MATHS IB: Calculus

 $\S 1.7$ Second-order nonhomogeneous DEs

Sanjeeva Balasuriya

A linear combination question

Breakout: Suppose you are told that when you form a linear combination of a function f(t) and its derivatives f'(t) and f''(t), you get $-3e^{5t}$. What is the most general f(t) that this could be from?

- (a) $A \cos 3t$
- (b) Ae^{5t}
- (c) Ae^{-3t}
- (d) $At^2 + Bt + C$

A linear combination question

Breakout: Suppose you are told that when you form a linear combination of a function f(t) and its derivatives f'(t) and f''(t), you get $-3e^{5t}$. What is the most general f(t) that this could be from?

- (a) $A \cos 3t$
- (b) Ae^{5t}
- (c) Ae^{-3t}
- (d) $At^2 + Bt + C$

$$c_1 f(t) + c_2 f'(t) + c_3 f''(t) = -3e^{5t}$$

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

Example: Find any solution to the nonhomogeneous DE

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

▶ Using insight from previous question: guess $y(t) = Ae^{-7t}$

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

- ▶ Using insight from previous question: guess $y(t) = Ae^{-7t}$
- $y'(t) = -7Ae^{-7t}$ and $y''(t) = 49Ae^{-7t}$

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

- ▶ Using insight from previous question: guess $y(t) = Ae^{-7t}$
- $y'(t) = -7Ae^{-7t}$ and $y''(t) = 49Ae^{-7t}$
- Substitute into DE:

$$49Ae^{-7t} + 6(-7Ae^{-7t}) + 25Ae^{-7t} = 8e^{-7t}$$

Example: Find any solution to the *nonhomogeneous* DE

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

- ▶ Using insight from previous question: guess $y(t) = Ae^{-7t}$
- $y'(t) = -7Ae^{-7t}$ and $y''(t) = 49Ae^{-7t}$
- Substitute into DE:

$$49Ae^{-7t} + 6\left(-7Ae^{-7t}\right) + 25Ae^{-7t} = 8e^{-7t}$$

 $ightharpoonup 32Ae^{-7t} = 8e^{-7t}$

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

- ▶ Using insight from previous question: guess $y(t) = Ae^{-7t}$
- $y'(t) = -7Ae^{-7t}$ and $y''(t) = 49Ae^{-7t}$
- Substitute into DE:

$$49Ae^{-7t} + 6\left(-7Ae^{-7t}\right) + 25Ae^{-7t} = 8e^{-7t}$$

►
$$32Ae^{-7t} = 8e^{-7t}$$
 \Rightarrow $A = 1/4$

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

- ▶ Using insight from previous question: guess $y(t) = Ae^{-7t}$
- $y'(t) = -7Ae^{-7t}$ and $y''(t) = 49Ae^{-7t}$
- Substitute into DE:

$$49Ae^{-7t} + 6(-7Ae^{-7t}) + 25Ae^{-7t} = 8e^{-7t}$$

- ► $32Ae^{-7t} = 8e^{-7t}$ \Rightarrow A = 1/4
- ► A solution:

$$y(t) = \frac{1}{4}e^{-7t}$$

$$y''(t) + 6y'(t) + 25y(t) = 8e^{-7t}$$
 3min

- ▶ Using insight from previous question: guess $y(t) = Ae^{-7t}$
- $y'(t) = -7Ae^{-7t}$ and $y''(t) = 49Ae^{-7t}$
- Substitute into DE:

$$49Ae^{-7t} + 6\left(-7Ae^{-7t}\right) + 25Ae^{-7t} = 8e^{-7t}$$

- ► $32Ae^{-7t} = 8e^{-7t}$ \Rightarrow A = 1/4
- ► A *particular* solution:

$$y_p(t) = \frac{1}{4}e^{-7t}$$

Another linear combination question

Breakout: Suppose you are told that when you form a linear combination of a function f(t) and its derivatives f'(t) and f''(t), you get $\cos 3t$. What is the most general f(t) that this could be from?

- (a) $A \cos 3t$
- (b) $A \sin 3t$
- (c) $A\cos\omega t$
- (d) $A \cos 3t + B \sin 3t$

Another linear combination question

Breakout: Suppose you are told that when you form a linear combination of a function f(t) and its derivatives f'(t) and f''(t), you get $\cos 3t$. What is the most general f(t) that this could be from?

