the variablesand y as being those on the barotrogeplane that
define the eastward and northward directions respectively and 4et(x, y). Suppose
now that the dynamics of the barotropic jet are governed not by the exact conservation of
potential vorticity but by a potential vorticity dissipating, forced flow. The dynamics will
thus be assumed to satisfy

Dg _dq 0y dq 0y dq

=% _ Vo W _ .t 4.1
Dr = or oy ax axay _ LAd Gy 0] 4.1)

whereg(x, y,t) = Ay (x,y,t) + By is the barotropic potential vorticityf (x, y, ) is
a uniformly bounded forcing function, angt is the streamfunction associated with the
flow. The parametet lies in (0, g9], wheregg is assumed to be as small as needed, and
represents the viscosity. The above dissipative dynamics can result from directly including
the Newtonian viscosity in the primitive equations or, more realistically in the oceanographic
context, by the dissipation caused by eddy diffusivity (the averaged effects of small scale
turbulence). In either case,can be considered as a small parameter for oceanic flows. The
function f(x, y, t) can be thought of as modelling wind forcing.

It is relevant to find out whether the flow of this dissipative equation is close to that of
the exactly potential vorticity conserving equation

Dg

Dr 0
This issue has been addressed in [16]dce 0. In [1, 2], this problem was investigated for
B # 0. Recall thay is related to the associated streamfunctioryby Ay + By. Suppose
the streamfunction°(x, y, ¢) satisfies (4.2), whilgs (x, y, ; ¢) obeys (4.1). Letx, y) € 2,
a two-dimensional smooth surfaeéth no boundary. The traditional8-plane, which is
R?, obeys this constraint as does a torus and an infinite cylinder which can be used via
imposition of periodic boundary conditions. Suppose the initial conditi@igx, y, 0; &)
and Vy9(x, y,0) are Qe) close in the normC3(Q) and in the Sobolev norm&/3()
and H*(Q). Let T > 0 be large but fixed, and suppose it is known that the inviscid
streamfunction is smooth enough so that

> IDYW2e  and > D YO e

NN A< k<7

(4.2)

are bounded independently of [0, T]. The generalized derivative symbdi* used here
is assumed to act only on the spatial y) variables. Then, it can be shown that, see [1, 2],
there exists a constadt(7) such that

sup [V (1 €) — VY1) [l cse) < eC(T). (4.3)

t€[0,T]
If the additional smoothness assumption on the inviscid streamfunction is removed, the
above can be derived in the norm@f($2). Thus, the velocity field of the viscous dynamics
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is O(e) close to that of its inviscid counterpart. The derivation of (4.3) involves extensive
use ofa priori estimates and the Sobolev embedding theorem [1, 2]. From (4.3), it is
possible to write

Vi (x, y,t;8) = VYOx, v, 1) + eVyi(x, y, t; &) (4.4)

for any + € [0,7] and (x,y) €  such that} s D"V (x,y,1;¢) is bounded
independently ot € [0, g] for finite times.

For smooth, real-valued function$ g : 2 — R, the Poisson bracket betweenf andg
is defined by

af o af d
(f.g)i= a—f—g _ Y0
x dy  dy ox
Using this definition, substitution of (4.4) into the dynamics (4.1) leads to the equation
DO 1
S+ (01 0% = A+ f +e[Agt — (v )] (4.5)

where the unperturbed material derivative

D0 _ 0 w0 ayts

Dt ot ay 0x dx dy
has been used, along with the notation

qo = Ay°+ By and gt = Ayt
Note that (4.4) ensures that all terms in (4.5) remain bounded for finite times. The
Lagrangian trajectories generated by the inviscid streamfungtfbeatisfy the differential
equation

:=JVyOz 1) (4.6)
with z = (x, y) and

J = (2 —01).

This possesseg’(x, y, t) as an integral of motion. In fact, (4.6) is formally integrable [7].
We additionally assume that (4.6) possesses the gross kinematics of an oceanic jet in that
heteroclinic trajectories exist between two saddle structures, see figure 2. Mathematically
speaking, we impose hypothesis 1 on the flow (4.6). Such a heteroclinic represents the
boundary of a cat’s eye, and its destruction would permit fluid to travel across these apparent
separatrices.

To apply the Melnikov theory developed in section 2, we need to consider a perturbation
to the vector field in (4.6). This is readily accomplished by using instead the full viscous
streamfunction

Yy, 158) = Y00y, ) +evt(x, v, 1 e) (4.7)
and thus the Lagrangian trajectories of the perturbed flow will obey
z=JViy(z, t;8). (4.8)

It is known by (4.3) that, for finite times at least, the vector field of (4.8) (s)@lose to that

of the integrable system (4.6), i.e. the first-order teff(x, y, ¢; ) is bounded. Assuming

that this closeness can be extended to &llR, the difference in the velocity fields of (4.8)

and (4.6) would satisfy hypothesis 2. We are then in a position to use the distance function
d(t, ¢), developed in section 2, to investigate intersections of the perturbed manifolds, that
is persistence of heteroclinic points.
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5. Assumptions and simplifications

We now further restrict our attention to a particular class of flows that we sbifted
autonomous flows. These are frequently used in modelling potential vorticity-conserving
flows [4,11,19,20,24-26]; in fact, to our knowledge, there are no known analytical,
or closed-form solutions which are not shifted autonomous while conserving barotropic
potential vorticity. The time dependence of these flows can be removed by transforming
coordinates to a moving frame. Alternatively, a shifted autonomous flow is a travelling-wave
solution of speed.

