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Abstract. We examine the effect of the breaking of vorticity conservation by viscous
dissipation on transport in the underlying fluid flow. The transport of interest is between
regimes of different characteristic motion and is afforded by the splitting of separatrices. A
base flow that is vorticity conserving is therefore assumed to have a separatrix that is either a
homoclinic or heteroclinic orbit. The corresponding vorticity dissipating flow, with small time-
dependent forcing and viscous parameterε, maintains an O(ε) closeness to the inviscid flow in
a weak sense. An appropriate Melnikov theory that allows for such weak perturbations is then
developed. A surprisingly simple expression for the leading-order distance between perturbed
invariant (stable and unstable) manifolds is derived which depends only on the inviscid flow.
Finally, the implications for transport in barotropic jets are discussed.
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1. Introduction

Lagrangian trajectories of fluid parcels in a two-dimensional incompressible fluid are
obtained by solving the ordinary differential equation (ODE)

ẋ = u(x, y, t)

ẏ = v(x, y, t)
(1.1)

where (u, v) is the Eulerian velocity field which can be expressed in terms of a
streamfunctionψ(x, y, t) as u = − ∂ψ

∂y
and v = ∂ψ

∂x
. Separatrices consist of

distinguished Lagrangian trajectories that demarcate the boundary between regimes of
different characteristic motion in a fluid flow. If the velocity field(u, v) is steady (i.e.
independent of time) separatrices are formed by homoclinic or heteroclinic orbits of (1.1),
see figure 1(a). If, on the other hand, the velocity field is varying in time and only nearly
steady, then the homoclinic, or heteroclinic, orbits that formed the separatrices in the steady
limit may break. Such a breaking will augur the transport of fluid between regimes of
ostensibly different motion. When the separatrix is intact (the steady case) it serves as
an impermeable boundary to fluid parcels and therefore genuinely separates the different
regimes. When the separatrix has split (the time-varying, near-steady case) fluid parcels
can move between these previously distinct regions, see figure 1(b). If the splitting of a
heteroclinic cycle or a homoclinic orbit occurs as a transverse intersection of the stable and
unstable manifolds involved in the separatrix then the transport will have a chaotic signature
and stirring of the fluid is facilitated, see Ottino [21].
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Figure 1. Separatrices formed by a heteroclinic cycle (or cat’s eye) (a) before and (b) after
perturbation.

A standard approach in the study of this kind of Lagrangian transport in unsteady flows
is to take a steady velocity field,(u, v) in (1.1), independent of time, and add a time-
dependent perturbation. It is, however, not realistic to consider only cases in which the
perturbing unsteady term has an explicit expression. Indeed, the velocity field is found
by solving a partial differential equation (PDE), the vorticity equation for two-dimensional
incompressible flow, and it is to this equation that the perturbing terms should be added.
These additional terms would represent physical effects that need to be taken into account;
in this paper we focus on the effects of viscosity and forcing. When these terms are added
to the vorticity equation the resulting velocity field found by solving that equation will
have been perturbed. However, there is no reason to expect that we would get an explicit
expression for the perturbed velocity field, even if the unperturbed field happened to be
given in closed form.

We then consider the situation in which an unforced, inviscid velocity field is steady, at
least in a moving frame, and has regions protected by separatrices. If viscosity and forcing
are added to the system, we anticipate an unsteady velocity field resulting and we ask the
question of if, and how, the separatrices split.

To set the scene, let us assume that the streamfunction, the existence of which is
guaranteed by incompressibility, is denoted in the inviscid case byψ0(x, y, t). The
dynamics obeys, to a first approximation, the conservation of vorticity equation

Dq0

Dt
= 0 (1.2)

where the operatorDDt represents the material derivativeDDt = ∂
∂t

− ∂ψ0

∂y
∂
∂x

+ ∂ψ0

∂x
∂
∂y

, and the
vorticity is given by

q0(x, y, t) = 
ψ0(x, y, t) (1.3)

where
 is the Laplacian in the spatial variables. Note that (1.2) can be considered as a
nonlinear PDE for the streamfunctionψ0 alone:

∂

∂t

ψ0 − ∂ψ0

∂y

∂
ψ0

∂x
+ ∂ψ0

∂x

∂
ψ0

∂y
= 0.

The Lagrangian trajectories of fluid parcels are then obtained by solving the ODE

ẋ = −∂ψ0

∂y
(x, y, t)

ẏ = ∂ψ0

∂x
(x, y, t).

(1.4)

We add viscosity and forcing to the system. Denoting the streamfunction byψ(x, y, t),
(1.2) is replaced by

Dq

Dt
= ε[
q + f (x, y, t)] (1.5)
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where D
Dt = ∂

∂t
− ∂ψ

∂y
∂
∂x

+ ∂ψ

∂x
∂
∂y

, and the vorticity and streamfunction are again related by

q(x, y, t) = 
ψ(x, y, t). (1.6)

The positive parameterε represents a measure of the viscosity. The corresponding PDE for
ψ reads

∂

∂t

ψ − ∂ψ

∂y

∂
ψ

∂x
+ ∂ψ

∂x

∂
ψ

∂y
= ε[
2ψ + f (x, y, t)].

Of interest then is the Lagrangian dynamics associated with (1.5), that is the trajectories of

ẋ = −∂ψ

∂y
(x, y, t)

ẏ = ∂ψ

∂x
(x, y, t).

(1.7)

We consider (1.7) as a perturbation of (1.4). It is an instructive exercise to consider the
naive application of Melnikov theory which would involve assuming the differentiability
of the streamfunction inε. The Melnikov theory would, in principle, allow us to decide
whether a separatrix̄z(t) = (x̄(t), ȳ(t)) of (1.4) breaks under the perturbation. The Melnikov
integral would be given by∫ ∞

−∞

(
∂

∂x
ψ0(z̄(t))

∂

∂y

∂

∂ε
ψ(z̄(t), t + τ)

∣∣∣∣
ε=0

− ∂

∂y
ψ0(z̄(t))

∂

∂x

∂

∂ε
ψ(z̄(t), t + τ)

∣∣∣∣
ε=0

)
dt

(1.8)

see corollary 1 and lemma 1 applied forQ0 = ψ0. Note however that we only know of the
full streamfunctionψ and the inviscid streamfunctionψ0 that they satisfy their respective
PDEs. Therefore, (1.8) is not very helpful even ifψ were differentiable inε except when
∂
∂ε
ψ is known explicitly.

Actually, the perturbed streamfunction is in generalnot differentiable with respect toε,
see [16]. Indeed, a fundamental difficulty is that the limiting behaviour ofψ asε → 0 can
only be established in a weak sense. Even though Ladyzhenskaya [16] proved an estimate

‖ψ0 − ψ‖L2 � Cε

on compact time intervals, providedψ0 is smooth enough,ψ is not differentiable inε at
ε = 0. This is an inevitable difficulty in problems of vanishing dissipation, see, for instance,
[30]. For our purposes the consequence is that expression (1.8) is formal. It therefore
necessitates an adapted Melnikov theory which works in cases where the perturbation is
only weakly related to the limiting flow. A further complication is that we cannot guarantee
the existence of a perturbed streamfunction, in other words a solution of (1.5), which is close
to ψ0 for all time, even if the initial data are close. Since we are interested in the behaviour
of the associated dynamical system and, in particular, its potentially chaotic nature it is
natural to consider velocity fields for the perturbed system that are periodic. The existence,
however, cannot be guaranteed of such velocity fields and in section 7 it is shown that
periodic velocity fields are indeed unlikely to occur. We therefore choose to develop the
theory for the case of bounded velocity fields, and this is the subject of theorem 1.

The key computation, and indeed the main result of this paper, is then to calculate the
distance between stable and unstable manifolds in the ODE phase space after separation
due to a viscous perturbation. An explicit expression is derived for the leading-order term
of this distance. Surprisingly, and in contrast to what might be expected of (1.8), it depends
only on the unperturbed streamfunctionψ0, that is the inviscid fluid, and the forcing term,
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Figure 2. A typical meandering (cat’s eye) jet.

see theorem 3. It is then possible to draw conclusions about the nature of transport after
adding viscosity from the knowledge of the inviscid velocity field alone.

Much of the motivation for these results comes from oceanography. The relevance of
oceanic jets such as the Gulf Stream to fluid transport in the oceans has evoked much recent
interest among oceanographers [3–6, 11, 14, 18–20, 23–27, 31]. Under some approximations,
these jets can be modelled bybarotropic motion: a reduction to the two horizontal directions
[10, 22]. Satellite photographs show that the Gulf Stream is, close to continental America,
an eastward flowing meandering jet, flanked by recirculating regions calledcat’s eyes [27].
A typical (gross) flow pattern of such a jet is illustrated in figure 2, whose axes loosely
correspond to the local eastward and northward directions. In fact, it is traditional to assume
that a phase portrait of the form of figure 2 arises in a frame moving eastward at some speed
c [11, 20, 23, 24, 26, 31]. However, this apparent regularity of motion is challenged by
the observed motion of floats, which traverse seemingly random trajectories near the Gulf
Stream [5, 6]. The indications are that the Gulf Stream can reasonably be modelled by a
regular Eulerian flow which, nevertheless, has irregular Lagrangian motion.

We expect that perturbations will destroy the heteroclinic separatrices of figure 2,
producing interaction between fluid parcels of disparate origins. Many authors have
exploited this fact inkinematic models to obtain, numerically and otherwise, chaotic mixing
[3, 14, 19, 26, 31]. However, these perturbations are often imposed without regard to the
dynamical equations that the velocity field must obey. Also, streamfunctions are often
used which satisfy the vorticity equation onlyapproximately, see, for instance, [11, 24].
Equation (1.2) is linearized about an appropriate jet. A superposition of eigenfunctions of
the linearized operator is then added to the jet solution. Finally, the resulting function is used
as a velocity field in the ODE (1.7) describing Lagrangian trajectories, and chaotic mixing
may be found, see [11, 23, 24]. Note that vorticity is, however, not exactly conserved
since (1.2) is linearized. Here, we introduce a dynamically consistent approach in that only
velocity fields are considered which satisfy either (1.2) or (1.5), and hence either conserve
vorticity or dissipate it in a planned and predictable fashion.
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An apparent key to the dynamics of the ocean is the near conservation of thepotential
vorticity, which generalizes the notion of vorticity to the oceanographic context by including
the effect of planetary vorticity. Thebarotropic β-plane potential vorticity is then given by
adding a linear term iny to the ambient vorticity

q0(x, y, t) = 
ψ0(x, y, t)+ βy. (1.9)

The positive constantβ is the Coriolis parameter. The set-up described above can be
re-interpreted in the oceanographic context by replacing (1.3) with (1.9). Under this re-
interpretation, and for the case of a meandering jet, the phase portrait of (1.4) in a frame
moving eastward at speedc is then assumed to have the structure of figure 2, and particular
examples are given in [1, 7, 11, 24].