- (a) $A \cos 3t$
- (b) $A \sin 3t$
- (c) $A\cos\omega t$
- (d) $A\cos 3t + B\sin 3t$

$$c_1 f(t) + c_2 f'(t) + c_3 f''(t) = \cos 3t$$

Must choose both sine and cosine since when taking derivatives they 'go to each other'

Task: to find a particular solution $y_p(t)$ to:

$$y''(t) + ay'(t) + by(t) = f(t)$$

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$

Task: to find a particular solution $y_p(t)$ to:

$$y''(t) + ay'(t) + by(t) = f(t)$$

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t+B\sin\omega t$

Task: to find a particular solution $y_p(t)$ to:

$$y''(t) + ay'(t) + by(t) = f(t)$$

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t+B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	

Task: to find a particular solution $y_p(t)$ to:

$$y''(t) + ay'(t) + by(t) = f(t)$$

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t+B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	$Ae^{\alpha t}\cos\omega t + Be^{\alpha t}\sin\omega t$

Task: to find a particular solution $y_p(t)$ to:

$$y''(t) + ay'(t) + by(t) = f(t)$$

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t+B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	$Ae^{\alpha t}\cos\omega t + Be^{\alpha t}\sin\omega t$
$a_0 + a_1 t + \cdots + a_n t^n$	

Task: to find a particular solution $y_p(t)$ to:

$$y''(t) + ay'(t) + by(t) = f(t)$$

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t+B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	$Ae^{\alpha t}\cos\omega t + Be^{\alpha t}\sin\omega t$
$a_0 + a_1 t + \cdots + a_n t^n$	$b_0 + b_1 t + \cdots + b_n t^n$

Task: to find a particular solution $y_p(t)$ to:

$$y''(t) + ay'(t) + by(t) = f(t)$$

[Table 1.2] : Undetermined coefficients method

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t+B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	$Ae^{\alpha t}\cos\omega t + Be^{\alpha t}\sin\omega t$
$a_0 + a_1t + \cdots + a_nt^n$	$b_0 + b_1 t + \cdots + b_n t^n$

Substitute, simplify, and match coefficients!

Example: Find a particular solution to $y''(t) + 4y(t) = 5\cos 3t$

• Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A\sin 3t + 3B\cos 3t$

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A\sin 3t + 3B\cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A \sin 3t + 3B \cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$
- Substituting,

$$-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t + B\sin 3t) = 5\cos 3t$$

Example: Find a particular solution to $y''(t) + 4y(t) = 5\cos 3t$

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A\sin 3t + 3B\cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$
- Substituting,

$$-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t + B\sin 3t) = 5\cos 3t$$

 $-5A\cos 3t - 5B\sin 3t = 5\cos 3t$

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A \sin 3t + 3B \cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$
- Substituting,

$$-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t + B\sin 3t) = 5\cos 3t$$

- $-5A\cos 3t 5B\sin 3t = 5\cos 3t + 0\sin 3t$
- ▶ Equate coefficients: -5A = 5 and -5B = 0

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A\sin 3t + 3B\cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$
- Substituting,

$$-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t + B\sin 3t) = 5\cos 3t$$

- $-5A\cos 3t 5B\sin 3t = 5\cos 3t + 0\sin 3t$
- ▶ Equate coefficients: -5A = 5 and -5B = 0

$$\Rightarrow$$
 $A=-1$ and $B=0$

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A\sin 3t + 3B\cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$
- Substituting,

$$-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t + B\sin 3t) = 5\cos 3t$$

- $-5A\cos 3t 5B\sin 3t = 5\cos 3t + 0\sin 3t$
- ► Equate coefficients: -5A = 5 and -5B = 0⇒ A = -1 and B = 0
- ▶ In general, will have to solve simultaneous equations

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A\sin 3t + 3B\cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$
- Substituting,

$$-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t + B\sin 3t) = 5\cos 3t$$

- $-5A\cos 3t 5B\sin 3t = 5\cos 3t + 0\sin 3t$
- Equate coefficients: -5A = 5 and -5B = 0
 - \Rightarrow A = -1 and B = 0
- ▶ In general, will have to solve simultaneous equations
- $y_p(t) = -\cos 3t$