Assumption 1. Equation (4.6) is shifted autonomoughat is, there exists ¢ and a function
WO(&, n) such that ¥9(x, y, 1) = WO(x — ct, y) = WO(&, n) where & = x —cr and n = y.
The change of variables (x, y, t) — (&, n, t) is called the shift.

It will be shown below that it indeed suffices to consider shifted autonomous flows
which travel in thex-direction. We will consistently usé, n) as the shifted variables in
what follows. Moreover, the relevant capital letter will be used to denote a variable in the
shifted coordinates, for example

YO, y, 1) = WOE, )
since there is no direct dependence whem° is shifted to the(£, ) coordinates by
assumption 1. Furthermore, noting that the spatial derivatives are invariant under a shift,
we will use the operator¥, A, etc as operating on either tlie, y) variables or the¢, n)
variables; on which shall be clear from the context. If assumption 1 is met, equation (4.6)
transforms into

(i) = JV(WO(E, n) +cn) (5.1)

with a Hamiltonian given byw°(&, ) + cn.
Another hypothesis is now imposed on the unperturbed flow, namely, that equation (4.6)
in shifted coordinates possesses a structure as depicted in figure 2.

Assumption 2. Equation (5.1) has a homoclinic trajectory (£, ;) connecting the hyperbolic
equilibrium (&4, na) to itself.

We should comment on assumption 2. The structure shown in figure 2 is formed by
two heteroclinic orbits connecting two different equilibria with each other, and not by a
homoclinic solution. However, the structure is periodic in the easterly direction. Therefore,
we can view the equation on the infinite cylinder= S* xR or the torus2 = S$* x §* rather
than on the usuaB-plane 2 = R2. With this choice of the domai, the two different
equilibria appearing in figure 2 are then identified. Many models arising in the literature are
periodic in one of the spatial coordinates and therefore allow for such a reduction. Notice,
however, that then the forcing terf(&, n, ) has also to be periodic in the spatial variables.
Indeed, the partial differential equation (4.1) is then considered on a domain where one or
both spatial variables are periodic and the forcing term must be defined on the same domain.

Assumption 2 has been expressed in the shifted coordinates. €@, let

W+ =@ +10), 50 +130) 1= EW) + ct + 1), 7(1)) (5.2)
be the corresponding solution of the original equation (4.6)
t=JIVYOz, 1+ 1)

with z(0) = (£(0) + ¢z, 7j(0)).
We now require that, in addition to assumptions 1 and 2 on the unperturbed flow, the
perturbation also satisfies a constraint.
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Assumption 3. The function W! e C*() is bounded in C*(Q) uniformly in r € R and
e € (0, gg]. Here, W' denotes the function y* satisfying (4.5) in shifted coordinates.

Recall that the claims implicit in assumption 3 have only been provefirfibe times.
The boundedness assumption 3 will ensure that (4.3)—(4.5) are valid foe &l Note that
assumption 3 is met whenever the perturbed streamfunction is periodic in time. In section 7
we shall comment on whether assumption 3 is satisfied by equation (4.1). Equation (4.8)
in shifted coordinates reads

(i) = JVWOE, n) +cn+eWi(E, 0, t; 8)). (5.3)

It turns out that, if assumption 2 is met, the travelling waves we are considering must, in
fact, travel in an easterly direction.

Lemma 6. Assume that ¥(x, y, ) satisfies (4.6) and that ¥°(x, y,1) = WO(&, n) where
E=x—ctandn =y —c,t. If assumption 2 is met with (5.1) replaced by

(i) = JVWOE, n) — & +com) (5.4)

then Bc, = 0.

Proof. We observe that the potential vorticig(x, y, ¢) in shifted coordinates is given by

0°%E,n, 1) = AVO(E, ) + B(n + cyt). (5.5)

dl‘ g 1 ’ ” 1 ’ 1 q x (7 ’ y ! ’ f .

along any solution&(r), n(r)) of (5.4), sinceq® is conserved along trajectories. Picking
the equilibrium(&4, n4) which exists by assumption 2, we then see that the left-hand side
of (5.6) is given by

9 0%En na ) = p
_ . = C
dr As 1A y
by evaluating (5.5). Therefore, by (5.6), we obtgin, = 0. O

If B =0, we may always rotate coordinates to obtajn= 0, since equation (4.2) is
then invariant under rotations in the, y)-plane.

6. Distance function computation

The key computation is contained in this section. An exact expression for the Melnikov
function, the first-order term in the distance function, will be derived. The surprising fact
is that the expression is giveaxplicitly in terms of thee = 0 velocity field, in fact the
inviscid potential vorticity, and the forcing. As indicated in the introduction, a Melnikov
function calculation usually involves the perturbed velocity field, see equation (1.8), and
this is unknown here. However, with the form of perturbed PDE we are considering, i.e.
perturbation by viscosity and forcing, we do not need to know the perturbed flow field
exactly.
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Theorem 3. Suppose that the unperturbed flow (4.6) satisfies the shifted autonomous
assumption 1. Suppose that equation (5.1), that is (4.6) in shifted coordinates, obeys
assumption 2. Let the dynamics (4.1) generate the perturbation v, which in shifted
coordinates is assumed to obey assumption 3. Then the distance function for equation (5.3)
computed with respect to VQ°(&(0), 77(0)) has the form

d(t,e) = eM(1) + O(s?) (6.1)
with

M(t) = / [AQCE®), ii(1)) — AQ°(Ea, na)]dt

+/ [FE®), (1), 1 + 1) = F(§a,na, 1 + )] dt (6.2)

where the upper case notation corresponds to the shifted variables.