As pointed out by Brown and Samelson [7], the conservation of (potential) vorticity
exerts significant restrictions on the Lagrangian trajectories of the velocity field. Indeed, it
adds a second integral to the Hamiltonian system (1.1) and if the velocity field is periodic,
and the vorticity and Hamiltonian are functionally independent then the system is integrable
and the kind of Lagrangian transport afforded by broken separatrices cannot occur. Taking
a steady velocity field, in a moving frame, for the inviscid, unforced limit is designed to
capture the dynamics enforced by the conservation of potential vorticity.

The issue of oceanographic interest is then to see if a velocity field resulting from a
situation under which potential vorticity is not conserved does indeed involve transport
between the jet, the cat’s eyes and the ambient water. This will be addressed exactly as
above but with the potential vorticity replacing the usual two-dimensional vorticity. Since
the non-oceanographic case is achieved by just settingβ = 0, in the following we shall cast
all the results in oceanographic terms and refer to the potential vorticity.

This paper is organized as follows. In section 2, we develop the Melnikov theory for
weak perturbations. Estimates for the distances of inner separatrices of perturbed cat’s
eyes are derived in section 3. Section 4 deals with the validity of considering the Eulerian
velocity field resulting from the viscous dynamics (1.5) as a regular perturbation on that
produced by the inviscid limit (1.2). We combine these results in sections 5 and 6, where
we compute the distance between manifolds in the phase space after separation due to a
viscous perturbation. In section 7, we return to the Eulerian equations, and comment on
whether periodic streamfunctions occur. Finally, the implications on transport in barotropic
jets are discussed in section 8.

2. Melnikov theory for weak perturbations

This section presents a Melnikov theory for base flows in two dimensions which possess
heteroclinic structures. The point here is that the perturbations are not necessarily continuous
in ε. We also allow for non-periodic time dependencies. The approach is motivated by that
presented in [8, section 11.3] for the smooth case. Suppose that� is a two-dimensional
smooth surface, andu ∈ �. Let g0 : � → R

2 such thatg0 ∈ Cr(�), r � 2. Consider as
the unperturbed flow on� the autonomous ODE

u̇ = g0(u). (2.1)

First, we assume the presence of a heteroclinic orbit in the unperturbed system (2.1).

Hypothesis 1. There exist hyperbolic equilibria A0 and B0 of (2.1) with one-dimensional
stable and unstable manifolds. A branch of the stable manifold of B0 (denoted WS

B0
) coincides

with a branch of the unstable manifold of A0 (denoted WU
A0

). This heteroclinic orbit is denoted
by ū(t).
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Let ∇ be the gradient operator with respect to the two-dimensional variable on� such
that ∇g0 is the Jacobian matrix of any functiong0 : � → R

2.
As a consequence of hypothesis 1, the adjoint variational equation

u̇ = −∇g0(ū(t))∗u (2.2)

along the heteroclinic orbit̄u(t) possesses a unique, up to a constant multiple, bounded
non-zero solutionϕ(t). If, for instance, (2.1) possesses a first integralQ0(u), the solution
ϕ(t) is readily computed.

Lemma 1 ([13]). If hypothesis 1 is met and (2.1) possesses a first integral Q0(u), that is,
d
dt Q

0(u(t)) = 0 for any solution u(t) of (2.1), then ϕ(t) = ∇Q0(ū(t)) satisfies (2.2).

Let ε be a parameter in the intervalI = [0, ε0], whereε0 is a positive number assumed
to be as small as required. We now consider the perturbed equation

u̇ = g0(u)+ g1(u, t, ε) (2.3)

where the functiong1 satisfies the following hypothesis. The operator∇, as before, will
pertain only to the spatial variableu.

Hypothesis 2. g1 : �× R × I → R
2 satisfies the conditions:

(i) g1 ∈ Cr(�× R) for each ε ∈ I with uniform bounds, where r � 2;
(ii) g1(u, t,0) = 0 for all (u, t) ∈ �× R; and
(iii) there is a positive constant C such that

|g1(u, t, ε)| + |∇g1(u, t, ε)| � C|ε|
holds uniformly in (u, t) ∈ �× R.

Note that we deliberately do not assume any smoothness inε as we cannot guarantee
such smoothness in the application to fluid flow. Condition (iii) is a form of Lipschitz
continuity at ε = 0. On the other hand, if hypothesis 2 is satisfied, implicit function
theorems are applicable since the perturbation is smooth in the spatial variable and its
Jacobian is small.

Under such a perturbation, the hyperbolic equilibriumA0 perturbs to a bounded solution
Aε(t). Its stable and unstable manifolds persist for small enoughε, sinceg1 is uniformly
bounded by hypothesis 2, and similarly forB0. The proof of this persistence is provided
via exponential dichotomies by the roughness theorem of Coppel [9]. The intention now is
to develop adistance function d(τ, ε) which measures the separation between the unstable
manifold ofAε(t) and the stable manifold ofBε(t) in the time slice{t = τ }. We begin by
defining the space

B(R) = {G : R → R
2 bounded and continuous}

with the norm|G| = supt∈R
|G(t)|.

Thus,ϕ(t) ∈ B(R), and moreover decays to zero exponentially ast → ±∞. Define
the continuous projection operatorP on B(R) by

PG = 1∫ ∞
−∞ |ϕ(s)|2 ds

ϕ(t)

∫ ∞

−∞
ϕ(s) ·G(s) ds.

The following lemma, which is essentially a Lyapunov–Schmidt reduction, now holds.

Lemma 2. If G ∈ B(R), the equation

u̇ = ∇g0(ū(t))u+G(t) (2.4)

has a solution in B(R) if and only if PG = 0. If the initial condition u(0) of (2.4) is
such that 〈u(0), g0(ū(0))〉 = 0, then the solution is unique. Moreover, the solution operator
Q : (id −P)B(R) → B(R) is linear and continuous.
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Proof. See lemma 3.2 in section 11.3 of [8]. �

The result of lemma 2 can be used to provide a mathematical characterization for the
existence of a heteroclinic point of (2.3) near the unperturbed manifold. Letu(t) satisfy
(2.3), and set

u(t) = ū(t − τ)+ ξ(t − τ).

The idea is to find a solutionu(t) which remains close to the (unperturbed) heteroclinic
orbit ū(t − τ). Thus, a small solutionξ(t) is sought which must satisfy

ξ̇ = ∇g0(ū(t))ξ + g0(ū(t)+ ξ)− g0(ū(t))− ∇g0(ū(t))ξ + g1(ū(t)+ ξ, t + τ, ε)

=: ∇g0(ū(t))ξ +G(ξ, t + τ, ε) (2.5)

where the above serves as a definition for the functionG(ξ, t, ε). The existence of a
heteroclinic point of (2.3) near the heteroclinic orbit of the unperturbed case depends on the
existence of a bounded solution to (2.5), see [8]. By lemma 2, this problem is equivalent
to solving the pair of equations

PG(ξ, · + τ, ε) = 0 (2.6)

ξ = Q(id −P)G(ξ, · + τ, ε). (2.7)

We now state the main theorem which gives a characterization of the existence of a
(transverse) heteroclinic point in terms of a Melnikov-type function. Recall thatϕ(t) is
the unique bounded solution of the adjoint equation (2.2).

Theorem 1. Suppose hypothesis 1 holds for the unperturbed flow (2.1), and that the
perturbation g1(u, t, ε) satisfies hypothesis 2. Then, there exists a unique solution ξ̄ (τ, ε)(t)

of (2.7) for small enough ε. Furthermore,

|ξ̄ (τ, ε)| � C|ε|
for some positive constant C uniformly in τ . Define the distance function

d(τ, ε) =
∫ ∞

−∞
〈ϕ(t),G(ξ̄ (τ, ε)(t), t + τ, ε)〉 dt (2.8)

then there exists a heteroclinic point of (2.3) in a neighbourhood of WU
A0

= WS
B0

for |ε| < ε0

if and only if ε and τ satisfy d(τ, ε) = 0. Moreover, the intersection is transverse if and
only if ∂

∂τ
d(τ, ε) �= 0.

In other words, the unique solution̄ξ(τ, ε)(t) of (2.7) satisfies (2.6) if and only if
d(τ, ε) = 0.

Proof. We fix τ ∈ R. By hypothesis 2, the Jacobian∇g1 is small for ε small. Thus, the
operator

T (ξ, ε) = Q(id −P)G(ξ, · + τ, ε)

which consists of the sum of a quadratic term inξ and the perturbationg1, is therefore a
uniform contraction onξ for small enoughε, and forξ in a sufficiently small neighbourhood
around zero inB(R). Suppose that the contraction constant with respect toξ for this operator
is ϑ ∈ (0, 1). By the contraction mapping principle of Banach–Caccipoli (see, for example,
[8]), this implies that (2.7) has a unique solutionξ̄ (τ, ε)(t) for small enoughε. Recall that
g1 is of order O(ε) by hypothesis 2. Hence,T (ξ, ε) satisfies

|T (ξ, ε)− T (ξ, 0)| � C|ε|
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for some positive constantC. Consider the solutionξ(ε) of (2.7). Sinceξ(0) = 0, we have

|ξ(ε)| = |T (ξ(ε), ε)| � |T (ξ(ε), ε)− T (ξ(0), ε)| + |T (0, ε)− T (0, 0)| � ϑ |ξ(ε)| + C|ε|

for some positive constantC, where the last step is becauseT (ξ, ε) is a uniform contraction
in ξ and is small inε. Hence,

|ξ(ε)| � C

1 − ϑ
|ε|

and the solution̄ξ(τ, ε)(t) of (2.7) is small inε. Now, the existence of a heteroclinic point
is equivalent to the existence of solutions to equations (2.6) and (2.7) as has been described;
theorem 3.3 of [8] discusses this fact in greater detail. Therefore, a heteroclinic point exists
in the neighbourhood ofWU

A0
= WS

B0
for ε ∈ I if and only if there is a solution to (2.6) or

equivalently, if there existsτ andε ∈ I such thatd(τ, ε) = 0. The proof of transversality
is analogous to that given in [8]. �

An expansion of the distance functiond(τ, ε) is given in the following corollary.