Example: Find a particular solution to $y''(t) + 4y(t) = 5\cos 3t$

- Guess $y_p(t) = A \cos 3t + B \sin 3t$ (A and B are the 'undetermined coefficients')
- $y_p' = -3A \sin 3t + 3B \cos 3t$
- $y_p'' = -9A\cos 3t 9B\sin 3t$
- Substituting,

$$-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t + B\sin 3t) = 5\cos 3t$$

- $-5A\cos 3t 5B\sin 3t = 5\cos 3t + 0\sin 3t$
- ▶ Equate coefficients: -5A = 5 and -5B = 0

$$\Rightarrow$$
 $A = -1$ and $B = 0$

- ▶ In general, will have to solve simultaneous equations
- $y_p(t) = -\cos 3t$
- Guessing both sine/cosine terms is usually necessary, e.g.,

Homework: Find y_p for $y'' + y' + 4y = 5 \cos 3t$.

Example: Find a particular solution to $y''(t) + 4y(t) = 5\cos 2t$

▶ Only change from previous example: 2 rather than 3

2min

- ▶ Only change from previous example: 2 rather than 3
- $y_p = A \cos 2t + B \sin 2t$
- $y_p' = -2A\sin 2t + 2B\cos 2t$ and $y_p'' = -4A\cos 2t 4B\sin 2t$

- ▶ Only change from previous example: 2 rather than 3
- $y_p = A \cos 2t + B \sin 2t$
- $y_p' = -2A\sin 2t + 2B\cos 2t$ and $y_p'' = -4A\cos 2t 4B\sin 2t$
- $(-4A\cos 2t 4B\sin 2t) + 4(A\cos 2t + B\sin 2t) = 5\cos 2t$

- ▶ Only change from previous example: 2 rather than 3
- $y_p = A \cos 2t + B \sin 2t$
- $y_p' = -2A\sin 2t + 2B\cos 2t$ and $y_p'' = -4A\cos 2t 4B\sin 2t$
- $(-4A\cos 2t 4B\sin 2t) + 4(A\cos 2t + B\sin 2t) = 5\cos 2t$
- $ightharpoonup 0 = 5\cos 3t ???????$

- ▶ Only change from previous example: 2 rather than 3
- $y_p = A \cos 2t + B \sin 2t$
- $y_p' = -2A\sin 2t + 2B\cos 2t$ and $y_p'' = -4A\cos 2t 4B\sin 2t$
- $(-4A\cos 2t 4B\sin 2t) + 4(A\cos 2t + B\sin 2t) = 5\cos 2t$
- $ightharpoonup 0 = 5\cos 3t ???????$
- ► *Problem:* guessed solution is part of the *homogeneous* solution, so when substituted into the left side it becomes zero!

Undetermined coefficients examples

Example: Find a particular solution to $y''(t) + 4y(t) = 5\cos 2t$

- ▶ Only change from previous example: 2 rather than 3
- $y_p = A \cos 2t + B \sin 2t$
- $y_p' = -2A\sin 2t + 2B\cos 2t$ and $y_p'' = -4A\cos 2t 4B\sin 2t$
- $(-4A\cos 2t 4B\sin 2t) + 4(A\cos 2t + B\sin 2t) = 5\cos 2t$
- $ightharpoonup 0 = 5\cos 3t ???????$
- ► *Problem:* guessed solution is part of the *homogeneous* solution, so when substituted into the left side it becomes zero!
- ▶ Therefore, each such coefficient goes away ⇒ no information!

Undetermined coefficients examples

Example: Find a particular solution to $y''(t) + 4y(t) = 5\cos 2t$

- ▶ Only change from previous example: 2 rather than 3
- $y_p = A \cos 2t + B \sin 2t$
- $y_p' = -2A \sin 2t + 2B \cos 2t$ and $y_p'' = -4A \cos 2t 4B \sin 2t$
- $(-4A\cos 2t 4B\sin 2t) + 4(A\cos 2t + B\sin 2t) = 5\cos 2t$
- $ightharpoonup 0 = 5\cos 3t ???????$
- ▶ *Problem:* guessed solution is part of the *homogeneous* solution, so when substituted into the left side it becomes zero!
- ► Therefore, each such coefficient goes away ⇒ no information!
- ▶ Recall multiplication by *t* in homogeneous case when we had difficulties in finding solution. Correct guess:

$$y_p(t) = t (A\cos 2t + B\sin 2t)$$

Undetermined coefficients examples

Example: Find a particular solution to $y''(t) + 4y(t) = 5\cos 2t$

- ▶ Only change from previous example: 2 rather than 3
- $y_p = A \cos 2t + B \sin 2t$
- $y_p' = -2A \sin 2t + 2B \cos 2t$ and $y_p'' = -4A \cos 2t 4B \sin 2t$
- $(-4A\cos 2t 4B\sin 2t) + 4(A\cos 2t + B\sin 2t) = 5\cos 2t$
- $ightharpoonup 0 = 5\cos 3t ???????$
- ▶ *Problem:* guessed solution is part of the *homogeneous* solution, so when substituted into the left side it becomes zero!
- ► Therefore, each such coefficient goes away ⇒ no information!
- ▶ Recall multiplication by *t* in homogeneous case when we had difficulties in finding solution. Correct guess:

$$y_p(t) = t (A\cos 2t + B\sin 2t)$$

▶ **Homework**: complete the solution of this problem

Finding particular solution (updated)

[Table 1.2] : Undetermined coefficients method

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t+B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	$Ae^{\alpha t}\cos\omega t + Be^{\alpha t}\sin\omega t$
$a_0 + a_1t + \cdots + a_nt^n$	$b_0 + b_1 t + \cdots + b_n t^n$

▶ If any part of the guessed solution is part of the homogeneous solution, multiply everything by the independent variable t

Finding particular solution (updated)

[Table 1.2] : Undetermined coefficients method

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t + B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	$Ae^{\alpha t}\cos\omega t + Be^{\alpha t}\sin\omega t$
$a_0 + a_1t + \cdots + a_nt^n$	$b_0 + b_1 t + \cdots + b_n t^n$

- ▶ If any part of the guessed solution is part of the homogeneous solution, multiply everything by the independent variable t
- ► If there are *still* parts of the homogeneous solution, multiply everything *again* by *t*

A question

Breakout: What is the correct form for the particular solution guess for the DE

$$\frac{d^2\phi}{dx^2} - 2\frac{d\phi}{dx} + \phi = 3e^x ?$$

(a)
$$\phi_p(x) = Ae^x$$

(b)
$$\phi_p(x) = Axe^x$$

(c)
$$\phi_p(x) = Ax^2e^x$$

(d)
$$\phi_p(x) = (Ax + B)e^x$$

A question

Breakout: What is the correct form for the particular solution guess for the DE

$$\frac{d^2\phi}{dx^2} - 2\frac{d\phi}{dx} + \phi = 3e^x ?$$

(a)
$$\phi_p(x) = Ae^x$$

(b)
$$\phi_p(x) = Axe^x$$

(c)
$$\phi_p(x) = Ax^2 e^x$$

(d)
$$\phi_p(x) = (Ax + B)e^x$$

Need to know homogeneous solution!

$$\lambda^2 - 2\lambda + 1 = 0 \quad \Rightarrow \quad (\lambda - 1)^2 = 0$$

Repeated root of $\lambda = 1 \implies e^x$

Other solution is therefore $xe^x \Rightarrow \phi_h(x) = C_1e^x + C_2xe^x$

For some forms of f(t), we now know how to find a particular solution $y_p(t)$ to

$$y''(t) + ay'(t) + by(t) = f(t)$$
 (†)

▶ What about the *general solution*?

For some forms of f(t), we now know how to find a particular solution $y_p(t)$ to

$$y''(t) + ay'(t) + by(t) = f(t)$$
 (†)

- What about the general solution?
- Suppose you can find the full *homogeneous solution*

$$y_h(t) = C_1 y_1(t) + C_2 y_2(t)$$
 to

$$y''(t) + ay'(t) + by(t) = 0$$

For some forms of f(t), we now know how to find a particular solution $y_p(t)$ to

$$y''(t) + ay'(t) + by(t) = f(t)$$
 (†)

- What about the general solution?
- Suppose you can find the full homogeneous solution $y_h(t) = C_1 y_1(t) + C_2 y_2(t)$ to

$$y''(t) + ay'(t) + by(t) = 0$$

▶ [Property 1.8] : (†) has the general solution

$$y(t) = y_h(t) + y_p(t) = C_1 y_1(t) + C_2 y_2(t) + y_p(t)$$

For some forms of f(t), we now know how to find a particular solution $y_p(t)$ to

$$y''(t) + ay'(t) + by(t) = f(t)$$
 (†)

- What about the general solution?
- Suppose you can find the full homogeneous solution $y_h(t) = C_1 y_1(t) + C_2 y_2(t)$ to

$$y''(t) + ay'(t) + by(t) = 0$$

▶ [Property 1.8] : (†) has the *general solution*

$$y(t) = y_h(t) + y_p(t) = C_1y_1(t) + C_2y_2(t) + y_p(t)$$

► For details, see [Property 1.8] in course notes. For a brief idea of why — what happens when we substitute this into the left side of (†)?