Note that the functionM (), as defined above, coincides with the Melnikov function
M(z, ¢) defined in corollary 1 up to order @). For this reason, with a slight abuse
of notation, we will also refer taV/(t) as the Melnikov function since it constitutes the
first-order term in the expression for the distance functign ¢).

Proof. Note that the theory developed in section 2 is applicable to equation (5.3), which
is (4.8) in shifted coordinates, as hypothesis 2 is met on account of the boundedness
assumption 3 and the results stated in section 4. Furthermore, assumption 3 ensures that
the dynamics (4.5) is satisfied for alk R. Notice that assumption 2 gives us at the outset
that Ag = Bo.

We observe that the potential vorticiy’ (x, v, ¢) in shifted coordinates

Q°(&, m) = AV, ) + Bn
is time independent. Moreover,

d o _d5 _
EQ E®,n@) = ad (x(0), y(@),1) =0

along any solution(¢(t), n(#)) of (5.1). Therefore, by lemma 1, we haver) =
VOOE®), 7(1)).

Hence, on account of corollary 1, the Melnikov function for (5.3), whegfehas been
defined in (4.7), is given by

M(z, 8)2/ VQOUE®, (1) - IVWE®), (1), 1 + T; 8) dr

[ee]

= / qu(z(t +T;1),t+1)- JVIﬂl(Z(t +T;T),t+T8)de

= / (Wt %Gt 1), 1 8) dt (6.3)

by transforming back to the original coordinates, see (5.2), and shifting time.

It is known by (4.3) thatvy! is bounded for finite times, and assumption 3 permits
the extension to all € R. Moreover,V4° decays exponentially to zero in the integrand as
t — o0, and hence integral (6.3) is absolutely convergent for small eneudlie know
that

Vq°(Ao(t), 1) =0
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for all t where Ag(¢) := (€4 + ct, n4) denotes the equilibrium in the original coordinates.
Therefore, evaluating (4.5) oMo(1), 1),
0,1

5, (Ao, 1) = AG°(Ao(t), 1) + f(Ao(t), 1) + e[Ag (Ao(r), 1) — (¥, g™} (Ao (D), 1)]

(6.4)
where the terms multiplying are bounded uniformly im. Since(Aq(?), t) is a trajectory
of the unperturbed flow, the material derivatigog is exactly the total derivative evaluated

via the chain rule. In other words, note that for any functiopx, y, ) on  x R, if
(x(2), y(2), 1) is a trajectory of the unperturbed flow, then

e, (0.0 = iy 4 Ly 4 02 2 (L0790 (090 o
_— X = —X —_— _——=— —_——_— _— _— _—
dr YD =5y T T\ oy ) Ty Uax ) T s

DO
= 5 hE@. y(@).0). (6.5)

Therefore, (6.4) may be written as

d 1
%(Ao(f), 1) = Ag°(Ao(t), 1) + f(Ao(t), 1) + e[Aqt(Ao(t), 1) — (¥, g1} (Ao (r), 1)].

(6.6)
Fix T € R, and pick the homoclinic trajectory
z; 1), )= 1), ¥ 1), 1)
of (4.6). We evaluate the dynamical equation (4.5) on this trajectory to obtain

1
Wt ¢ Ga ), 0 = [AqO — O:jit] G 0), 0+ G ), 1)

+e[Agt — (¥ g GE 0,0
where the material derivative following the unperturbed flow has been replaceddby d

by virtue of (6.5). We now add and subtract the quantitisqg® — {1, ¢*}](Ao(2), 1),
AqC(Ap(r), 1), and £ (Ao(2), t) in appropriate places of the above to obtain

Wl 1G5 1), 0 = [Aq°GR; 1), 1) — AgP(Ao(t), D] + [ Gt T), 1) — f(Ao(), )]
d 1
+ [(Aqf’ + f+elAgt — (v gM]) (Ao(). 1) — %(20; o), t)}

+el(Agt — (¥ ¢' D EE 1), 1) — (Agh — (¥, ¢ H(Ao(0), ). (6.7)
The operatorff)OO dr is now applied to the above. The left-hand side yields

0
/ e G o, nd

which we recognize as part of the integral definifgz, ¢), see (6.3). We look at each of

the three terms in square brackets on the right-hand side separately. We will keep the first,
while the second becomes

0 d 1
f [Aqo(Ao(r), D)+ f(Ao(®), 1) + e[Agh — (Y, ¢" ] (Ao(r), 1) — %(za; 1), r)} dr

(o]

° d
N / g4 (Ao, 1) = g* (@t v), D] de

oo

=[¢*(Ao(t), ) — ¢ @ (15 1), D]° o, = O (Eas a3 &) — ¢*(Z(0; ), O; &).
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The first step of the above is by (6.6), while the last is because at the left endjioint)
decays exponentially tao(z). This is further facilitated by the knowledge of continuity
of ¢! in its spatial variables provided by (4.3). Note that we have transformed the first
remaining term involving;! back into shifted coordinates. The third term of (6.7) remains
O(e) upon integration, since the can be extracted from the integral, and the remaining
integrand consists of terms known to be uniformly bounded independent Bforeover,

the integral is finite, sincé(z; r) decays exponentially tdy(z) ast — —oo. Applying the
same arguments far> 0 using the integral operatgf5°° dr and adding the resulting terms
yields