Corollary 1. Suppose all the assumptions of theorem 1 are met, and write

g1(u, t, ε) = εg̃1(u, t, ε).

The distance function can then be written in the form

d(τ, ε) = εM(τ, ε)+ O(ε2)

M(τ, ε) =
∫ ∞

−∞
〈ϕ(t), g̃1(ū(t), t + τ, ε)〉 dt.

(2.9)

Proof. Since we have sufficient smoothness ing0 andg1,

g0(ū(t)+ ξ)− g0(ū(t))− ∇g0(ū(t))ξ = O(|ξ |2)
g1(ū(t)+ ξ, t + τ, ε) = g1(ū(t), t + τ, ε)+ O(ε|ξ |)

using hypothesis 2. However, theorem 1 asserts thatξ(ε) = O(ε) holds. Thus,d(τ, ε) has
the required form. �

We call d(τ, ε) the distance function, while the leading-order termM(τ, ε) is referred
to as the Melnikov function. It is useful to note that the functiond(τ, ε) measures a
signed distance between perturbed stable and unstable manifolds. Indeed, letuUA(τ, ε)(t)

and uSB(τ, ε)(t) be trajectories in the unstable manifold ofAε(t) and the stable manifold
of Bε(t) for equation (2.3), respectively, with the property that their scalar product with
g0(ū(0)) vanishes att = 0. Then,

d(τ, ε) = 〈ϕ(0), uUA(τ, ε)(0)− uSB(τ, ε)(0)〉. (2.10)

In particular, the sign ofd(τ, ε) indicates the direction in which the heteroclinic connection
is broken.



Viscous perturbations of vorticity-conserving flows 55

Figure 3. (a) Unperturbed and (b) perturbed cat’s eye.

3. Distance between invariant manifolds near perturbed heteroclinic loops

As indicated in figure 2, a key component to a meandering jet are the flanking cat’s eyes,
that is, two heteroclinic orbits forming a loop as depicted in figure 3(a). Chaotic transport
may occur if the loop is broken. In this section, estimates for the distances between stable
and unstable manifolds in a perturbed cat’s eye are presented. Since equations (1.7) for
Lagrangian trajectories are Hamiltonian, we define

J =
(

0 −1
1 0

)

and consider

u̇ = J∇(h0(u)+ h1(u, t + τ, ε)) (3.1)

for u ∈ �. The functionsh0 andh1 satisfy the following hypothesis.

Hypothesis 3. The nonlinearities h0 and h1 are Cr+1 for some r � 2. Furthermore, ∇h0(u)

vanishes at most at isolated points in �, and g1 := J∇h1(u, t, ε) satisfies hypothesis 2.

Next, we assume that (3.1) has a cat’s-eye structure.

Hypothesis 4. For ε = 0, there exist hyperbolic equilibria A0 and B0 of (3.1) such that
branches of their one-dimensional stable and unstable manifolds WU

A0
and WS

B0
as well as

WU
B0

and WS
A0

, respectively, coincide forming a cat’s eye for the unperturbed flow of (3.1).
Denote the heteroclinic trajectories by ū1(t) and ū2(t), respectively, see figure 3(a).

Under these assumptions, we may therefore apply the theory developed in the previous
section for each of the two heteroclinic orbitsūj (t) with j = 1, 2. By lemma 1, bounded
solutionsϕj (t) of the adjoint equation (2.2) alonḡuj (t) are given by∇h0(ūj (t)). It then
follows that ∇h0(ūj (0)) is not zero since otherwise∇h0(ūj (t)) would vanish for all t
contradicting hypothesis 3. Therefore,ϕj (t) is not the trivial zero solution.

We are interested in estimates for the distances between stable and unstable manifolds
of Aε(t) for small non-zeroε, see figure 5(b). Denote the eigenvalues of∇2h0(B0) by ±λ
with λ > 0. Define sectionsL1 andL2 by

Lj = {u ∈ �|ūj (0)− u ∈ span∇h0(ūj (0)), |ūj (0)− u| < δ}
for some smallδ > 0 andj = 1, 2. Let uSA(τ, ε)(t) anduUA(τ, ε)(t) be trajectories in the
stable and unstable manifold ofAε(t) for equation (3.1) such thatuSA(τ, ε)(0) ∈ L2 and
uUA(τ, ε)(0) ∈ L1, see figure 3. Similarly,uSB(τ, ε)(t) and uUB (τ, ε)(t) denote trajectories
contained in the perturbed stable and unstable manifolds ofBε(t) satisfyinguSB(τ, ε)(0) ∈ L1

anduUB (τ, ε)(0) ∈ L2, respectively. Letγ > 0 be arbitrary but fixed.
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The next lemma gives a determination of any solution starting inL1 and ending inL2

in terms of the time needed to pass the solutionBε(t).

Lemma 3. Suppose hypotheses 3 and 4 are met, then there exist ε0 > 0 and s0 such that
for any τ , ε and s with |ε| < ε0 and s > s0 the following holds: there is a unique solution
us(τ, ε)(t) of equation (3.1) defined for t ∈ [0, 2s] such that

us(τ, ε)(0) ∈ L1 and us(τ, ε)(2s) ∈ L2. (3.2)

Moreover,

〈∇h0(ū1(0)), u
U
A(τ, ε)(0)− us(τ, ε)(0)〉

= d1(τ, ε)− 〈∇h0(ū1(s)), ū2(−s)− B0〉 + R1(τ, ε, s) (3.3)

〈∇h0(ū2(0)), us(τ, ε)(2s)− uSA(τ + 2s, ε)(0)〉
= d2(τ + 2s, ε)+ 〈∇h0(ū2(−s)), ū1(s)− B0〉 + R2(τ + 2s, ε, s) (3.4)

where the remainder terms satisfy the estimate

|Rj(τ, ε, s)| � Cγ (|ε| + e−2λs)e−λ(1−γ )s (3.5)

for any γ > 0. Moreover, dj (τ, ε), j = 1, 2 are the distance functions for the two
intersections of stable and unstable manifolds defined in the previous section computed with
respect to ϕj (t) = ∇h0(ūj (t)).

Proof. Existence and uniqueness follow as in [17]. In [17] only autonomous, smooth
perturbations are considered. It is straightforward to adapt the proof given there to the
situation studied here. We therefore refer to [17] for details. �

Note that we do not claim any smoothness properties forus(τ, ε) nor the remainder
termsRj . By [28, lemma 1.1], we have

〈∇h0(ū1(s)), ū2(−s)− B0〉 = K1e−2λs + R3(s)

〈∇h0(ū2(−s)), ū1(s)− B0〉 = K2e−2λs + R4(s)
(3.6)

for some positive constantsK1 andK2, and, for any smallγ > 0,

|R3(s)| + |R4(s)| � Cγe−3λ(1−γ )s

holds ass → ∞. We will need the relationK1 = K2 proved in the next lemma.

Lemma 4. Under the assumptions of lemma 3, K1 = K2.

Proof. The constantsK1 andK2 are determined by the unperturbed flow forε = 0. Let
us(τ, 0)(t) =: us(t) be independent ofτ . We then have

h0(ū1(0))− h0(us(0)) = ∇h0(ū1(0)) · (ū1(0)− us(0))+ O(|ū1(0)− us(0)|2)
= 〈∇h0(ū1(0)), ū1(0)− us(0)〉 + O(|ū1(0)− us(0)|2)
= −K1e−2λs + O(e−3λ(1−γ )s)

and similarly obtain

∇h0(ū2(0)) · (ū2(0)− us(2s))+ O(|ū2(0)− us(2s)|2)
= − 〈∇h0(ū2(0)), us(2s)− ū2(0)〉 + O(|ū2(0)− us(2s)|2)
= −K2e−2λs + O(e−3λ(1−γ )s).
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Sinceh0 is a conserved quantity for equation (3.1) withε = 0, we conclude

h0(ū1(0))− h0(us(0)) = h0(ū2(0))− h0(us(2s)).

Indeed,h0(us(0)) = h0(us(2s)) andh0(ū1(0)) = h0(ū2(0)) hold. Therefore,K1 = K2 by
choosingγ sufficiently small. �

The particular formJ∇h1(u, t, ε) of the perturbation guarantees that the flow is area-
preserving. Next, we assume that the splitting of stable and unstable manifolds is, to first
order, independent of the time slice. This assumption is very restrictive, since we expect
transverse intersections of the invariant manifolds for almost any perturbation. However, it
is often enforced in the application to oceanography we are interested in, since then only
those perturbations are allowed which are solutions of the vorticity equation, see section 8.

Hypothesis 5. Suppose that dj (τ, ε) = εMj(ε)+ O(ε2), where Mj(ε) is independent of τ .

It then follows that the splitting distances coincide to first order.

Lemma 5. Suppose that hypotheses 3–5 are satisfied, then |M1(ε)+M2(ε)| � C|ε|.

Proof. Note that div(J∇(h0(u) + h1(u, t, ε))) = 0 vanishes identically, and therefore the
flow of (3.1) is area-preserving. Denote the area enclosed by the unperturbed cat’s eye by
V0. Then, the areaVε(τ ) enclosed by the perturbed cat’s eye in the time slice{t = τ } can
be estimated by

|Vε(τ )− V0| � Cε (3.7)

uniformly in ε andτ . Here, the perturbed cat’s eye refers to the piecesuUA(τ+s, ε)(−s) and
uUB (τ + s, ε)(−s) as well asuSA(τ − s, ε)(s) anduSB(τ − s, ε)(s) of the invariant manifolds
in the time slice{t = τ } together with the pieces of the sectionsLj connecting them, see
figure 3(b). Here,s ∈ R

+.
Note that the gradients∇h0(ū1(0)) and∇h0(ū2(0)) point either both inside the interior

of the cat’s eye, or else both outside, since the equilibria are hyperbolic, that is∇2h0(A0)

is invertible. Setκ = 1 if both point inside, and setκ = −1 if both point outside. We shall
quantify the effects of volume leaving or entering the perturbed cat’s eye. The distances
of stable and unstable manifolds in the time slice{t = τ } measured in the direction of
∇h0(ūj (0)) are given by

D1 := uUA(τ, ε)(0)− uSB(τ, ε)(0) = εκM1(ε)|∇h0(ū1(0))|−1 + O(ε2)

D2 := uUB (τ, ε)(0)− uSA(τ, ε)(0) = εκM2(ε)|∇h0(ū2(0))|−1 + O(ε2).

by lemma 3 and hypothesis 5. In particular,κMj < 0 and κMj > 0 correspond to
volume leaving and entering the perturbed cat’s eye through the sectionLj , respectively,
for j = 1, 2. For small time intervals of lengthT , the amount of volume flowing through
the sectionLj is given by

∂jVε(τ ) := DjT (|∇h0(ūj (0))| + O(ε)).