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

Example: Solve the initial value problem

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

[Property 1.9] : Solving an initial value nonhomogeneous DE

(i) Find $y_h(t)$ (contains two arbitrary constants)

Example: Solve the initial value problem

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

[Property 1.9] : Solving an initial value nonhomogeneous DE

- (i) Find $y_h(t)$ (contains two arbitrary constants)
- (ii) Find $y_p(t)$ using undetermined coefficients

Example: Solve the initial value problem

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

[Property 1.9] : Solving an initial value nonhomogeneous DE

- (i) Find $y_h(t)$ (contains two arbitrary constants)
- (ii) Find $y_p(t)$ using undetermined coefficients
- (iii) General solution $y(t) = y_h(t) + y_p(t)$

Example: Solve the initial value problem

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

[Property 1.9] : Solving an initial value nonhomogeneous DE

- (i) Find $y_h(t)$ (contains two arbitrary constants)
- (ii) Find $y_p(t)$ using undetermined coefficients
- (iii) General solution $y(t) = y_h(t) + y_p(t)$
- (iv) Then, and only then, use initial conditions to find solution to initial value problem

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \quad \Rightarrow \quad \lambda^2 - 4\lambda + 5 = 0$$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i$$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \quad \Rightarrow \quad \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \quad \Rightarrow \quad \lambda^2 - 4\lambda + 5 = 0$$

Form of $f(t)$	Guess for $y_p(t)$
$ce^{lpha t}$	$Ae^{lpha t}$
$c\cos\omega t$ or $c\sin\omega t$	$A\cos\omega t + B\sin\omega t$
$ce^{\alpha t}\cos\omega t$ or $ce^{\alpha t}\sin\omega t$	$Ae^{\alpha t}\cos\omega t + Be^{\alpha t}\sin\omega t$
$a_0 + a_1 t + \cdots + a_n t^n$	$b_0 + b_1 t + \cdots + b_n t^n$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \quad \Rightarrow \quad \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \quad \Rightarrow \quad \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

►
$$A = 5$$
,

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \quad \Rightarrow \quad \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

►
$$A = 5$$
, $B = 8$,

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

$$A = 5, B = 8, C = 22/5$$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

►
$$A = 5$$
, $B = 8$, $C = 22/5$ \Rightarrow $y_p(t) = 5t^2 + 8t + 22/5$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

►
$$A = 5$$
, $B = 8$, $C = 22/5$ \Rightarrow $y_p(t) = 5t^2 + 8t + 22/5$

$$y(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t + 5t^2 + 8t + 22/5$$

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

►
$$A = 5$$
, $B = 8$, $C = 22/5$ \Rightarrow $y_p(t) = 5t^2 + 8t + 22/5$

$$y(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t + 5t^2 + 8t + 22/5$$

▶
$$y(0) = 0$$
 \Rightarrow $C_1 + 22/5 = 0 \Rightarrow C_1 = -22/5$

Example: Solve the initial value problem

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

►
$$A = 5$$
, $B = 8$, $C = 22/5$ \Rightarrow $y_p(t) = 5t^2 + 8t + 22/5$

$$y(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t + 5t^2 + 8t + 22/5$$

$$y(0) = 0 \implies C_1 + 22/5 = 0 \Rightarrow C_1 = -22/5$$

▶ Complete as homework (should get $C_2 = 9/5$)

Example: Solve the initial value problem

$$y''(t) - 4y'(t) + 5y(t) = 25t^2$$
; $y(0) = 0, y'(0) = 1$

$$y'' - 4y' + 5 = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i \quad \Rightarrow \quad y_h(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$$