Mz, ¢) = f [Aq°G(t; T), 1) — AgP(Ao(t), D] dt

+/ [f@E(t; 1), 1) — f(Ao(t), )] df 4 O(e).

oo
Note that it is here where we have used the fact that the unperturbed solution is
homoclinic. Without this assumption, additional terms would appear. The shifted
autonomous assumption 1 is now used to convert the arguments in the integrands of the
above expression to thé&, ) variables as defined in assumption 1. Also,

Gt 1), 1) — (E@ — 1), 71t — 1), 1)

where(&(1), 7j(1)) is the parametrization of the heteroclinic orbit in the shifted phase space,
see (5.2). However, the explicit time dependence disappears &iptés autonomous in

the new variables. Moreover, the Laplacian is invariant under the shift, and we obtain the
surprisingly simple expression

Mz, e) = / [AQE (), i1(1)) — AQ%(E4, na)]dt

+/ [FE®. 7). 1+7) = Fa. na.t + )] dr + OCe)
by shifting the integration variable. Note from corollary 1 that the distance function has the
form

d(z,e) = eM(z, €) + O(e?)
which yields

d(z,e) = a( f [AQCE (1), i1(1)) — AQ%(E4, na)]dt

+/ [FE®), n(1), 1 +7) = F(6a,na, 1 +7)] dt) +0(e?)

[e¢]

as required. O

Theorem 3 derives a powerful expression for the leading-order term of the distance
function associated with viscosity-induced perturbations. We reiterate that most surprising
is the fact that the leading-order behaviour is known independently of the perturbed
streamfunction. Finally, we write the distance function in the original coordinates.

Corollary 2. Under the assumptions of theorem 3, the distance function in original
coordinates is given by

d(t,e) = a(/ [AGPGE (@) + et + 1), 7(1), t +7) — Ag°(Ea + c(t + T), na, t +7)] 0t
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+/ [fE® +ct+1), 7). t+1)— fEa+ct+7T), 04,1+ 7T)] dt)

+0(e?).

7. Perturbed flow field models

In this section, we investigate perturbed streamfunctions. It is natural to expect that the
perturbed streamfunction will be periodic in time whenever the forcing tEria. Indeed,
a steady velocity field is an equilibrium of the underlying PDE. If the equilibrium is
hyperbolic, then the perturbed streamfunction would be periodic in time provided the forcing
is. It turns out, however, that hyperbolicity fails in the present setting. In the set-up of
section 7.1, we derive necessary conditions for periodicity of the perturbed streamfunction.
Also, we investigate vorticity-conserving solutions arising in the literature. It is shown
that there are specific choices of the forcing tepiti, y, ) for which the perturbed
streamfunction is bounded uniformly in time.

Throughout this section, we assume that assumption 1 is met and use shifted coordinates
(&, n). The perturbed streamfunctioh(&, n, ¢; ¢) then satisfies

%A\If +{W, AW} + BV — cAY; = e(A*W + F) (7.1)
for (¢, n) € Q. Writing

W, e) = WOE, ) + eV (E n, 15 ) (7.2)
we obtain

%A\I/l + LoWt = A2W0 + F 4 e(A%W! — (wl, AUl (7.3)

exploiting the fact thatv® is an equilibrium of (7.1) foe = 0, that is

(W0, AWO} + BUY — cAWY = 0. (7.4)
In addition, we have used the definition

LoWt = (W0, AWM} + (U1, AWO} + U] — cAWL

7.1. Periodicity of the perturbed streamfunction

As in section 4, we assume that the two-dimensional doreaimas no boundary. To be
more specific, we assume thatis given byR?, ST x R, or §* x S. Based on the results
stated in section 4, we may assume thidtand W are contained ifH4(Q). In addition,
suppose thanw° does not vanish identically.

Observe that the operatdry has two zero eigenvalues with associated eigenfunctions
given by \Dg and \IJ,?, respectively, on account of translational invariance. We denote the
corresponding eigenfunctions of the adjoint operdigrby ¥} and ¥} for eastward and
northward translation, respectively. Denoting th&scalar product and.2-norm by (-, -)

and| - ||, respectively, a straightforward calculation shows that
(AWC, Lowhy =0 (7.5)
for all ! € H3(Q) as boundary terms do not arise when integrating by parts. Since
(AW, W) = (AW, wl) =0
the eigenfunctiomw® of L} is linearly independent o and ¥},. Therefore, zero is an
eigenvalue ofLy (and L) with geometric multiplicity at least three.
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Assumption 4. Suppose that the wind forcing F (&, n, t) is periodic in ¢ with period p > 0.

Under this assumption, we will derive conditions that are necessary for the perturbed
streamfunction¥ (¢, n, t) to be periodic.

Proposition 1. Assume that assumption 4 is met. If W (&, n, ) is periodic in ¢ with period
mp for some m € N, then the following equalities hold

p
<\1:°, 5/ F (1) dt>+ A2 =0
P Jo
o L [ 02
WO Z | AF@)dt)+ |VAWYI2=0
P Jo
* 1 b * 0
qu,;/ F(t)dt) + (A, AW%) =0
0

1 p
<\IJ,’(,, - / F(1) dt> +(AYF, AWO) = 0.
P Jo

In particular, on account of the second identity, W (&, n, t) cannot be periodicin ¢ with period
mp whenever F isindependent of (£, n) and AWC is not a constant function.