Substituting the expression forDj , we obtain

∂jVε(τ ) = εκT (Mj(ε)+ O(ε)) (3.8)

where the sign of∂jVε(τ ) indicates whether volume is entering or leaving the perturbed cat’s
eye. However, sinceMj(ε) is independent ofτ , this amount of volume keeps adding up by
considering several disjoint time intervals of lengthT , and it cannot be compensated by a
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change of the area due to the remainder term O(ε) in (3.7). Therefore, area conservation is
only possible ifM1(ε) = −M2(ε)+ O(ε). �

In section 2, the intersections between the unstable manifold ofAε and the stable
manifold ofBε were analysed. Here, we are interested in intersections of the unstable and
stable manifolds ofAε, that is, orbits homoclinic toAε, see figure 5(b) for the geometry.
Since the unstable manifold ofAε would then pass nearBε, these homoclinic solutions
are reminiscent of multiple or secondary homoclinic orbits in autonomous systems, see, for
instance, [12, 15, 28, 29]. After the separatricesūj (t) are broken forε �= 0, the unstable
manifold ofAε may pass nearBε and intersect with the stable manifold ofAε. We therefore
define

dhom(τ, ε) := 〈∇h0(ū2(0)), u
U
A(τ, ε)(2s∗)− uSA(τ + 2s∗, ε)(0)〉

where s∗ is chosen such thatuUA(τ, ε)(t) intersectsL2 for the first time att = 2s∗. The
quantity dhom(τ, ε) measures the distance between stable and unstable manifolds of the
solution Aε at the sectionL2 in the time slice{t = τ + 2s∗}. Of course, the unstable
manifold uUA(τ, ε)(t) of Aε may not intersectL2 at all; however, whenever it does, the
quantitydhom(τ, ε) is well defined. We then have the following result which shows that the
intersections associated with an orbit homoclinic toAε occur only at higher order.

Theorem 2. Assume that hypothesis 3–5 are met. Fix some ν ∈ (0, 1
2), then, whenever

dhom(τ, ε) is defined, |dhom(τ, ε)| � Cν |ε|1+ν .

Proof. By lemma 5,M1(ε) = M2(ε) + O(ε). We setM(ε) := M1(ε). Consider equation
(3.3)

〈∇h0(ū1(0)), u
U
A(τ, ε)(0)− us(τ, ε)(0)〉

= d1(τ, ε)− 〈∇h0(ū1(s)), ū2(−s)− B0〉 + R1(τ, ε, s) = 0. (3.9)

Substituting (3.3), (3.6) and using lemma 5, we obtain the equation

εM(ε)−K1e−2λs + R5(τ, ε, s) = 0 (3.10)

for some remainder term satisfying

|R5(τ, ε, s)| � Cγ (|ε|2 + (|ε| + e−2λs)e−λ(1−γ )s).

On account of the uniqueness statement in lemma 3, the unstable manifold ofAε

will intersect L2 if and only if (3.10) has a solution. Then the solutionsuUA(τ, ε)(t)
and us(τ, ε)(t) coincide and we can therefore use equation (3.4) to estimatedhom(τ, ε).
Assuming that a solution(τ, ε, s) = (τ∗, ε∗, s∗) of (3.10) has been found, we obtain the
estimate

e−2λs∗ � C|ε∗| (3.11)

by inspecting (3.10). It remains to estimate

dhom(τ∗, ε∗) = 〈∇h0(ū2(0)), us∗(τ∗, ε∗)(2s∗)− uSA(τ∗ + 2s∗, ε∗)(0)〉
= − ε∗M(ε∗)+K2e−2λs∗ + R6(τ∗, ε∗, s∗) (3.12)

where we substituted (3.4), (3.6) and used lemma 5. Here,

|R6(τ, ε, s)| � Cγ (|ε|2 + (|ε| + e−2λs)e−λ(1−γ )s).

Adding (3.10) evaluated at(τ∗, ε∗, s∗) and (3.12) yields

dhom(τ∗, ε∗) = R5(τ∗, ε∗, s∗)+ R6(τ∗, ε∗, s∗).
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Indeed,K1 = K2 holds by lemma 4. Thus, using estimate (3.11), we obtain

|dhom(τ∗, ε∗)| � Cγ (|ε∗|2 + (|ε∗| + e−2λs∗)e−λ(1−γ )s∗)

� Cγ (|ε∗|2 + |ε∗|1+ 1
2 (1−γ )) � Cν |ε∗|1+ν

for any ν < 1
2. �

4. Viscous dynamics and vanishing viscosity

Throughout, we use the variablesx and y as being those on the barotropicβ-plane that
define the eastward and northward directions respectively and letz = (x, y). Suppose
now that the dynamics of the barotropic jet are governed not by the exact conservation of
potential vorticity but by a potential vorticity dissipating, forced flow. The dynamics will
thus be assumed to satisfy

Dq

Dt
≡ ∂q

∂t
− ∂ψ

∂y

∂q

∂x
+ ∂ψ

∂x

∂q

∂y
= ε[
q + f (x, y, t)] (4.1)

where q(x, y, t) = 
ψ(x, y, t) + βy is the barotropic potential vorticity,f (x, y, t) is
a uniformly bounded forcing function, andψ is the streamfunction associated with the
flow. The parameterε lies in (0, ε0], whereε0 is assumed to be as small as needed, and
represents the viscosity. The above dissipative dynamics can result from directly including
the Newtonian viscosity in the primitive equations or, more realistically in the oceanographic
context, by the dissipation caused by eddy diffusivity (the averaged effects of small scale
turbulence). In either case,ε can be considered as a small parameter for oceanic flows. The
function f (x, y, t) can be thought of as modelling wind forcing.

It is relevant to find out whether the flow of this dissipative equation is close to that of
the exactly potential vorticity conserving equation

Dq

Dt
= 0. (4.2)

This issue has been addressed in [16] forβ = 0. In [1, 2], this problem was investigated for
β �= 0. Recall thatq is related to the associated streamfunction byq = 
ψ + βy. Suppose
the streamfunctionψ0(x, y, t) satisfies (4.2), whileψ(x, y, t; ε) obeys (4.1). Let(x, y) ∈ �,
a two-dimensional smooth surfacewith no boundary. The traditionalβ-plane, which is
R

2, obeys this constraint as does a torus and an infinite cylinder which can be used via
imposition of periodic boundary conditions. Suppose the initial conditions∇ψ(x, y,0; ε)
and ∇ψ0(x, y,0) are O(ε) close in the normC3(�) and in the Sobolev normsH 3(�)

and H 4(�). Let T > 0 be large but fixed, and suppose it is known that the inviscid
streamfunction is smooth enough so that∑

5�|k|�7

‖Dkψ0(t)‖L2(�) and
∑

4�|k|�7

‖Dkψ0(t)‖L4(�)

are bounded independently oft ∈ [0, T ]. The generalized derivative symbolDk used here
is assumed to act only on the spatial(x, y) variables. Then, it can be shown that, see [1, 2],
there exists a constantC(T ) such that

sup
t∈[0,T ]

‖∇ψ(t; ε)− ∇ψ0(t)‖C3(�) � εC(T ). (4.3)

If the additional smoothness assumption on the inviscid streamfunction is removed, the
above can be derived in the norm ofC0(�). Thus, the velocity field of the viscous dynamics
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is O(ε) close to that of its inviscid counterpart. The derivation of (4.3) involves extensive
use of a priori estimates and the Sobolev embedding theorem [1, 2]. From (4.3), it is
possible to write

∇ψ(x, y, t; ε) = ∇ψ0(x, y, t)+ ε∇ψ1(x, y, t; ε) (4.4)

for any t ∈ [0, T ] and (x, y) ∈ � such that
∑

0�|k|�4D
kψ1(x, y, t; ε) is bounded

independently ofε ∈ [0, ε0] for finite times.
For smooth, real-valued functionsf, g : � → R, thePoisson bracket betweenf andg

is defined by

{f, g} := ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

Using this definition, substitution of (4.4) into the dynamics (4.1) leads to the equation

D0q1

Dt
+ {ψ1, q0} = 
q0 + f + ε[
q1 − {ψ1, q1}] (4.5)

where the unperturbed material derivative

D0

Dt
= ∂

∂t
− ∂ψ0

∂y

∂

∂x
+ ∂ψ0

∂x

∂

∂y

has been used, along with the notation

q0 = 
ψ0 + βy and q1 = 
ψ1.

Note that (4.4) ensures that all terms in (4.5) remain bounded for finite times. The
Lagrangian trajectories generated by the inviscid streamfunctionψ0 satisfy the differential
equation

ż = J∇ψ0(z, t) (4.6)

with z = (x, y) and

J =
(

0 −1
1 0

)
.

This possessesq0(x, y, t) as an integral of motion. In fact, (4.6) is formally integrable [7].
We additionally assume that (4.6) possesses the gross kinematics of an oceanic jet in that
heteroclinic trajectories exist between two saddle structures, see figure 2. Mathematically
speaking, we impose hypothesis 1 on the flow (4.6). Such a heteroclinic represents the
boundary of a cat’s eye, and its destruction would permit fluid to travel across these apparent
separatrices.