• Guess
$$y_p(t) = At^2 + Bt + C$$
 \Rightarrow $y'_p = 2At + B$, $y''_p = 2A$

$$2A - 4(2At + B) + 5(At^2 + Bt + C) = 25t^2$$

$$(5A) t^2 + (-8A + 5B) t + (2A - 4B + 5C) = 25t^2 + 0t + 0$$

►
$$A = 5$$
, $B = 8$, $C = 22/5$ \Rightarrow $y_p(t) = 5t^2 + 8t + 22/5$

$$y(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t + 5t^2 + 8t + 22/5$$

▶
$$y(0) = 0$$
 \Rightarrow $C_1 + 22/5 = 0 \Rightarrow C_1 = -22/5$

▶ Complete as homework (should get $C_2 = 9/5$)

$$y(t) = -\frac{22}{5}e^{2t}\cos t + \frac{9}{5}e^{2t}\sin t + 5t^2 + 8t + \frac{22}{5}$$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

► Homogeneous:
$$x'' + \frac{k}{m}x = 0$$
 \Rightarrow $\lambda^2 + \frac{k}{m} = 0$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

- ► Homogeneous: $x'' + \frac{k}{m}x = 0$ \Rightarrow $\lambda^2 + \frac{k}{m} = 0$
- $If \ \omega_0 := \sqrt{\frac{k}{m}}, \ \lambda = \pm i \, \omega_0 \ \Rightarrow \ x_h(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

- ► Homogeneous: $x'' + \frac{k}{m}x = 0$ \Rightarrow $\lambda^2 + \frac{k}{m} = 0$
- $If \ \omega_0 := \sqrt{\frac{k}{m}}, \ \lambda = \pm i \ \omega_0 \ \Rightarrow \ x_h(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

- ► Homogeneous: $x'' + \frac{k}{m}x = 0$ \Rightarrow $\lambda^2 + \frac{k}{m} = 0$
- $If \ \omega_0 := \sqrt{\frac{k}{m}}, \ \lambda = \pm i \ \omega_0 \ \Rightarrow \ x_h(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

- ► Homogeneous: $x'' + \frac{k}{m}x = 0$ \Rightarrow $\lambda^2 + \frac{k}{m} = 0$
- ▶ If $\omega_0 := \sqrt{\frac{k}{m}}$, $\lambda = \pm i\,\omega_0 \Rightarrow x_h(t) = C_1\cos\omega_0 t + C_2\sin\omega_0 t$
- $x_p(t) = A\cos\omega t + B\sin\omega t \text{ (if } \omega \neq \omega_0)$
- $x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + A \cos \omega t + B \sin \omega t$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

- ► Homogeneous: $x'' + \frac{k}{m}x = 0$ \Rightarrow $\lambda^2 + \frac{k}{m} = 0$
- $If \ \omega_0 := \sqrt{\frac{k}{m}}, \ \lambda = \pm i \ \omega_0 \ \Rightarrow \ x_h(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$
- $x_p(t) = A\cos\omega t + B\sin\omega t \text{ (if } \omega \neq \omega_0)$
- If $\omega = \omega_0$, then $x_p(t) = t (A \cos \omega_0 t + B \sin \omega_0 t)$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t$$

- ► Homogeneous: $x'' + \frac{k}{m}x = 0$ \Rightarrow $\lambda^2 + \frac{k}{m} = 0$
- $If \ \omega_0 := \sqrt{\frac{k}{m}}, \ \lambda = \pm i \ \omega_0 \ \Rightarrow \ x_h(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$
- $x_p(t) = A\cos\omega t + B\sin\omega t \text{ (if } \omega \neq \omega_0)$
- If $\omega = \omega_0$, then $x_p(t) = t (A \cos \omega_0 t + B \sin \omega_0 t)$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t \qquad ?$$

$$\omega \neq \omega_0$$

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + (A \cos \omega t + B \sin \omega t)$$

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t \qquad ?$$

$$\omega \neq \omega_0$$

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + (A \cos \omega t + B \sin \omega t)$$

$$\omega = \omega_0$$

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + t (A \cos \omega_0 t + B \sin \omega_0 t)$$

[Example 1.32] What is the long-term behaviour of

$$x''(t) + \frac{k}{m}x(t) = \frac{F_0}{m}\sin\omega t \qquad ?$$

$$\omega \neq \omega_0$$

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + (A \cos \omega t + B \sin \omega t)$$

$\omega = \omega_0$

RESONANCE

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + t (A \cos \omega_0 t + B \sin \omega_0 t)$$