The first identity appearing in proposition 1 is a consequence of conservation of potential
vorticity for the unperturbed streamfunction. The remaining three conditions are first-order
expansions of (7.3) in the centre subspace spanned by the three known eigenfunctions of
Lo associated with the zero eigenvalue. As a consequence, periodicityrefjuires that
F is contained in a codimension-four subspaceH#(Q x R). Note that, if the last two
equations do not hold, drifting of the solution in the translational directions is expected.

Proof. Taking the scalar product of (7.1) witli, we obtain

d

a||V\1:||2 = —2e(|| AV + (F, ¥)). (7.6)
Indeed, the term

(W, AW} + BW; — AV, W)
vanishes identically for any functio¥:

(W, AW}, W) = /(\IIHA\IIE\IJ—\IIEA\II"\I/) dn de
Q
- /Q (W(AW), — W(AW, D)) dy d

= — f WAV W, — WAW, W) dypdé = —({W, AV}, W),
Q

Here, we used the fact that boundary terms do not occur when integrating by parts. A
similar argument works for the other two terms.
Thus, by applying the integral operatﬁjz”” dr to (7.6) and substituting (7.2),

mp mp
0=—2¢ (mp||A\IJO||2 + 28<A\IJO, / AVL() dt> + 82/ |AWL(1))|% dr
0 0

+<\DO’ /mp F(t) dt> +¢ /mp<\y1(t), F()) dt)
0 0

since the left-hand side is zero becausé, », r) is assumed to be periodic in Dividing
by ¢ and using boundedness ¥t in ¢, the first condition follows by setting = 0.
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The other equalities can be similarly inferred by taking the scalar product of (7.3) with
AWO, v, and W}, respectively, and using the fact that these functions are eigenfunctions
of L§ with eigenvalue zero. Thus, the terms involvihg disappear again. (]

7.2. Concrete models

Here, we will comment on a class of solutions of the inviscid, unforced equations and their
implications for chaotic transport after adding viscous dissipation. We will concentrate on
the class of models in which the streamfunction and its Laplacian are linearly related, see
(7.7) below. Note that all known closed-form solutions are formed by using this ansatz,
see [1] for a discussion. We point out that some of the models are posed on dd@mains
possessing non-empty boundaries. Others have streamfunctions which do not belong to
L?(Q). Therefore, the results of sections 4 and 7.1 do not necessarily apply. The main
issue is then to calculate the perturbed streamfunction and to verify the assumptions made
in section 5.

We seek bounded solutions of (7.3), that is

3
5“’1 + LoWl = A2W0 + F 4 o(A20 — (0wl Awl))

for smalle. A common feature of the models developed and collected in [1] is that they
obey

BYO = cAWO, (7.7

In other words W° satisfies both terms arising in the unperturbed equilibrium equation (7.4)
separately. Note that (7.7) implies th@’(z, n) and the Hamiltonian¥°(&, n) + cn of

the Lagrangian flow (5.1) are linearly dependefi(z, n) = g(\yo(g, n) + cn). Though

the Brown-Samelson theorem is not applicable here, it is clear that chaotic transport is
precluded sincal® does not depend on time.

Condition 1. The potential vorticity W° in shifted coordinates obeys (7.7).

We remark that iDQ were empty andl® were in H4(R2), (7.7) would imply thatg/c is
negative. Indeed, taking the scalar product of (7.7) withand integrating by parts yields
W02 = — 5V WO.

Before we discuss the consequences of condition 1, we shall give one simple example
of a vorticity-conserving streamfunction satisfying condition 1. As mentioned earlier, other
solutions can be found in [1]. The example was introduced by Pierrehumbert [23], who
used it as a base flow for a formal perturbation analysis:

vO(x, y, 1) = bsink(x — cr)) sinly) (x,y) e R x SL.
If the wavespeed = —kzLjrlz is chosen, condition 1 is indeed met. The streamfunction in
the moving frame is given by

WO, n) = bsinké)sindm  (5,m) e R x ST (7.8)
It is straightforward to see that equation (5.1) describing Lagrangian trajectories has cat’s
eyes whenever

p
b - -
T k2112

see figure 4 for the level curves of the Hamiltonian associated with Pierrehumbert’s
streamfunction.
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Figure4. Level curves of the Hamiltoniaw®(&, n) +cn with WO given in (7.8). Hereb = 0.4,
B=1k=2andl =1.

Returning to the general case, as a consequence of conditioh®lis an equilibrium
of the Eulerian equation, that is, it satisfies (7.4) forrat R. This suggests the ansatz

W= w492 (7.9)
Using (7.7), it is straightforward to calculate that (7.3) is equivalent to

0 9 2
EB—Z\IIO + EAIIJZ + LO\IJZ — ﬁ_2(1+ Sr)\IJO + F + S(AZ\IJZ _ {\IJZ, A\IJZ}) (710)
¢ c

It would be difficult to solve equation (7.10) for general forcing termes, n,¢). We
therefore restrict ourselves to forcing terms of the form

FE 1) = AW)WOE, ) (7.11)

whereA(t) is bounded. Substituting this expression and setfitg= 0, we see that (7.10)
is equivalent to

P 2
Br o B 14 era® 4 agyw®
c ot c?

and it suffices to solve
or B B

C
PPl EA(t). (7.12)