To apply the Melnikov theory developed in section 2, we need to consider a perturbation
to the vector field in (4.6). This is readily accomplished by using instead the full viscous
streamfunction

ψ(x, y, t; ε) = ψ0(x, y, t)+ εψ1(x, y, t; ε) (4.7)

and thus the Lagrangian trajectories of the perturbed flow will obey

ż = J∇ψ(z, t; ε). (4.8)

It is known by (4.3) that, for finite times at least, the vector field of (4.8) is O(ε) close to that
of the integrable system (4.6), i.e. the first-order termψ1(x, y, t; ε) is bounded. Assuming
that this closeness can be extended to allt ∈ R, the difference in the velocity fields of (4.8)
and (4.6) would satisfy hypothesis 2. We are then in a position to use the distance function
d(τ, ε), developed in section 2, to investigate intersections of the perturbed manifolds, that
is persistence of heteroclinic points.
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5. Assumptions and simplifications

We now further restrict our attention to a particular class of flows that we callshifted
autonomous flows. These are frequently used in modelling potential vorticity-conserving
flows [4, 11, 19, 20, 24–26]; in fact, to our knowledge, there are no known analytical,
or closed-form solutions which are not shifted autonomous while conserving barotropic
potential vorticity. The time dependence of these flows can be removed by transforming
coordinates to a moving frame. Alternatively, a shifted autonomous flow is a travelling-wave
solution of speedc.

Assumption 1. Equation (4.6) is shifted autonomous; that is, there exists c and a function
90(ξ, η) such that ψ0(x, y, t) = 90(x − ct, y) = 90(ξ, η) where ξ = x − ct and η = y.
The change of variables (x, y, t) → (ξ, η, t) is called the shift.

It will be shown below that it indeed suffices to consider shifted autonomous flows
which travel in thex-direction. We will consistently use(ξ, η) as the shifted variables in
what follows. Moreover, the relevant capital letter will be used to denote a variable in the
shifted coordinates, for example

ψ0(x, y, t) = 90(ξ, η)

since there is no directt dependence whenψ0 is shifted to the(ξ, η) coordinates by
assumption 1. Furthermore, noting that the spatial derivatives are invariant under a shift,
we will use the operators∇, 
, etc as operating on either the(x, y) variables or the(ξ, η)
variables; on which shall be clear from the context. If assumption 1 is met, equation (4.6)
transforms into(

ξ̇

η̇

)
= J∇(90(ξ, η)+ cη) (5.1)

with a Hamiltonian given by90(ξ, η)+ cη.
Another hypothesis is now imposed on the unperturbed flow, namely, that equation (4.6)

in shifted coordinates possesses a structure as depicted in figure 2.

Assumption 2. Equation (5.1) has a homoclinic trajectory (ξ̄ , η̄) connecting the hyperbolic
equilibrium (ξA, ηA) to itself.

We should comment on assumption 2. The structure shown in figure 2 is formed by
two heteroclinic orbits connecting two different equilibria with each other, and not by a
homoclinic solution. However, the structure is periodic in the easterly direction. Therefore,
we can view the equation on the infinite cylinder� = S1×R or the torus� = S1×S1 rather
than on the usualβ-plane� = R

2. With this choice of the domain�, the two different
equilibria appearing in figure 2 are then identified. Many models arising in the literature are
periodic in one of the spatial coordinates and therefore allow for such a reduction. Notice,
however, that then the forcing termF(ξ, η, t) has also to be periodic in the spatial variables.
Indeed, the partial differential equation (4.1) is then considered on a domain where one or
both spatial variables are periodic and the forcing term must be defined on the same domain.

Assumption 2 has been expressed in the shifted coordinates. Forτ ∈ R, let

z̄(t + τ ; τ) = (x̄(t + τ ; τ), ȳ(t + τ ; τ)) := (ξ̄ (t)+ c(t + τ), η̄(t)) (5.2)

be the corresponding solution of the original equation (4.6)

ż = J∇ψ0(z, t + τ)

with z(0) = (ξ̄ (0)+ cτ, η̄(0)).
We now require that, in addition to assumptions 1 and 2 on the unperturbed flow, the

perturbation also satisfies a constraint.
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Assumption 3. The function 91 ∈ C4(�) is bounded in C4(�) uniformly in t ∈ R and
ε ∈ (0, ε0]. Here, 91 denotes the function ψ1 satisfying (4.5) in shifted coordinates.

Recall that the claims implicit in assumption 3 have only been proven forfinite times.
The boundedness assumption 3 will ensure that (4.3)–(4.5) are valid for allt ∈ R. Note that
assumption 3 is met whenever the perturbed streamfunction is periodic in time. In section 7
we shall comment on whether assumption 3 is satisfied by equation (4.1). Equation (4.8)
in shifted coordinates reads(

ξ̇

η̇

)
= J∇(90(ξ, η)+ cη + ε91(ξ, η, t; ε)). (5.3)

It turns out that, if assumption 2 is met, the travelling waves we are considering must, in
fact, travel in an easterly direction.

Lemma 6. Assume that ψ0(x, y, t) satisfies (4.6) and that ψ0(x, y, t) = 90(ξ, η) where
ξ = x − cxt and η = y − cyt . If assumption 2 is met with (5.1) replaced by(

ξ̇

η̇

)
= J∇(90(ξ, η)− cyξ + cxη) (5.4)

then βcy = 0.

Proof. We observe that the potential vorticityq0(x, y, t) in shifted coordinates is given by

Q0(ξ, η, t) = 
90(ξ, η)+ β(η + cyt). (5.5)

However,

d

dt
Q0(ξ(t), η(t), t) = d

dt
q0(x(t), y(t), t) = 0 (5.6)

along any solution(ξ(t), η(t)) of (5.4), sinceq0 is conserved along trajectories. Picking
the equilibrium(ξA, ηA) which exists by assumption 2, we then see that the left-hand side
of (5.6) is given by

d

dt
Q0(ξA, ηA, t) = βcy

by evaluating (5.5). Therefore, by (5.6), we obtainβcy = 0. �

If β = 0, we may always rotate coordinates to obtaincy = 0, since equation (4.2) is
then invariant under rotations in the(x, y)-plane.

6. Distance function computation

The key computation is contained in this section. An exact expression for the Melnikov
function, the first-order term in the distance function, will be derived. The surprising fact
is that the expression is givenexplicitly in terms of theε = 0 velocity field, in fact the
inviscid potential vorticity, and the forcing. As indicated in the introduction, a Melnikov
function calculation usually involves the perturbed velocity field, see equation (1.8), and
this is unknown here. However, with the form of perturbed PDE we are considering, i.e.
perturbation by viscosity and forcing, we do not need to know the perturbed flow field
exactly.
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Theorem 3. Suppose that the unperturbed flow (4.6) satisfies the shifted autonomous
assumption 1. Suppose that equation (5.1), that is (4.6) in shifted coordinates, obeys
assumption 2. Let the dynamics (4.1) generate the perturbation ψ1, which in shifted
coordinates is assumed to obey assumption 3. Then the distance function for equation (5.3)
computed with respect to ∇Q0(ξ̄ (0), η̄(0)) has the form

d(τ, ε) = εM(τ)+ O(ε2) (6.1)

with

M(τ) =
∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt

+
∫ ∞

−∞
[F(ξ̄ (t), η̄(t), t + τ)− F(ξA, ηA, t + τ)] dt (6.2)

where the upper case notation corresponds to the shifted variables.

Note that the functionM(τ), as defined above, coincides with the Melnikov function
M(τ, ε) defined in corollary 1 up to order O(ε). For this reason, with a slight abuse
of notation, we will also refer toM(τ) as the Melnikov function since it constitutes the
first-order term in the expression for the distance functiond(τ, ε).

Proof. Note that the theory developed in section 2 is applicable to equation (5.3), which
is (4.8) in shifted coordinates, as hypothesis 2 is met on account of the boundedness
assumption 3 and the results stated in section 4. Furthermore, assumption 3 ensures that
the dynamics (4.5) is satisfied for allt ∈ R. Notice that assumption 2 gives us at the outset
thatA0 = B0.

We observe that the potential vorticityq0(x, y, t) in shifted coordinates

Q0(ξ, η) = 
90(ξ, η)+ βη

is time independent. Moreover,

d

dt
Q0(ξ(t), η(t)) = d

dt
q0(x(t), y(t), t) = 0

along any solution(ξ(t), η(t)) of (5.1). Therefore, by lemma 1, we haveϕ(t) =
∇Q0(ξ̄ (t), η̄(t)).

Hence, on account of corollary 1, the Melnikov function for (5.3), whereψ1 has been
defined in (4.7), is given by

M(τ, ε) =
∫ ∞

−∞
∇Q0(ξ̄ (t), η̄(t)) · J∇91(ξ̄ (t), η̄(t), t + τ ; ε) dt

=
∫ ∞

−∞
∇q0(z̄(t + τ ; τ), t + τ) · J∇ψ1(z̄(t + τ ; τ), t + τ ; ε) dt

=
∫ ∞

−∞
{ψ1, q0}(z̄(t; τ), t; ε) dt (6.3)

by transforming back to the original coordinates, see (5.2), and shifting time.
It is known by (4.3) that∇ψ1 is bounded for finite times, and assumption 3 permits

the extension to allt ∈ R. Moreover,∇q0 decays exponentially to zero in the integrand as
t → ±∞, and hence integral (6.3) is absolutely convergent for small enoughε. We know
that

∇q0(A0(t), t) = 0
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for all t whereA0(t) := (ξA + ct, ηA) denotes the equilibrium in the original coordinates.
Therefore, evaluating (4.5) on(A0(t), t),

D0q1

Dt
(A0(t), t) = 
q0(A0(t), t)+ f (A0(t), t)+ ε[
q1(A0(t), t)− {ψ1, q1}(A0(t), t)]

(6.4)

where the terms multiplyingε are bounded uniformly int . Since(A0(t), t) is a trajectory
of the unperturbed flow, the material derivativeD0

Dt is exactly the total derivative evaluated
via the chain rule. In other words, note that for any functionh(x, y, t) on � × R, if
(x(t), y(t), t) is a trajectory of the unperturbed flow, then

d

dt
h(x(t), y(t), t) = ∂h

∂x
ẋ(t)+ ∂h

∂y
ẏ(t)+ ∂h

∂t
= ∂h

∂x

(
−∂ψ0

∂y

)
+ ∂h

∂y

(
∂ψ0

∂x

)
+ ∂h

∂t

= D0

Dt
h(x(t), y(t), t). (6.5)

Therefore, (6.4) may be written as

dq1

dt
(A0(t), t) = 
q0(A0(t), t)+ f (A0(t), t)+ ε[
q1(A0(t), t)− {ψ1, q1}(A0(t), t)].