We then have the explicit general solution

t
r(t; e) = e¥/ery + / gheti=9/c (é + %A(s)) ds (7.13)
0 C
of (7.12). Multiplying with e#¢'/¢, we obtain
t ﬂ c
e Peer(t:e) = ro+ / g Pesie (— + EA(S)) ds. (7.14)
0 c

For B/c < 0, the solutiorv(¢; ¢) is therefore bounded far— —oo if and only if the limit
of the integral term on the right-hand side of (7.14) existstfes —oo. Settinge = 0, we
see that(z; 0) is bounded for — oo if and only if

/I <é + £A(s)) ds (7.15)
o \¢ B

is bounded as — co. Therefore, we impose the following condition on the forcing term
F(,n, 0.
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Condition 2. The forcing term satisfies
2

F(E,n,t) = (—f—z +a<t)) WO, n)

for some smooth function a(z). Moreover, there exist constants§ > 0,7 > 0and K, p e R
such that the following holds.
(i) For t > —T, the amplitude a(¢) is periodic in ¢ with period p and has mean zero,

that is, a(t + p) = a(t) for all t > —T, and f:TTera(t) dr =0.

(i) For t < —T, the amplitude a(¢) decays exponentially, that is, |a(t)] < Ké& for
t < —T.
We then state the following proposition.

Proposition 2. Suppose that conditions 1 and 2 are met. In addition, we assume that g < 0.
The perturbed streamfunction W (z; ¢) given by

W, n te)= (1+8%/t b=/ 4 (s) ds)llfo(& 1)

—00

is then bounded uniformly in ¢+ € R and ¢ € [0, &), and satisfies (7.1). Moreover, there
exists a function F(¢; ) periodic in ¢ with period p such that

|W(E, 0, t;8) — (L+eF(t; £)WO(E, n)| < CeP/e

for some constant C and ¢ > —T. In other words, for ¢ > 0, the perturbed streamfunction
is asymptotically periodic in time.

Proof. Comparing (7.11) with condition 2, we haw(t) = —f—zz + a(¢). Formula (7.13)
for r(t; ¢) then reads
t
r(t;e) = tlerg 4+ £ / e =/cq(s) ds.
B Jo
Observe that
S R d
ro = — e P q(s) ds
B /wo
is well defined sincei () decays exponentially far — —oo by condition 2. We then have
c t
r(t;e) = E/ e#e=9/¢q(s) ds

and it remains to show that(z; ¢) is bounded forr — oc. Sinceé < 0, it suffices to
consider the integral term

t
eﬂ“/"/ e Pes/eq(s) ds.
0

Sincea(t) is periodic int for ¢t > 0 and has mean zero, we may expand it in a Fourier
series

a(t) = (aySin(2rnt/p) + b, COL2nt/p)).
n=1
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Using the formula

t 22 4 2,2\"1
eﬂst/c/ e P5/¢ sin2ns /p) ds = — (ﬂ 5 + r )
A c

p2

Cc

. 2 2 ‘
x <ﬁ8 sinrnt/p) + 2= cost2mnt/p) — _”e,«;gt/L)
p p
and the analogue for the cosine terms, the statement of the proposition follows. O

Note that the results are still true f(fr > 0 with ¢ replaced by—¢. However, the
perturbed streamfunction would then be asymptotically periodic for negative times.

Finally, condition 1 and (7.11) allow us to derive an explicit formula for the Melnikov
integral M.

Lemma 7. Assume that assumptions 1, 2 and condition 1 are met. Suppose that the forcing
termisgiven by (7.11), i.e. F(&, n, 1) = A(t)V°(&, ). The Melnikov function M appearing
in (6.2) is then given by

oo

2 00
M(r) = ﬂ?/ (na —n(t)) dt +cf At +1)(na — (1)) dr.

—0Q

Proof. Equation (5.1) in shifted coordinates has the first integfe}, n) = WO(&, n) + cn.
In particular,%H(E(t), n(t)) = 0 and we obtain

WOE(r), (1)) — WO(Ea, na) = c(na — (1))
for all . Therefore,
2

AQCE ), 7i(1)) — AQ%(Ea, na) = ’%(m — (1))

using (7.7) and2® = AW + By, and the first integral of the Melnikov function in (6.2) is
equal to

2 o)
% / (4 — (D) .

This result can be confirmed by calculating the Melnikov integral far) = 0 using
the explicit expression for the perturbed streamfunctomprovided in proposition 2. The
second integral is computed in a similar fashion. O

Finally, we note that the results stated above remain valid for two-dimensional
incompressible, vorticity-preserving flows, that is fér= ¢ = 0, provided¥° = AWYO
is met. Essentially, the fractiongyc are replaced by 1 in the proofs. As a consequence, we
emphasize that the first term in the Melnikov integral must vanish. Indeed, the calculations
in the proof of lemma 7 show that the first integrand

AQCE®), 7i(1)) — AQ%(Ea, na) = WOE®), 71(1)) — WO(Ea, na)
=HE®W), 7)) — H(Ea,na) =0

vanishes.
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8. Transport after perturbation

As discussed in the introduction, the aim of this paper is to study the nature of transport
between the various component parts of a large-scale fluid structure such as a meandering
ocean jet. A key role is played by the vortical structures that flank the jet, namely the
so-called cat's eyes. Of interest then is the transport of fluid from the jet to the cat’s eye
and from the cat’s eye to the ambient, retrograde fluid. Of specific interest is what physical
mechanisms might act as facilitators of such transport and whether this transport will have
a chaotic nature. In this work we have added to the equation of potential vorticity a term
reflecting the dissipative effect of viscosity and a forcing that might crudely be viewed as
wind forcing on the surface of the ocean.

We then take a model for the inviscid fluid which is a wave travelling in an easterly
direction with a meandering structure. We assume that this base wave is steady in the
moving frame and is, moreover, periodic in the easterly direction. A cat’s eye flanking the
meandering jet is identified, in such a model, with a heteroclinic loop which can, in turn,
be viewed as a homoclinic orbit if the periodicity inis exploited and the problem cast
on a cylinder. The question is whether these homoclinic orbits split under the effect of the
perturbing terms, viscosity and forcing, introduced into the PDE.

To answer this question, under the assumption that the perturbed flow field satisfies an
appropriate boundedness assumption 3, we have derived the explicit expression

M(t) = / [AQCE®), ii(1)) — AQ°(Ea, na)]dt

+/ [FE®), (1), 1 + 1) = F(§a,na, 1 + )] drt (8.1)

for the Melnikov function that represents the first-order term in the expansion of the distance
functiond(t, ) = eM(t) + O(e?), see theorem 3. The surprising fact that emerges is the
independence of this expression from the perturbed flow field. This is an incredibly useful
feature of the calculation as the perturbed flow field is unknown.

A central assumption in our analysis is the boundedness assumption 3. We have derived
some conditions under which this will hold as a consequence of the perturbed flow field being
periodic and we have also given a specific example under which it is satisfied. However, in
general we cannot expect it to be met, see below, and in a further paper we shall consider
cases under which it fails.

In the following, we shall discuss the implications of our Melnikov analysis for various
different types of forcing functions. Some surprising conclusions can be made about the
nature of the transport in each of these cases.

8.1. Spatially independent wind forcing

First, we assume that the forcing function does not depend on the spatial variables. In other
words, suppose thagt = f(¢) does not depend on andy. It is then clear that it is also
independent of and 5 in the moving frame, i.eF = F(t). Under this condition, the
calculation of the Melnikov function can be considerably simplified as the second integral
in (8.1) is identically zero.

The resulting distance function has then the form

d(r,e) =¢ f [AQPE (), 7i(t)) — AQ°(Ea, na)] df + O(e?). (8.2)
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Figure 5. A perturbed cat’s eye. In the context of incompressible fluidsnfust occur leading
to an avenue along which fluid parcels pass from the northern to the southern part, or vice versa.

If the integral in the first-order term, i.e. the Melnikov function, is non-zero then there is a
striking implication for the separation of stable and unstable manifolds. Indeed, they must
separate a uniform distance apart, up to first order, independently of the time slice. Thus,
in this situation, there can beo intersection of the relevant manifolds under a viscous
perturbation consistent with (4.1) for small enough Moreover, it is a consequence of
lemma 7 that, for the specific models we have considered, the Melnikov function is given

by
2 00
/37 f (na — (D) dr

which is likely to be non-zero i8 # 0. In caseB8 = 0, the non-oceanographic case, we
cannot conclude that intersections are forbidden, but they must happen at higher order.
Suppose now that there is a cat’s eye in the unperturbed flow. We assume that one of
the Melnikov functions is non-zero. Both the lower and upper heteroclinics will then split.
Indeed, by lemma 5, the sum of the Melnikov integrMs and M, associated with the
two separatrices forming the cat’s eye is of orderTherefore,M; = —M> up to ordere,
and, in particular, if one of the integrals is non-zero, so is the other. There are now two
possibilities of how the separatrices can split, see figure 5. As discussed in section 3, the
case depicted in figure &) is impossible for incompressible fluids due to area conservation.
Indeed,M; = —M> up to ordere, and the separatrices therefore break in different directions.
The splitting of the manifolds must then occur in the manner depicted in fige Ste
stable and unstable manifolds of the poitit may still intersect and, also due to area
conservation, in fact must intersect. It is a consequence of lemma 5 and theorem 2 that the
splitting distance between the manifolds is of higher order, in faet®) for somev > 0.
Indeed, both results are applicable since hypothesis 5 is a consequence of theorem 3, while
hypothesis 3 is met with®(£, n) = WO(&, n) + cn andhi(E, n,t;e) = W, . t; €).
The picture one gets here is then of the possibility of the transport of fluid between
different regimes by virtue of a channel opening up, as depicted in figb)ef&(the north
to south case. Since the heteroclinics split at a lower order than the inner homoclinic, the
probability is great of a fluid particle being carried past the vortex region forming the cat’'s
eye, rather than be entrained into it. In this situation therefore chaotic transport is severely
inhibited. However, an avenue is opened up for fluid to escape from one region to another
in a non-chaotic fashion. It is feasible that

‘/ [AQ°E (), (1) — AQ°(4, na)]di| > O
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for almost all non-trivial unperturbed flows, and hence the indications are that, in general,
chaotic mixing will not result from including viscous effects. This is unexpected since the

manifolds are known to exhibit tangling under almost any perturbation. For a model to

predict chaotic transport, it is therefore necessary that the inviscid flow disobey either the
shifted autonomous or the homoclinic assumption.

8.2. Meridional wind forcing

Next, we suppose that the wind forcing depends only on the meridional variable. In other
words, we seff = f(y), whenceF(n) = f(n) in the moving frame. In this case the second
integral in (8.1) does contribute to the Melnikov function, but remains constant. Indeed,

M(t) = / [AQE®), ii(1)) — AQ°(Ea, na)]dt + f [f(@) — f(na)]de

which is clearly independent af. Here, we have replaced the functiéi(n) by f(n) in
the second integrand.