(6.6)

Fix τ ∈ R, and pick the homoclinic trajectory

(z̄(t; τ), t) = (x̄(t; τ), ȳ(t; τ), t)
of (4.6). We evaluate the dynamical equation (4.5) on this trajectory to obtain

{ψ1, q0}(z̄(t; τ), t) =
[

q0 − dq1

dt

]
(z̄(t; τ), t)+ f (z̄(t; τ), t)

+ε[
q1 − {ψ1, q1}](z̄(t; τ), t)
where the material derivative following the unperturbed flow has been replaced by d/dt
by virtue of (6.5). We now add and subtract the quantitiesε[
q1 − {ψ1, q1}](A0(t), t),

q0(A0(t), t), andf (A0(t), t) in appropriate places of the above to obtain

{ψ1, q0}(z̄(t; τ), t) = [
q0(z̄(t; τ), t)−
q0(A0(t), t)] + [f (z̄(t; τ), t)− f (A0(t), t)]

+
[
(
q0 + f + ε[
q1 − {ψ1, q1}])(A0(t), t)− dq1

dt
(z̄(t; τ), t)

]

+ε[(
q1 − {ψ1, q1})(z̄(t; τ), t)− (
q1 − {ψ1, q1})(A0(t), t)]. (6.7)

The operator
∫ 0
−∞ dt is now applied to the above. The left-hand side yields∫ 0

−∞
{ψ1, q0}(z̄(t; τ), t)dt

which we recognize as part of the integral definingM(τ, ε), see (6.3). We look at each of
the three terms in square brackets on the right-hand side separately. We will keep the first,
while the second becomes∫ 0

−∞

[

q0(A0(t), t)+ f (A0(t), t)+ ε[
q1 − {ψ1, q1}](A0(t), t)− dq1

dt
(z̄(t; τ), t)

]
dt

=
∫ 0

−∞

d

dt
[q1(A0(t), t)− q1(z̄(t; τ), t)] dt

= [q1(A0(t), t)− q1(z̄(t; τ), t)]0
−∞ = Q1(ξA, ηA; ε)− q1(z̄(0; τ), 0; ε).
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The first step of the above is by (6.6), while the last is because at the left endpoint,z̄(t; τ)
decays exponentially toA0(t). This is further facilitated by the knowledge of continuity
of q1 in its spatial variables provided by (4.3). Note that we have transformed the first
remaining term involvingq1 back into shifted coordinates. The third term of (6.7) remains
O(ε) upon integration, since theε can be extracted from the integral, and the remaining
integrand consists of terms known to be uniformly bounded independent ofε. Moreover,
the integral is finite, sincēz(t; τ) decays exponentially toA0(t) as t → −∞. Applying the
same arguments fort � 0 using the integral operator

∫ ∞
0 dt and adding the resulting terms

yields

M(τ, ε) =
∫ ∞

−∞
[
q0(z̄(t; τ), t)−
q0(A0(t), t)] dt

+
∫ ∞

−∞
[f (z̄(t; τ), t)− f (A0(t), t)] dt + O(ε).

Note that it is here where we have used the fact that the unperturbed solution is
homoclinic. Without this assumption, additional terms would appear. The shifted
autonomous assumption 1 is now used to convert the arguments in the integrands of the
above expression to the(ξ, η) variables as defined in assumption 1. Also,

(z̄(t; τ), t) −→ (ξ̄ (t − τ), η̄(t − τ), t)

where(ξ̄ (t), η̄(t)) is the parametrization of the heteroclinic orbit in the shifted phase space,
see (5.2). However, the explicit time dependence disappears since
q0 is autonomous in
the new variables. Moreover, the Laplacian is invariant under the shift, and we obtain the
surprisingly simple expression

M(τ, ε) =
∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt

+
∫ ∞

−∞
[F(ξ̄ (t), η̄(t), t + τ)− F(ξA, ηA, t + τ)] dt + O(ε)

by shifting the integration variable. Note from corollary 1 that the distance function has the
form

d(τ, ε) = εM(τ, ε)+ O(ε2)

which yields

d(τ, ε) = ε

( ∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt

+
∫ ∞

−∞
[F(ξ̄ (t), η̄(t), t + τ)− F(ξA, ηA, t + τ)] dt

)
+ O(ε2)

as required. �

Theorem 3 derives a powerful expression for the leading-order term of the distance
function associated with viscosity-induced perturbations. We reiterate that most surprising
is the fact that the leading-order behaviour is known independently of the perturbed
streamfunction. Finally, we write the distance function in the original coordinates.

Corollary 2. Under the assumptions of theorem 3, the distance function in original
coordinates is given by

d(τ, ε) = ε

( ∫ ∞

−∞
[
q0(ξ̄ (t)+ c(t + τ), η̄(t), t + τ)−
q0(ξA + c(t + τ), ηA, t + τ)] dt
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+
∫ ∞

−∞
[f (ξ̄ (t)+ c(t + τ), η̄(t), t + τ)− f (ξA + c(t + τ), ηA, t + τ)] dt

)

+O(ε2).

7. Perturbed flow field models

In this section, we investigate perturbed streamfunctions. It is natural to expect that the
perturbed streamfunction will be periodic in time whenever the forcing termF is. Indeed,
a steady velocity field is an equilibrium of the underlying PDE. If the equilibrium is
hyperbolic, then the perturbed streamfunction would be periodic in time provided the forcing
is. It turns out, however, that hyperbolicity fails in the present setting. In the set-up of
section 7.1, we derive necessary conditions for periodicity of the perturbed streamfunction.
Also, we investigate vorticity-conserving solutions arising in the literature. It is shown
that there are specific choices of the forcing termf (x, y, t) for which the perturbed
streamfunction is bounded uniformly in time.

Throughout this section, we assume that assumption 1 is met and use shifted coordinates
(ξ, η). The perturbed streamfunction9(ξ, η, t; ε) then satisfies

∂

∂t

9 + {9,
9} + β9ξ − c
9ξ = ε(
29 + F) (7.1)

for (ξ, η) ∈ �. Writing

9(ξ, η, t; ε) = 90(ξ, η)+ ε91(ξ, η, t; ε) (7.2)

we obtain
∂

∂t

91 + L09

1 = 
290 + F + ε(
291 − {91,
91}) (7.3)

exploiting the fact that90 is an equilibrium of (7.1) forε = 0, that is

{90,
90} + β90
ξ − c
90

ξ = 0. (7.4)

In addition, we have used the definition

L09
1 := {90,
91} + {91,
90} + β91

ξ − c
91
ξ .

7.1. Periodicity of the perturbed streamfunction

As in section 4, we assume that the two-dimensional domain� has no boundary. To be
more specific, we assume that� is given byR

2, S1 × R, or S1 × S1. Based on the results
stated in section 4, we may assume that90 and91 are contained inH 4(�). In addition,
suppose that
90 does not vanish identically.

Observe that the operatorL0 has two zero eigenvalues with associated eigenfunctions
given by90

ξ and90
η , respectively, on account of translational invariance. We denote the

corresponding eigenfunctions of the adjoint operatorL∗
0 by 9∗

E and9∗
N for eastward and

northward translation, respectively. Denoting theL2-scalar product andL2-norm by 〈·, ·〉
and‖ · ‖, respectively, a straightforward calculation shows that

〈
90, L09
1〉 = 0 (7.5)

for all 91 ∈ H 3(�) as boundary terms do not arise when integrating by parts. Since

〈
90, 90
ξ 〉 = 〈
90, 90

η〉 = 0

the eigenfunction
90 of L∗
0 is linearly independent of9∗

E and9∗
N . Therefore, zero is an

eigenvalue ofL0 (andL∗
0) with geometric multiplicity at least three.
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Assumption 4. Suppose that the wind forcing F(ξ, η, t) is periodic in t with period p > 0.

Under this assumption, we will derive conditions that are necessary for the perturbed
streamfunction9(ξ, η, t) to be periodic.

Proposition 1. Assume that assumption 4 is met. If 9(ξ, η, t) is periodic in t with period
mp for some m ∈ N, then the following equalities hold〈

90,
1

p

∫ p

0
F(t) dt

〉
+ ‖
90‖2 = 0

〈
90,

1

p

∫ p

0

F(t) dt

〉
+ ‖∇
90‖2 = 0

〈
9∗
E,

1

p

∫ p

0
F(t) dt

〉
+ 〈
9∗

E,
9
0〉 = 0

〈
9∗
N,

1

p

∫ p

0
F(t) dt

〉
+ 〈
9∗

N,
9
0〉 = 0.

In particular, on account of the second identity, 9(ξ, η, t) cannot be periodic in t with period
mp whenever F is independent of (ξ, η) and 
90 is not a constant function.

The first identity appearing in proposition 1 is a consequence of conservation of potential
vorticity for the unperturbed streamfunction. The remaining three conditions are first-order
expansions of (7.3) in the centre subspace spanned by the three known eigenfunctions of
L0 associated with the zero eigenvalue. As a consequence, periodicity of9 requires that
F is contained in a codimension-four subspace ofH 2(� × R). Note that, if the last two
equations do not hold, drifting of the solution in the translational directions is expected.

Proof. Taking the scalar product of (7.1) with9, we obtain

∂

∂t
‖∇9‖2 = −2ε(‖
9‖2 + 〈F,9〉). (7.6)

Indeed, the term

〈{9,
9} + β9ξ − c
9ξ ,9〉
vanishes identically for any function9:

〈{9,
9}, 9〉 =
∫
�

(9η
9ξ9 −9ξ
9η9) dη dξ

= −
∫
�

(9(
9ξ9)η −9(
9η9)ξ ) dη dξ

= −
∫
�

(9
9ξ9η −9
9η9ξ) dη dξ = −〈{9,
9}, 9〉.
Here, we used the fact that boundary terms do not occur when integrating by parts. A
similar argument works for the other two terms.

Thus, by applying the integral operator
∫ mp

0 dt to (7.6) and substituting (7.2),

0 = −2ε

(
mp‖
90‖2 + 2ε

〈

90,

∫ mp

0

91(t) dt

〉
+ ε2

∫ mp

0
‖
91(t)‖2 dt

+
〈
90,

∫ mp

0
F(t) dt

〉
+ ε

∫ mp

0
〈91(t), F (t)〉 dt

)

since the left-hand side is zero because9(ξ, η, t) is assumed to be periodic int . Dividing
by ε and using boundedness of91 in ε, the first condition follows by settingε = 0.
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The other equalities can be similarly inferred by taking the scalar product of (7.3) with

90, 9∗

E , and9∗
N , respectively, and using the fact that these functions are eigenfunctions

of L∗
0 with eigenvalue zero. Thus, the terms involvingL0 disappear again. �

7.2. Concrete models

Here, we will comment on a class of solutions of the inviscid, unforced equations and their
implications for chaotic transport after adding viscous dissipation. We will concentrate on
the class of models in which the streamfunction and its Laplacian are linearly related, see
(7.7) below. Note that all known closed-form solutions are formed by using this ansatz,
see [1] for a discussion. We point out that some of the models are posed on domains�

possessing non-empty boundaries. Others have streamfunctions which do not belong to
L2(�). Therefore, the results of sections 4 and 7.1 do not necessarily apply. The main
issue is then to calculate the perturbed streamfunction and to verify the assumptions made
in section 5.

We seek bounded solutions of (7.3), that is

∂

∂t

91 + L09

1 = 
290 + F + ε(
291 − {91,
91})
for small ε. A common feature of the models developed and collected in [1] is that they
obey

β90 = c
90. (7.7)

In other words,90 satisfies both terms arising in the unperturbed equilibrium equation (7.4)
separately. Note that (7.7) implies thatQ0(ξ, η) and the Hamiltonian90(ξ, η) + cη of
the Lagrangian flow (5.1) are linearly dependentQ0(ξ, η) = β

c
(90(ξ, η) + cη). Though

the Brown–Samelson theorem is not applicable here, it is clear that chaotic transport is
precluded since90 does not depend on time.

Condition 1. The potential vorticity 90 in shifted coordinates obeys (7.7).

We remark that if∂� were empty and90 were inH 4(�), (7.7) would imply thatβ/c is
negative. Indeed, taking the scalar product of (7.7) with90 and integrating by parts yields
‖90‖2 = − c

β
‖∇90‖.

Before we discuss the consequences of condition 1, we shall give one simple example
of a vorticity-conserving streamfunction satisfying condition 1. As mentioned earlier, other
solutions can be found in [1]. The example was introduced by Pierrehumbert [23], who
used it as a base flow for a formal perturbation analysis:

ψ0(x, y, t) = b sin(k(x − ct)) sin(ly) (x, y) ∈ R × S1.

If the wavespeedc = − β

k2+l2 is chosen, condition 1 is indeed met. The streamfunction in
the moving frame is given by

90(ξ, η) = b sin(kξ) sin(lη) (ξ, η) ∈ R × S1. (7.8)

It is straightforward to see that equation (5.1) describing Lagrangian trajectories has cat’s
eyes whenever

b >
β

k(k2 + l2)

see figure 4 for the level curves of the Hamiltonian associated with Pierrehumbert’s
streamfunction.
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Figure 4. Level curves of the Hamiltonian90(ξ, η)+cη with 90 given in (7.8). Here,b = 0.4,
β = 1, k = 2 andl = 1.

Returning to the general case, as a consequence of condition 1,r90 is an equilibrium
of the Eulerian equation, that is, it satisfies (7.4) for allr ∈ R. This suggests the ansatz

91 = r90 +92. (7.9)

Using (7.7), it is straightforward to calculate that (7.3) is equivalent to

β

c

∂r

∂t
90 + ∂

∂t

92 + L09

2 = β2

c2
(1 + εr)90 + F + ε(
292 − {92,
92}). (7.10)

It would be difficult to solve equation (7.10) for general forcing termsF(ξ, η, t). We
therefore restrict ourselves to forcing terms of the form

F(ξ, η, t) = A(t)90(ξ, η) (7.11)

whereA(t) is bounded. Substituting this expression and setting92 = 0, we see that (7.10)
is equivalent to

β

c

∂r

∂t
90 = β2

c2
(1 + εr)90 + A(t)90

and it suffices to solve

∂r

∂t
= β

c
εr + β

c
+ c

β
A(t). (7.12)

We then have the explicit general solution

r(t; ε) = eβεt/cr0 +
∫ t

0
eβε(t−s)/c

(
β

c
+ c

β
A(s)

)
ds (7.13)

of (7.12). Multiplying with e−βεt/c, we obtain

e−βεt/cr(t; ε) = r0 +
∫ t

0
e−βεs/c

(
β

c
+ c

β
A(s)

)
ds. (7.14)

For β/c < 0, the solutionr(t; ε) is therefore bounded fort → −∞ if and only if the limit
of the integral term on the right-hand side of (7.14) exists fort → −∞. Settingε = 0, we
see thatr(t; 0) is bounded fort → ∞ if and only if

∫ t

0

(
β

c
+ c

β
A(s)

)
ds (7.15)

is bounded ast → ∞. Therefore, we impose the following condition on the forcing term
F(ξ, η, t).
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Condition 2. The forcing term satisfies

F(ξ, η, t) =
(

−β2

c2
+ a(t)

)
90(ξ, η)

for some smooth function a(t). Moreover, there exist constants δ > 0, T � 0 and K,p ∈ R

such that the following holds.
(i) For t � −T , the amplitude a(t) is periodic in t with period p and has mean zero,

that is, a(t + p) = a(t) for all t � −T , and
∫ −T+p
−T a(t) dt = 0.

(ii) For t � −T , the amplitude a(t) decays exponentially, that is, |a(t)| � Keδt for
t � −T .

We then state the following proposition.

Proposition 2. Suppose that conditions 1 and 2 are met. In addition, we assume that β

c
< 0.

The perturbed streamfunction 9(t; ε) given by

9(ξ, η, t; ε) =
(

1 + ε
c

β

∫ t

−∞
eβε(t−s)/c a(s) ds

)
90(ξ, η)

is then bounded uniformly in t ∈ R and ε ∈ [0, ε0], and satisfies (7.1). Moreover, there
exists a function F(t; ε) periodic in t with period p such that

|9(ξ, η, t; ε)− (1 + εF (t; ε))90(ξ, η)| � Ceβεt/c

for some constant C and t � −T . In other words, for ε > 0, the perturbed streamfunction
is asymptotically periodic in time.

Proof. Comparing (7.11) with condition 2, we haveA(t) = − β2

c2 + a(t). Formula (7.13)
for r(t; ε) then reads

r(t; ε) = eβεt/cr0 + c

β

∫ t

0
eβε(t−s)/ca(s) ds.

Observe that

r0 := c

β

∫ 0

−∞
e−βεs/ca(s) ds

is well defined sincea(t) decays exponentially fort → −∞ by condition 2. We then have

r(t; ε) = c

β

∫ t

−∞
eβε(t−s)/ca(s) ds

and it remains to show thatr(t; ε) is bounded fort → ∞. Since β

c
< 0, it suffices to

consider the integral term

eβεt/c
∫ t

0
e−βεs/ca(s) ds.

Sincea(t) is periodic in t for t � 0 and has mean zero, we may expand it in a Fourier
series

a(t) =
∞∑
n=1

(an sin(2πnt/p)+ bn cos(2πnt/p)).



Viscous perturbations of vorticity-conserving flows 71

Using the formula

eβεt/c
∫ t

0
e−βεs/c sin(2πns/p) ds = −

(
β2ε2

c2
+ 4π2n2

p2

)−1

×
(
βε

c
sin(2πnt/p)+ 2πn

p
cos(2πnt/p)− 2πn

p
eβεt/c

)

and the analogue for the cosine terms, the statement of the proposition follows. �

Note that the results are still true forβ
c
> 0 with t replaced by−t . However, the

perturbed streamfunction would then be asymptotically periodic for negative times.
Finally, condition 1 and (7.11) allow us to derive an explicit formula for the Melnikov

integralM.

Lemma 7. Assume that assumptions 1, 2 and condition 1 are met. Suppose that the forcing
term is given by (7.11), i.e. F(ξ, η, t) = A(t)90(ξ, η). The Melnikov function M appearing
in (6.2) is then given by

M(τ) = β2

c

∫ ∞

−∞
(ηA − η̄(t)) dt + c

∫ ∞

−∞
A(t + τ)(ηA − η̄(t)) dt.

Proof. Equation (5.1) in shifted coordinates has the first integralH(ξ, η) = 90(ξ, η)+ cη.
In particular, ∂

∂t
H(ξ(t), η(t)) = 0 and we obtain

90(ξ̄ (t), η̄(t))−90(ξA, ηA) = c(ηA − η̄(t))

for all t . Therefore,


Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA) = β2

c
(ηA − η̄(t))

using (7.7) andQ0 = 
90 + βη, and the first integral of the Melnikov function in (6.2) is
equal to

β2

c

∫ ∞

−∞
(ηA − η̄(t)) dt.

This result can be confirmed by calculating the Melnikov integral forF(t) ≡ 0 using
the explicit expression for the perturbed streamfunction9 provided in proposition 2. The
second integral is computed in a similar fashion. �

Finally, we note that the results stated above remain valid for two-dimensional
incompressible, vorticity-preserving flows, that is forβ = c = 0, provided90 = 
90

is met. Essentially, the fractionsβ/c are replaced by 1 in the proofs. As a consequence, we
emphasize that the first term in the Melnikov integral must vanish. Indeed, the calculations
in the proof of lemma 7 show that the first integrand


Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA) = 90(ξ̄ (t), η̄(t))−90(ξA, ηA)

= H(ξ̄(t), η̄(t))−H(ξA, ηA) = 0

vanishes.
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8. Transport after perturbation

As discussed in the introduction, the aim of this paper is to study the nature of transport
between the various component parts of a large-scale fluid structure such as a meandering
ocean jet. A key role is played by the vortical structures that flank the jet, namely the
so-called cat’s eyes. Of interest then is the transport of fluid from the jet to the cat’s eye
and from the cat’s eye to the ambient, retrograde fluid. Of specific interest is what physical
mechanisms might act as facilitators of such transport and whether this transport will have
a chaotic nature. In this work we have added to the equation of potential vorticity a term
reflecting the dissipative effect of viscosity and a forcing that might crudely be viewed as
wind forcing on the surface of the ocean.

We then take a model for the inviscid fluid which is a wave travelling in an easterly
direction with a meandering structure. We assume that this base wave is steady in the
moving frame and is, moreover, periodic in the easterly direction. A cat’s eye flanking the
meandering jet is identified, in such a model, with a heteroclinic loop which can, in turn,
be viewed as a homoclinic orbit if the periodicity inx is exploited and the problem cast
on a cylinder. The question is whether these homoclinic orbits split under the effect of the
perturbing terms, viscosity and forcing, introduced into the PDE.