One can imagine choosing in different ways that would produce a Melnikov function
which is either positive or negative (or zero). But, in any case, we would not have transverse
intersections of stable and unstable manifolds and thus the chaotic nature of the transport
would be inhibited as above.

8.3. Temporally independent wind forcing

If the wind forcing depends only on the spatial variableandy, i.e. f = f(x, y), then
in the moving frame the forcing becomes dependent on time through its dependence on
Indeed,

F@E 1) = fE+ct.n).

If we assume that the forcing is periodic inx, which we actually have to do in order
to satisfy our hypotheses, thdnis periodic inz. ReplacingF again by f in the second
integral in (8.1), it follows that the Melnikov function

f [AQCE®), (1)) — AQ (Ea, na)] dt

+/ [FE® + et +1),71(1) = fEa+ et + 1), 1) dr

is also periodic inc. Note that this periodicity holds even if the underlying flow field is not
periodic. It follows that if the Melnikov function has one zero then it has infinitely many
zeros. Moreover, it is not hard to concoct forcing functighsvhich render a zero of the
Melnikov integral. This case would then naturally lead to the occurrence of complicated
heteroclinic tangling.

8.4. General forcing

For general forcing functions the calculation of the Melnikov integral still holds as in (8.1),
but conclusions may be harder to make. If, however, the forgitg y, r) enjoys some
periodicity in bothx ands then the forcing function in a moving frame

FéE,nt)=fE+ct,n, 1)
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will be quasiperiodic ir¢. It follows again that the Melnikov function will have the same
property, namely be quasiperiodic in As before, if it has one zero, it will have infinitely
many.

8.5. Perturbations without forcing

We close this section with a discussion of the simplest case, namely whether there is no
forcing at all. In other words, we assunfe= 0. This case falls under all of the above but

the conclusions do not apply as a basic hypothesis is not satisfied. Indeed, it follows from
equation (7.6) that the quantity

/ IV (x, y,t; )2 dx dy

will decay to zero fore > 0 ast — oo. But then it would be impossible to have a field
which is close to the = O flow field for all time where is non-zero. Thus, the boundedness
hypothesis does not hold.

It should be commented that the case of no forcing is that studied in [25] and there
stable and unstable manifolds are found numerically to have many intersections. It would be
tempting to think that the boundedness hypothesis not being satisfied supplied an explanation
for this discrepancy between the results of this paper, at least extrapolated to the case of a
decaying streamfunction, and those of [25]. However, in a further paper we show that the
case of an unbounded streamfunction is covered by our theory, provided the streamfunctions
stay close for long enough. An explanation must therefore be sought elsewhere and further
discussion of this point will appear in this forthcoming paper.

9. Conclusions

We have considered the effect of viscosity and forcing on the Lagrangian transport of fluid
parcels. The set-up we adopted was of an inviscid, incompressible two-dimensional velocity
field that is steady in a moving frame. The physical effects of viscosity and forcing are
then added to the vorticity equation to produce a perturbed, unsteady velocity field.

The nature of the transport depends crucially on the type of forcing. For natural examples
of forcing (spatially independent or only meridionally dependent) the separatrices of a steady,
in a moving frame, velocity field have been shown to open up for the perturbed (unsteady)
field to produce a channel through which fluid can be transported across a cat’s eye without
being entrained into the vortical regime. For other types of forcing, for instance periodic in
the horizontal direction, transverse intersections of stable and unstable manifolds results to
give a heteroclinic tangle and associated complex transport.

The subtlety of the results lies in the fact that the velocity fields are not explicitly
known, but only implicitly through the PDEs they satisfy. We have shown that a periodic,
in time, velocity field cannot be expected and thus the theory has been developed under the
assumption that the perturbed velocity field is only bounded.

The mathematical development involved a new extension for the Melnikov theory to
weak, non-smooth (in the parametgrperturbations. The Melnikov calculation renders a
surprisingly simple formula. A key point is that this formula does not involve the perturbed
velocity field. While, in general, it would be expected that the Melnikov function does not
depend on the perturbed trajectories, it usually does depend on the perturbed velocity field.
The effects of viscosity and forcing are, however, of such a form that we are saved from
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this complication and the Melnikov function can be calculated knowing only information
from thee = 0 velocity field.

From the oceanographic point of view, this analysis offers some very suggestive
conclusions. The Gulf Stream is perhaps the best known example of a meandering jet
and, based on models of perturbed jets, see for instance [4, 6], it is accepted that cat's eye
vortical regions lie in the troughs and under the crests of the meanders. If one accepts a
barotropic model of the Gulf Stream then the analysis of this paper suggests that viscosity,
here in the sense of an eddy viscosity, and westerly winds would tend to promote the direct
ejection of fluid parcels from the centre of the jet to the ambient waters without their being
entrained, even temporarily, in the vortical regions. This is in contrast to the kinematic
and perturbed jet models, see [6, 11, 14, 23, 24, 26, 27], which predict a predominance
of transport between the vortical regions and the jet and ambient water separately. The
immediate ejection of fluid parcels is, in these models, possible but unlikely. The real
Gulf Stream, as well as any other ocean jet, is obviously an extremely complex structure
which exhibits all of the above possibilities. However, the analysis shows that the pure
effects of viscosity and forcing have a certain unanticipated effect which may well lead to
an unexpectedly large occurrence of immediate ejection of fluid parcels.
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