To answer this question, under the assumption that the perturbed flow field satisfies an
appropriate boundedness assumption 3, we have derived the explicit expression

M(τ) =
∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt

+
∫ ∞

−∞
[F(ξ̄ (t), η̄(t), t + τ)− F(ξA, ηA, t + τ)] dt (8.1)

for the Melnikov function that represents the first-order term in the expansion of the distance
function d(τ, ε) = εM(τ) + O(ε2), see theorem 3. The surprising fact that emerges is the
independence of this expression from the perturbed flow field. This is an incredibly useful
feature of the calculation as the perturbed flow field is unknown.

A central assumption in our analysis is the boundedness assumption 3. We have derived
some conditions under which this will hold as a consequence of the perturbed flow field being
periodic and we have also given a specific example under which it is satisfied. However, in
general we cannot expect it to be met, see below, and in a further paper we shall consider
cases under which it fails.

In the following, we shall discuss the implications of our Melnikov analysis for various
different types of forcing functions. Some surprising conclusions can be made about the
nature of the transport in each of these cases.

8.1. Spatially independent wind forcing

First, we assume that the forcing function does not depend on the spatial variables. In other
words, suppose thatf = f (t) does not depend onx andy. It is then clear that it is also
independent ofξ and η in the moving frame, i.e.F = F(t). Under this condition, the
calculation of the Melnikov function can be considerably simplified as the second integral
in (8.1) is identically zero.

The resulting distance function has then the form

d(τ, ε) = ε

∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt + O(ε2). (8.2)
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Figure 5. A perturbed cat’s eye. In the context of incompressible fluids, (b) must occur leading
to an avenue along which fluid parcels pass from the northern to the southern part, or vice versa.

If the integral in the first-order term, i.e. the Melnikov function, is non-zero then there is a
striking implication for the separation of stable and unstable manifolds. Indeed, they must
separate a uniform distance apart, up to first order, independently of the time slice. Thus,
in this situation, there can beno intersection of the relevant manifolds under a viscous
perturbation consistent with (4.1) for small enoughε. Moreover, it is a consequence of
lemma 7 that, for the specific models we have considered, the Melnikov function is given
by

β2

c

∫ ∞

−∞
(ηA − η̄(t)) dt

which is likely to be non-zero ifβ �= 0. In caseβ = 0, the non-oceanographic case, we
cannot conclude that intersections are forbidden, but they must happen at higher order.

Suppose now that there is a cat’s eye in the unperturbed flow. We assume that one of
the Melnikov functions is non-zero. Both the lower and upper heteroclinics will then split.
Indeed, by lemma 5, the sum of the Melnikov integralsM1 andM2 associated with the
two separatrices forming the cat’s eye is of orderε. Therefore,M1 = −M2 up to orderε,
and, in particular, if one of the integrals is non-zero, so is the other. There are now two
possibilities of how the separatrices can split, see figure 5. As discussed in section 3, the
case depicted in figure 5(a) is impossible for incompressible fluids due to area conservation.
Indeed,M1 = −M2 up to orderε, and the separatrices therefore break in different directions.
The splitting of the manifolds must then occur in the manner depicted in figure 5(b). The
stable and unstable manifolds of the pointAε may still intersect and, also due to area
conservation, in fact must intersect. It is a consequence of lemma 5 and theorem 2 that the
splitting distance between the manifolds is of higher order, in fact O(ε1+ν) for someν > 0.
Indeed, both results are applicable since hypothesis 5 is a consequence of theorem 3, while
hypothesis 3 is met withh0(ξ, η) = 90(ξ, η)+ cη andh1(ξ, η, t; ε) = 91(ξ, η, t; ε).

The picture one gets here is then of the possibility of the transport of fluid between
different regimes by virtue of a channel opening up, as depicted in figure 5(b) for the north
to south case. Since the heteroclinics split at a lower order than the inner homoclinic, the
probability is great of a fluid particle being carried past the vortex region forming the cat’s
eye, rather than be entrained into it. In this situation therefore chaotic transport is severely
inhibited. However, an avenue is opened up for fluid to escape from one region to another
in a non-chaotic fashion. It is feasible that∣∣∣∣

∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt

∣∣∣∣ > 0
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for almost all non-trivial unperturbed flows, and hence the indications are that, in general,
chaotic mixing will not result from including viscous effects. This is unexpected since the
manifolds are known to exhibit tangling under almost any perturbation. For a model to
predict chaotic transport, it is therefore necessary that the inviscid flow disobey either the
shifted autonomous or the homoclinic assumption.

8.2. Meridional wind forcing

Next, we suppose that the wind forcing depends only on the meridional variable. In other
words, we setf = f (y), whenceF(η) = f (η) in the moving frame. In this case the second
integral in (8.1) does contribute to the Melnikov function, but remains constant. Indeed,

M(τ) =
∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt +

∫ ∞

−∞
[f (η̄(t))− f (ηA)] dt

which is clearly independent ofτ . Here, we have replaced the functionF(η) by f (η) in
the second integrand.

One can imagine choosingf in different ways that would produce a Melnikov function
which is either positive or negative (or zero). But, in any case, we would not have transverse
intersections of stable and unstable manifolds and thus the chaotic nature of the transport
would be inhibited as above.

8.3. Temporally independent wind forcing

If the wind forcing depends only on the spatial variablesx and y, i.e. f = f (x, y), then
in the moving frame the forcing becomes dependent on time through its dependence onx.
Indeed,

F(ξ, η, t) = f (ξ + ct, η).

If we assume that the forcingf is periodic inx, which we actually have to do in order
to satisfy our hypotheses, thenF is periodic in t . ReplacingF again byf in the second
integral in (8.1), it follows that the Melnikov function∫ ∞

−∞
[
Q0(ξ̄ (t), η̄(t))−
Q0(ξA, ηA)] dt

+
∫ ∞

−∞
[f (ξ̄ (t)+ c(t + τ), η̄(t))− f (ξA + c(t + τ), ηA)] dt

is also periodic inτ . Note that this periodicity holds even if the underlying flow field is not
periodic. It follows that if the Melnikov function has one zero then it has infinitely many
zeros. Moreover, it is not hard to concoct forcing functionsf which render a zero of the
Melnikov integral. This case would then naturally lead to the occurrence of complicated
heteroclinic tangling.

8.4. General forcing

For general forcing functions the calculation of the Melnikov integral still holds as in (8.1),
but conclusions may be harder to make. If, however, the forcingf (x, y, t) enjoys some
periodicity in bothx and t then the forcing function in a moving frame

F(ξ, η, t) = f (ξ + ct, η, t)
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will be quasiperiodic int . It follows again that the Melnikov function will have the same
property, namely be quasiperiodic inτ . As before, if it has one zero, it will have infinitely
many.

8.5. Perturbations without forcing

We close this section with a discussion of the simplest case, namely whether there is no
forcing at all. In other words, we assumef = 0. This case falls under all of the above but
the conclusions do not apply as a basic hypothesis is not satisfied. Indeed, it follows from
equation (7.6) that the quantity

∫ ∫
|∇ψ(x, y, t; ε)|2 dx dy

will decay to zero forε > 0 as t → ∞. But then it would be impossible to have a field
which is close to theε = 0 flow field for all time whenε is non-zero. Thus, the boundedness
hypothesis does not hold.

It should be commented that the case of no forcing is that studied in [25] and there
stable and unstable manifolds are found numerically to have many intersections. It would be
tempting to think that the boundedness hypothesis not being satisfied supplied an explanation
for this discrepancy between the results of this paper, at least extrapolated to the case of a
decaying streamfunction, and those of [25]. However, in a further paper we show that the
case of an unbounded streamfunction is covered by our theory, provided the streamfunctions
stay close for long enough. An explanation must therefore be sought elsewhere and further
discussion of this point will appear in this forthcoming paper.

9. Conclusions

We have considered the effect of viscosity and forcing on the Lagrangian transport of fluid
parcels. The set-up we adopted was of an inviscid, incompressible two-dimensional velocity
field that is steady in a moving frame. The physical effects of viscosity and forcing are
then added to the vorticity equation to produce a perturbed, unsteady velocity field.

The nature of the transport depends crucially on the type of forcing. For natural examples
of forcing (spatially independent or only meridionally dependent) the separatrices of a steady,
in a moving frame, velocity field have been shown to open up for the perturbed (unsteady)
field to produce a channel through which fluid can be transported across a cat’s eye without
being entrained into the vortical regime. For other types of forcing, for instance periodic in
the horizontal direction, transverse intersections of stable and unstable manifolds results to
give a heteroclinic tangle and associated complex transport.

The subtlety of the results lies in the fact that the velocity fields are not explicitly
known, but only implicitly through the PDEs they satisfy. We have shown that a periodic,
in time, velocity field cannot be expected and thus the theory has been developed under the
assumption that the perturbed velocity field is only bounded.

The mathematical development involved a new extension for the Melnikov theory to
weak, non-smooth (in the parameterε) perturbations. The Melnikov calculation renders a
surprisingly simple formula. A key point is that this formula does not involve the perturbed
velocity field. While, in general, it would be expected that the Melnikov function does not
depend on the perturbed trajectories, it usually does depend on the perturbed velocity field.
The effects of viscosity and forcing are, however, of such a form that we are saved from
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this complication and the Melnikov function can be calculated knowing only information
from theε = 0 velocity field.

From the oceanographic point of view, this analysis offers some very suggestive
conclusions. The Gulf Stream is perhaps the best known example of a meandering jet
and, based on models of perturbed jets, see for instance [4, 6], it is accepted that cat’s eye
vortical regions lie in the troughs and under the crests of the meanders. If one accepts a
barotropic model of the Gulf Stream then the analysis of this paper suggests that viscosity,
here in the sense of an eddy viscosity, and westerly winds would tend to promote the direct
ejection of fluid parcels from the centre of the jet to the ambient waters without their being
entrained, even temporarily, in the vortical regions. This is in contrast to the kinematic
and perturbed jet models, see [6, 11, 14, 23, 24, 26, 27], which predict a predominance
of transport between the vortical regions and the jet and ambient water separately. The
immediate ejection of fluid parcels is, in these models, possible but unlikely. The real
Gulf Stream, as well as any other ocean jet, is obviously an extremely complex structure
which exhibits all of the above possibilities. However, the analysis shows that the pure
effects of viscosity and forcing have a certain unanticipated effect which may well lead to
an unexpectedly large occurrence of immediate ejection of fluid parcels.
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